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Abstract. We have studied concurrent apical/basolateral 
and regulated/constitutive secretory targeting in filter- 
grown thyroid epithelial monolayers in vitro, by fol- 
lowing the exocytotic routes of two newly synthesized 
endogenous secretory proteins, thyroglobulin (Tg) and 
p500. Tg is a regulated secretory protein as indicated 
by its acute secretory response to secretagogues. With- 
out stimulation, pulse-labeled Tg exhibits primarily 
two kinetically distinct routes: ~<80% is released in an 
apical secretory phase which is largely complete by 
6-10 h, with most of the remaining Tg retained in in- 
tracellular storage from which delayed apical dis- 
charge is seen. The rapid export observed for most Tg 
is unlikely to be because of default secretion, since its 

apical polarity is preserved even during the period 
(-,<10 h) when p500 is released basolaterally by a con- 
stitutive pathway unresponsive to secretagogues, p500 
also exhibits a second, kinetically distinct secretory 
route: at chase times >10 h, a residual fraction (~<8%) 
of p500 is secreted with an apical preponderance simi- 
lar to that of Tg. It appears that this fraction of p500 
has failed to be excluded from the regulated pathway, 
which has a predetermined apical polarity. From these 
data we hypothesize that a targeting hierarchy may ex- 
ist in thyroid epithelial cells such that initial sorting to 
the regulated pathway may be a way of insuring apical 
surface delivery from one of two possible exocytotic 
routes originating in the immature storage compartment. 

PITHELIAL cells have been reported to exhibit at least 
two kinds of exocytotic routing operations aimed at 
different targets: (a) polarized secretory pathways to 

the apical and basolateral surfaces (Kondor-Koch et al., 
1985; Gottlieb et al., 1986; Caplan et al., 1987; Rindler and 
Traber, 1988); and (b) secretory pathways exhibiting differ- 
ent physiological regulation, including the segregation of 
"regulated secretory proteins" (Burgess and Kelly, 1987) in 
condensing vacuoles for intracellular storage (which, by the 
time they have become a fully mature storage compartment, 
may be out of the bulk flow of constitutive vesicular mem- 
brane traffic that also travels from the Golgi complex to the 
cell surface; Pfeffer and Rothman, 1987; Klausner, 1989). 

Despite recent claims concerning the mechanism of mo- 
lecular sorting into the regulated secretory pathway (Chung 
et al., 1989), we still do not know what, if any, relationship 
exists between the two kinds of sorting and targeting opera- 
tions listed above, other than they are both initiated in the 
trans-Golgi or trans-Golgi network (TGN) t (Griffiths and 
Simons, 1986; Orci et al., 1987; Tooze and Huttner, 1990) 
and can continue within condensing vacuoles/immature gran- 
ules (Hashimoto et al., 1987; Sossin et al., 1990). Since re- 
cent evidence suggests that in addition to the pathways men- 

1. Abbreviations used in this paper: 8Br-cAMP, 8 bromo cyclic adenosine 
monophosphate; Endo H, endoglycosidase H; NCS, newborn calf serum; 
Tg, thyroglobulin; TGN, trans-Golgi network; THS, thyroid stimulating 
hormone. 

tioned, regulated secretory proteins can also be secreted by 
a vesicular diversion pathway from immature vacuoles to 
the surface which is distinct from the regulated and constitu- 
tive routes yet shares certain features with both (Aryan and 
Chang, 1987; Von Zastrow and Castle, 1987), it is of special 
interest to establish a system which can more clearly distin- 
guish these secretory alternatives. One approach used by this 
laboratory has been to select a model epithelial cell system 
in which the different kinds of exocytotic routing operations 
are ongoing concurrently, and in which it is experimentally 
easy to design assays distinguishing the different secretory 
paths. 

In this report, we have chosen to examine thyroid follicu- 
lar cells, which act as a true epithelium to manufacture 
tyrosine-based thyroid hormones that are essential for devel- 
opment and life of vertebrate organisms (Gorbman, 1986). 
Early in the process of hormone formation, the epithelial 
cells synthesize a large protein prohormone, thyroglobulin 
(Tg), that is discharged as an exocrine secretion into the en- 
closed apical lumen of thyroid follicles. Older studies de- 
scribed this apical secretion as a constitutive process since 
protein was not observed to be concentrated or stored in con- 
ventional exocrine secretory granules (Feeney and Wissig, 
1972). However, more recent data have suggested that a 
regulated apical pathway for Tg secretion must also exist 
(Paiement and Leblond, 1977) involving discharge from 
small apical vesicles (Ericson, 1981). The existence of a 
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regulated pathway implies that a fraction of the newly synthe- 
sized secretory protein is retained in a Golgi/post-Golgi 
storage compartment (Palade, 1975; Salpeter and Farquhar, 
1981; Kelly, 1985) from which it is delivered to the cell sur- 
face slowly (Mains et al., 1987; Aryan and Castle, 1987); 
secretagogue addition should accelerate release from this 
regulated compartment. 

Herein we show the concurrent operation of stimulated 
and unstimulated exocytotic routes carrying Tg selectively to 
the apical cell surface, in which the unstimulated apical route 
may be a diversion pathway from immature granules. In con- 
trast, another endogenous secretory protein of high molecu- 
lar weight (p500), after a period of basolateral constitutive 
secretion, spontaneously reverses its secretory polarity to a 
preferentially apical discharge similar to that of Tg, and also 
exhibits a small secretagogue-induced apical secretion. Mul- 
tiple sorting signals on p500 that confer differential secre- 
tory targeting are possible, but the data are most consistent 
with the hypothesis that a fraction of p500 fails to be ex- 
cluded from the regulated storage pathway which has a 
predetermined apical polarity in thyroid epithelial cells. 

Materials and Methods 

Cell Culture 

Primary thyroid follicular epithelial cells isolated from fresh porcine thy- 
roid tissue by sequential trypsinization in the presence of EGTA according 
to published procedures (Mauchamp et al., 1979) were washed twice in 15- 
ml iced DME containing 10 % newborn calf serum (NCS) at the end of the 
digestion to quench residual trypsin. Cells were then seeded at high density 
(1 x 10 ~ cells/cm 2) in DME containing 0.5% NCS onto Transwell-Col 
filters which had been presoaked overnight at 4°C in a "coating solution" 
containing Matrigel (Collaborative Research Inc., Lexington, MA) diluted 
in 0.1 M sodium carbonate buffer, pH 9.4 so that this material did not gel 
(the filters were washed twice in sterile PBS before use). Except where 
stated, ceils were fed twice (on day 1 or 2 and again on day 4 or 5) in DME 
(containing penicillin, streptomycin, and amphotericin) without serum. 
Based on the presence of mitotic figures (not shown), it appears that cell 
division occurs on the filter surface. However, if a monolayer is not visibly 
confluent by day 4, it generally does not proceed to confluency and is not 
usable for experiments. Where indicated, thyroid stimulating hormone 
(TSH 0.1 mU/ml) was added on day 2 and removed on day 5 before experi- 
ments, which were performed routinely on day 7. This TSH treatment in- 
creased cellular and secreted Tg levels but had no effect on the fraction of 
Tg which was endoglycosidase H (Endo H) resistant, the relative secretory 
stimulation by secretagogue, or the secretory polarity of Tg. Epithelial 
monolayers remain stable, confluent, and viable for at least several weeks 
in culture. 

Electrical Resistance and lT'C]Inulin Permeability of 
Epithelial Monolayers 
Transfilter resistance measurements were made (EVOM; World Precision 
Instruments Inc., New Haven, CT) on successive days of culture using iden- 
tically treated filters without cells as a control. Minor fluctuation was ob- 
served for filter-grown monolayers (depending on the positioning of the 
electrodes); cells grown in TSH tended to have higher resistance values. To 
quantitate [14C]inulin permeability studies, "~1 ttCi of [14C]inulin (New 
England Nuclear, Boston, MA) premixed in DME was added to the apical 
chamber above monotayers or control filters at 37°C, and proportionate vol- 
ume samplings of apical and basal media were removed for counting at 
different incubation times. A direct correlation was observed between the 
measured rise in transepithelial resistance, decrease in inulin permeability, 
and confluent appearance by phase microscopy. 

Cell Labeling 
For pulse-chase studies, filter-grown monolayers were starved either for 
methionine, cysteine, or both, in appropriately deficient DME for 30 rain 

at 37°C. The cells were then labeled for 5-30 rain in the same medium con- 
tainlng [35S]amino acid (New England Nuclear), by the addition of 0.1-0.5 
mCi of radioactivity to the basolateral chamber. At the conclusion of the 
pulse, the cells were washed three times above and below the filter in a chase 
medium containing ~100-fold excess of unlabeled amino acid, before 
returning the cells to the incubator in DME. In certain experiments, 10 mM 
NI-UC1 was added to the DME for chase incubations. At each time point 
in kinetic studies, the apical and basal media were completely removed and 
replaced with identical fresh chase media (in those experiments using 
NaAcetate, the addition of fresh acetate by each medium change helped to 
minimize the possibility of acetate loss of cellular metabolism to choles- 
terol). To the removed media was added 1/20 volume of antiprotease cock- 
tail to yield a final concentration of 0.02% BSA, 1 mM leupeptin, 10 mM 
pepstatin, 5 mM EDTA, 1/,g/ml aprotinln, 1 mM diisopropylfluorophos- 
phate; in some experiments, iodoacetimide or dithiothreitol were added to 
a final concentration of 5 or 40 mM, respectively. In the experiment shown 
in Fig. 2 A, immediate TCA precipitation of the medium was employed so 
that protease inhibitors were not used. For steady-state labeling, filter- 
grown monolayers were continuously labeled for 2 days (>6 half lives for 
Tg) in complete DME plus the addition of 0.25-0.5 mCi radiolabeled methi- 
onine, cysteine, or both to the basolateral chamber. Immediately before 
such experiments, the filters were rapidly washed above and below with PBS 
to remove unincorporated and secreted label. Pulse-chase and steady-state 
labeling experiments were terminated by adding to the monolayers an iced 
solution containing 150 mM NaCI, 5 mM EDTA, 1% Na deoxycholate, 1% 
Triton X-100, 0.1% SDS, and the same mixture of protease inhibitors de- 
scribed above, for 20 min with agitation. Media and cell lysate samples 
were collected and spun for 5 rain in a microfuge (Beckman Instruments, 
Palo Alto, CA) at 4°C to remove insoluble debris. 

Tg Immunoprecipitation 
Antisera were raised in rabbits to denatured monomeric porcine Tg purified 
by SDS-PAGE, or to rat Tg which was found to cross-react with porcine 
Tg (t>100,000 dilution by ELISA). An excess of Tg antibody (5-10/~1 serum) 
or an equal volume of pre-immune rabbit serum, was added to an aliquot 
of apical media, basal media, or celt lysate, and the sample was mixed over- 
night at 4°C. 50-100 #1 of protein A agarose beads (diluted 1:5) either were 
added during the overnight incubation or mixed for a subsequent 1 h. The 
immunoprecipitates were then washed 4 times with 0.5 M NaCI in 25 mM 
Tris-HC1, pH 7.5, and once with 1-I20. 

Endo H Digestion 
Steady-state labeled cells were washed twice in ice cold PBS and lysed as 
described above. To 10/~1 of either Tg immunoprecipitate or cell lysate were 
added: 10/~1 of 2 M NaSCN, 10/~1 of 0.4 M NaCitrate pH 5.3, and 10 ~1 
of either 5 mU Endo H (Boehringer Mannheim Biochemicals, Indianapolis, 
IN) in 50 mM NaPhosphate pH 7.0, or 10/~1 of the buffer without Endo H. 
The samples were then digested or mock-digested at 37°C for 16 h with gen- 
tle mixing, the analyzed by SDS-PAGE and fluorography. 

One-Dimensional Tryptic Mapping 
Bands were excised from dried gels after exposure to x-ray film for 
identification. Excised bands were reswelled for 10 rain in 0.1% SDS, 0.1 M 
Tris-HCl, pH 7.4, and placed in wells overlying a second 3-15% gradient 
SDS-PAGE. To these wells were added 50 ttl of a 250 #g/ml tosylphenyl- 
alanine-chloromethylketone-treated trypsin solution and a gel sample buffer 
which contained a reduced (0.1%) final concentration of SDS and 50 mM 
dithiothreitol. The samples were electrophoresed as usual through stacking 
and resolving gels. 

SDS-PAGE and Fluorography 
Unless otherwise stated, SDS-PAGE analysis of media, cell lysates, and im- 
munoprecipitates, employed straight 4 or 3.75 % gels according to Laemmii 
(1970). Gels were impregnated with Amplify (Amersham) or 1 M Na 
salicylate, dried, and exposed to x-ray film at -70°C. Quantitation of 
fluorographs was performed by scanning densitometry (model GS-350; 
Hoefer Scientific Instruments, San Francisco, CA); error was estimated at 
±10%. In preliminary studies, relative recovery of secreted Tg by either im- 
munoprecipitation or direct analysis by SDS-PAGE was comparable. 

Materials 
Porcine TSH was obtained from Dr. A. E Farlow via the National Hormone 
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and Pituitary Program, NIDDK; bovine TSH and other stock chemicals 
were from Sigma Chemical Co. (St. Louis, MO). Translucent 24 mm, 0.4 
#m pore filters were "Transwell-Col" from Costar, Data Packaging (Cam- 
bridge, MA). In preliminary studies specifically examining translucent 
filters from different suppliers, the use of the Costar product (as described 
in Materials and Methods) greatly facilitated our ability to generate stable 
filter-grown monolayers. 

Results 

Thyroid Epithelial Cells Form Polarized Monolayers 
on Porous l~lters 

Despite their origins as primary cultures, dispersed thyroid 
cells, enriched in epithelial cells relative to other cell types, 
are further enriched when seeded in low (~<0.5 %) concentra- 
tions of  serum such that pure epithelial cell lines can be de- 
rived from these cultures (Ambesi-Impiombato and Coon, 
1979; Fayet and Hovsepian, 1985). The low serum concen- 
tration appears to favor attachment and selective viability 

of  the epithelial cells, resulting in minimal contamination 
by fibroblasts, C cells, macrophages, or endothelial cells 
(Ambesi-Impiombato and Coon, 1979; Fayet and Hovse- 
pian, 1980; Fayet et al., 1982). We have seeded porcine pri- 
mary thyroid cells in low serum on translucent filters that 
permit visualization of live (unfixed, unstained) cells by 
phase microscopy (Fig. 1). Although the quality of these 
phase images is variable because of the refractive properties 
of  the filters, this method offers the advantage that the same 
cells can be used for experimentation or further culture after 
microscopic examination. Consequently, cultures can be 
monitored to follow the change from single refractile cells 
(day 0) to progressive attachment and spreading to con- 
fluency (day 2-4).  

On day 1 postseeding, transfilter electrical resistance (see 
Materials and Methods) was similar to that of control filters 
without cells, whereas between days 2 and 4, a striking in- 
crease in transfilter resistance was observed. This increase 
varied between preparations, corresponding to a value of 

Figure 1. Low-power phase-contrast microscopy of live thyroid epithelial cells cultured on transparent filters: progressive attachment, 
spreading, and growth to confluency. Primary porcine thyroid epithelial cells were prepared and seeded atop Transwell-Col filters as 
described in Materials and Methods. On the day of seeding (A), the cells are round and refractile before attachment to the filter. On day 
1 (B), at a focal plane between the filter surface and the apical medium, some cells can be seen to have attached to the filter (faint streaking 
represents the fibers of the filter itself), while many refractile unattached cells still remain. By day 2 of culture (C), fewer unattached 
refractile cells remain and the filter is largely covered with a monolayer of follicular cells. At day 4 of culture (D), a confluent monolayer 
of polarized thyrocytes is evident across the filter surface with few residual unattached cells. At this time, transepithelial resistance is 
in the range of 200-1,000 f l x  cm 2 and transfilter permeability to labeled inulin is exceedingly low. These parameters establish the exis- 
tence of epithelial tight junctions, a feature of thyroid epithelial cells which are not observed in parafollicular cells, endothelial cells, 
macrophages, or fibroblasts. Bar, 100/~m. 
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200-1,000 fl-cm 2. In addition, asymmetric exposure of 
filter-grown monolayers to [~4C]inulin revealed only trace 
permeation in confluent cultures. These results indicate the 
presence of functional tight junctions. 

Polarized thyroid epithelial cells in vivo are known to se- 
crete Tg, a homodimeric glycoprotein of =660 kD, pre- 
dominantly to the apical extracellular space (Haddad et al., 
1971). To establish that the filter-grown monolayers we used 
were properly polarized, we examined the directionality of 
Tg secreted from cells either continuously labeled for 24 h 
(Fig. 2 A), or pulse labeled with [35S] amino acids and 
chased for 10 h, removing and replacing the chase medium 
at hourly intervals (Fig. 2 B). In either case, Tg was secreted 
with a high degree of fidelity to the apical extracellular space 
from the filter-grown ceils. In contrast, when labeled Tg was 
added to control filters without cells, it appeared to equili- 
brate after overnight incubation (data not shown; and Cham- 
bard et al., 1987). In addition, a second band of high molec- 
ular weight (discussed below) was released preferentially at 
the basolateral surface under both labeling conditions. 

Examination of lntracellular Tg in Filter-grown 
Thyroid Monolayers 

In preliminary studies, SDS-PAGE analysis of cell lysates 
suggested the presence of more than one intracellular band 
of mobility similar but not identical to that of secreted 
Tg. Since Tg contains many N-linked oligosaccharide side 
chains of both core and complex types (Arima et al., 1972), 
we attempted to relate the mobility of Tg to the processing 
of its N-linked glycans. Tg in cell lysates of steady state-la- 
beled monolayers were digested with Endo H (see Materials 
and Methods). In mock-digested samples, intracellular Tg 
migrated either as a broad band (Fig. 3) or as a doublet. 
Endo H treatment converted the broad band into sensitive 
(faster-migrating) and resistant (slower-migrating) species. 
To see which subregion of the undigested Tg band contained 
the Endo H-sensitive material, we divided the original broad 
band into two portions, and digested each portion separately 

Figure 4. Thyroglobulin is also released by a regulated apical secre- 
tory pathway. Confluent filter-polarized thyroid epithelial mono- 
layers grown and labeled to steady state as in Fig. 3 were washed 
apically and basolaterally four times with prewarmed DME and 
then either transferred into fresh DME alone (CON) or that con- 
taining 1 mM 8Br-cAMP (STIM) in both apical and basolateral 
compartments. After three sequential 30-min chase incubations in 
fresh control or stimulating media, the filter-grown cells were ex- 
tracted with detergent in the presence of protease inhibitors. Tg was 
immunoprecipitated from proportionate volumes of apical media, 
basolateral media (not shown), and cell extract (C), and analyzed 
by 3.75% nonreducing SDS-PAGE and fluorography. The Golgi 
form of intracellular Tg (arrow) is diminished by the addition of the 
secretagogue while the apical medium Tg is augmented; the faster- 
migrating (Endo H sensitive) intracellular Tg band is little affected 
by the acute addition of secretagogue. Basolateral secretion of Tg 
did not appear to be stimulated and was at the lower limit of detecta- 
bility. 

with Endo H: material in the upper portion contained the 
Golgi-modified Endo H-resistant form, whereas material in 
the lower portion contained Tg which shifted substantially 
to the Endo H-sensitive position. The slight mobility shift 
of the Golgi/post-Golgi form upon digestion corresponds to 
a similar shift for Tg secreted into the culture medium (Fig. 
3) and agrees with previous reports that a few N-linked gly- 
cans on mature Tg are never processed to complex sugars 
(Spiro and Spiro, 1985). Quantitation ofTg immunoprecipi- 
tated from steady state-labeled cells indicates that =50% 
of the intracellular Tg is Endo H resistant; this substantial 

Figure 3. Examination of intracellular thyroglobulin: defining 
the Golgi form. Confluent filter-polarized thyroid epithelial cells 
(grown as in Fig. 2) were labeled to steady state for 2 d with a mix- 
ture of [35S]methionine/cysteine. Cells were then washed 4 times 
in ice cold PBS and extracted with detergent in the presence of pro- 
tease inhibitors as described in Materials and Methods. Intracel- 
lular Tg was denatured with NaSCN, incubated overnight with 
Endo H or mock incubated without enzyme, and analyzed by SDS- 
PAGE and fluorography. Endo H treatment results in the generation 
of sensitive (zx) and resistant (A) forms. Quantitation of Tg immu- 
noprecipitates after Endo H digestion indicates that >t50% of intra- 
cellular Tg (C) is Endo H resistant. By contrast, Tg secreted into 
the culture medium under all conditions (M) is resistant to the ac- 
tion of Endo H. 

Table I. Quantitation of Tg Released by the Regulated 
Apical Secretory Pathway 

Secreted 0-30 min Secreted 0-90 rain 

% % 

Control (n = 4) 6.9 + 5.9 13 + 11 
8Br-cAMP (n = 3) 25 ± 6.2 35 ± 9.6 

Confluent filter-grown thyroid epithelial monolayers were labeled to steady 
state, washed, and then stimulated with 8Br-cAMP (1 mM) for 30 min or 90 
min, and Tg then immunoprecipitated from the apical medium and cell lysates 
as in Fig. 4. Quantitative data were obtained by densitometric scanning of the 
Tg band after electrophoresis of the immunoprecipitates. The total radiolabeled 
Tg in the apical media samples and ceils was assigned 100% (i.e., basolateral 
secretion was not taken into account since these bands were negligible). The 
net above the unstimulated control at 90 rain was 22%; note that most of the 
stimulated release occurred within the first 30 min after secretagogue addition. 
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fraction has reached or passed the medial Golgi complex. 
(Dunphy and Rothman, 1985). 

Thyroglobulin Is Released Apicaily by a Regulated as 
well as a "Constitutive" Secretory Pathway 

Although electron microscopic surveys of thyroid epithelial 
ceils on porous filters do not reveal morphologically obvious 
secretory granules (Barriere et al., 1986; Penel et al., 1989; 
and data not shown) we searched for the presence of a regu- 
lated secretory pathway in two ways. First we examined the 
effect of secretagogues on cells in which Tg was labeled to 
(or near) steady state, to maximize detection of regulated 
secretion (Moore and Kelly, 1985; Sporn et al., 1986). In 
cells continuously radiolabeled for 2 d, after removal of the 
labeling medium, secretagogue addition (1 mM 8 bromo 
[8Br]-cAMP) resulted in a prompt increase in apical Tg re- 
lease into fresh medium. Regulated discharge of Tg was 
specific and not because of cell injury, since high resolution 
(3.75 % nonreducing) SDS-PAGE showed that stimulated ap- 
ical release of Tg into the medium coincided with a decrease 
in the cellular content of Tg corresponding to the upper 
(Endo H-resistant, Golgi) band (Fig. 4). The same result 
was obtained whether the Tg was analyzed by immunopre- 
cipitation or direct fluorography of SDS-gels (shown below). 
Quantitation of a series of such experiments revealed that Tg 
secreted in the presence of 8Br-cAMP was stimulated 
~>threefold (Table I), with most of the stimulated secretion 
occurring promptly (within 30 min) after secretagogue addi- 
tion. The Tg released by this pathway contained only 
(25-6.9%) =20% of total cellular Tg, but this represents 
=40% of the Tg found in Golgi/post-Golgi compartments, 
assuming half of the cellular Tg in the steady state is at or 
beyond the Golgi compartment (Fig. 3) and that the faster- 
migrating (Endo H-sensitive) form of Tg is little affected by 
secretagogue addition (Fig. 4). From these data it is clear 
that the storage capacity of Tg in the regulated secretory 
pathway is easily measurable, yet relatively small. Similar 
results were observed when the secretagogue was TSH (not 
shown). Basolateral Tg release was barely detectable during 
these 30-min intervals and could not be stimulated with 8Br- 
cAMP (not shown). 

In a second approach we estimated the fraction of newly 
synthesized Tg that was retained in prolonged Golgi/post- 
Golgi storage in the absence of secretory stimulation, after 
constitutive pathways were largely depleted of label. For this 
purpose, the fractions of pulse-labeled Tg secreted apically, 
basolaterally, and that remaining intraceUularly were ana- 
lyzed in a 10-h pulse-chase experiment (Fig. 2 B). During 
this time newly synthesized Tg was released in a single ki- 
netic phase that was largely complete by 6 h (Fig. 2 B). This 
unstimulated phase of apical secretion accounted for a 
majority (=80%) of the Tg synthesized during the pulse 
period. About 7 % was secreted to the basolateral side of the 
filter and the remainder (=13 %) was retained intracellularly. 
The latter fraction is in a Golgi/post-Golgi compartment, 
since by 8 h of chase, virtually all of the pulse-labeled Tg was 
resistant to the action of Endo H (P. Arvan, manuscript in 
preparation). Past 10 h, prolonged unstimulated collections 
of media showed continued apical discharge of Tg (described 
further below) which could be stimulated by secretagogue 
addition, suggesting the presence of labeled protein in regu- 
lated secretory vesicles. Although we did not establish a dis- 
crete chase time at which newly synthesized Tg becomes 
maximally stimulable, from these data it appears that most 
Tg is secreted relatively rapidly even in the absence of stimu- 
lation, while a smaller fraction can be secreted apically in 
a regulated manner. 

The Endogenous Protein pSO0 Is Released 
Constitutively at the Basolateral Surface 

The secretion of a second protein of high molecular weight 
(p500) became apparent primarily because it was resolved 
by low percentage SDS-PAGE of basolateral media (Fig. 2 
A). p500 appeared to contain subunits, because reduction of 
disulfides with dithiothreitol resulted in its complete disap- 
pearance and appearance of a new basolateral band whose 
migration was slightly faster than the 200-kD myosin stan- 
dard (Fig. 5; early chase, 1 and 2; incidentally noted is that 
reduction of sulfhydryl groups retards the mobility of Tg). 

Unlike Tg, the constitutive release of pS00 at times up to 
I0 h of chase exhibited a mild basolateral polarity preference 
(Fig. 2 B). Although there was slight variability between ex- 

Figure 5. The oligomeric endogenous secretory protein, p500, is initially released constitutively with basolateral preference, but undergoes 
a reversal of secretory polarity at late chase times. Filter-polarized thyroid epithelial cells were grown to confluency, pulse labeled with 
[35S]methionine/cysteine and washed as in Fig. 2. The monolayers then were chased in media containing no addition (1 and 2), 10 mM 
NI-L,CI (3), or 10 mM NaAcetate (4) for six sequential 1-h-long periods and one 4-h period to optimally drain label from the constitutive 
secretory pathways. Finally, one 14-h chase period was collected to obtain amounts of labeled protein roughly comparable to those of 
previous periods. Proportionate amounts of apical and basolateral media were analyzed by SDS-PAGE and fluorography at each time inter- 
val. Early Chase shows the media collected at peak-labeled protein secretion (hours 2 and 3 for control and NaAc-treated filters; hours 
3 and 4 for NH4Cl-treated filters). Immediately upon collection, the samples were treated with protease inhibitors and 40 mM DTT (1) 
or 5 mM iodoacetamide (2-4), boiled in SDS-gel sample buffer and run on 3.75% SDS-PAGE. Late Chase 1-4 show the 6-t0- and 10-24-h 
chase collection intervals from the same conditions as those described and shown above. Note that p500 becomes apically predominant 
in the last chase collection from control filters (Late Chase I and 2). In the presence of 10 mM NH4C1 throughout the chase (Late Chase 
3), labeled Tg secretion remains predominantly apical at all times, although intracellular transport kinetics are slowed as seen in other 
exocrine tissues (von Zastrow et al., 1989); by contrast, the constitutive delivery of p500 to the basolateral surface is inhibited such that 
its secretion is now predominantly apical. In the presence of 10 mM NaAcetate throughout the chase (4), apical Tg secretion is essentially 
unaffected but constitutive p500 delivery is now clearly basolaterally predominant. Nevertheless, in the last chase collection, secretory 
polarity of p500 shifts toward greater labeled apical discharge. Note that with prior reduction in panel I Early and Late Chase, the p500 
band has disappeared and instead a band which migrates just faster than the 200-kD myosin standard is observed. This band exhibits the 
same unusual reversal of secretory polarity at delayed chase times as does p500, and presumably represents a subunit of p500. 
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Figure 6. Quantitation of the fractional release of p500 and Tg to 
the apical and basolateral medium. Each of the chase collection in- 
tervals in the experiment displayed in Fig. 5 were analyzed by scan- 
ning densitometry. The total p500 and Tg secreted over the 24-h 
period was assigned 100%; the data shown are fractions of this 
value. The apical polarity of Tg in control and NaAc-containing 
conditions are likely to be underestimations because of the ten- 
dency toward saturation of the x-ray film in the apical Tg bands. A 
significant kinetic delay in secretion of both proteins is evident in 
the presence of NH4C1. Also note the reversal of secretory polar- 
ity for p500 in the last chase collection under control and NaAc- 
containing conditions. The fraction of p500 release apically during 
this period was =8% in the control; =10% in the presence of NaAc. 
A, apical; B, basolateral. 

periments, on average 60-65 % of secreted p500 was de- 
tected basolaterally, as opposed to an 8-10-fold apical polar- 
ity preference for Tg. Since several reports have indicated 
that perturbation of intraorganellar pH may affect secretory 
polarity (Caplan et al., 1987; Parczyk and Kondor-Koch, 
1989), we examined the effect of such a treatment on pulse- 
labeled protein secretion from filter-grown thyroid epithelial 
monolayers (Fig. 5; early chase, 2 and 3). Addition of 10 

mM NI-I4CI beginning immediately postpulse had a minor 
effect on the relative polarity of Tg secretion (although a ki- 
netic delay of apical secretion was evident), whereas p500 
secretion converted to a predominantly apical pattern. By 
contrast, addition of the weak acid Na acetate (10 mM) had 
no effect on apical Tg secretion, while p500 secretion was 
predominantly basolateral (Fig. 5; early chase, panel 4). 
These data seem to indicate that newly synthesized Tg and 
p500 initially take different exocytotic routes which are the 
result of mechanisms that are relatively pH insensitive and 
pH sensitive, respectively. 

A Fraction ofpSO0 Behaves as I f  It Is Missorted to The 
Regulated Apical Secretory Pathway 

The above evidence taken as a whole suggested the presence 
of two possible apical secretory alternatives for Tg, as well 
as a basolaterally predominant secretory alternative exem- 
plified by pS00. We also tested to see if any exocytosis of 
p500 could be elicited from the Golgi/post-Golgi storage 
compartment. After a 15-min pulse labeling, apical and 
basolateral media were collected at 6-h-long chase intervals, 
followed by a single 4-h collection to optimally drain label 
from the secretory pathways not involved in protein storage; 
finally a 14-h chase period was collected, with the intention 
of obtaining roughly comparable amounts of radioactive 
secretory protein in the different blocks of time (Figs. 5 and 
6). The apical/basolateral distributions of p500 and Tg 
secretion were essentially constant in each of the first 6 h as 
well as the 4-h interval from 6-10 h of chase, with a mild 
basolateral preference for p500 and strongly apical-polarized 
Tg release. However during the final collection which is in- 
creasingly enriched in secretory product deriving from the 
Golgi/post-Golgi storage compartment, p500 secretion was 
notably altered: 60-70% was now found apically, approach- 
ing the relative apical polarity observed for Tg (Fig. 5; late 
chase, 1 and 2). Densitometric quantitation of this experi- 
ment is shown in Fig. 6, indicating that =8 % of secreted 
p500 is found apically in the delayed chase collection from 
control cells, and this was not blocked by weak bases or acids 
(Fig. 5; late chase, 3 and 4; and Fig. 6). The increase in rela- 
tive apical secretion of pS00 at late chase times was observed 
with every preparation of cells examined (n = 10). 

To see if the change in secretory polarity was because of 
leakage or transcytosis of p500 during the final prolonged in- 
cubation, radioactive basolateral (or apical) medium re- 
moved early in the chase was placed into the basolateral (or 
apical) chamber contacting nonradioactive monolayers, and 
these samples were incubated in parallel with the usual 14 h 
collection. The basolateral p500 and Tg incubated in this 
manner were effectively impermeant with respect to the filter 
(Fig. 7). To establish that the p500 band was indeed the same 
protein on both sides of the filter as well as at early and late 
chase times (especially since minor bands of slightly faster 
mobility were also observed), we excised the apical and 
basolateral p500 bands from the gel, and examined their 
one-dimensional profiles after limited proteolysis with tryp- 
sin. As seen in Fig. 8 (lanes 1-3), these maps showed iden- 
tity, and were different from that seen for Tg (Fig. 8, lane 4). 

Since one way we could explain the reversal of secretory 
polarity for pS00 was because of its inclusion in a regulated 
secretory pathway with predetermined apical polarity, we 
added secretagogue to steady state-labeled filters to exam- 
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Figure 8. Limited tryptic diges- 
tion patterns of p500 collected on 
either side of the filter are iden- 
tical. Confluent filter-polarized 
cells were cultured, pulse labeled, 
washed, chased, and apical and 
basolateral media analyzed by 
SDS-PAGE and fluorography as 
in Fig. 5. The labeled p500 bands 
from the apical and basolateral 
media from 2-3 h of chase (lanes 
1 and 2, respectively), and the ap- 
ical p500 band from 10-24 h of 
chase (lane 3) were then excised 
from the gel and treated with tryp- 
sin as in Materials and Methods, 
and re-run on a second SDS- 
PAGE. As a control, the Tg band 
from the 2-3-h apical medium 
was treated in parallel (lane 4) 
and shows a different tryptic 
profile. 

Figure 7. The polarity reversal of p500 at prolonged chase times 
is not because of transcytosis. Confluent filter-polarized cells were 
cultured, pulse labeled, and washed (as in Fig. 5), and six sequen- 
tial 1-h-long chase collections made of apical and basolateral me- 
dia. Radioactive apical medium (rich in labeled Tg, poor in p500) 
collected from the sixth chase hour was mixed with an equal volume 
of fresh chase medium and placed in the apical compartment above 
a fresh unlabeled confluent filter-grown monolayer for a 14-h incu- 
bation (left panel). Radioactive basolateral medium (more enriched 
in p500) was treated similarly and placed beneath another unla- 
beled filter-grown monolayer (right panel). At the conclusion of the 
14-h incubation, proportionate volumes of apical (,4) and baso- 
lateral (B) media from both filters were analyzed by SDS-PAGE 
and fluorography. In each case, the radiolabeled p500 and Tg did 
not cross the unlabeled cell layers to a measurable degree. However, 
some low molecular weight radioactive species (at the dye front) 
were seen on both sides of the filter after the 14-h incubation. 

ine its effect on both apical p500 and Tg release; as shown 
in Fig. 9, the apical secretion of p500 was stimulated, albeit 
somewhat less than that observed for Tg from the same cells, 
whereas basolateral release of neither protein was stimulated 
(not shown). 

Discussion 

In the last few years, considerable effort has been made to 
elucidate the different exocytotic pathways that secretory 
proteins may follow in exiting eukaryotic cells. In the case 
of polarized protein secretion, much of the classic work has 
concentrated on cell lines that have the advantage of possess- 
ing epithelial tight junctions but do not express a regulated 
secretory pathway (Kondor-Koch et al., 1985; Gottlieb et 
al., 1986; Caplan et al., 1987; Rindler and Traber, 1988). 

By contrast, much of the classic work describing the intra- 
cellular coexistence of regulated and constitutive routes 
(reviewed in Kelly, 1985) has focused on cell types in which 
spatial segregation of the regulated and constitutive secre- 
tory pathways may exist (Rivas and Moore, 1989; Sporn et 
al., 1989), but which lack epithelial tight junctions, making 
it more difficult to measure secretory polarity. We have 
sought a system that exhibits both of the above properties, 
to study secretory sorting and targeting operations in the 
same cells. Reestablishment of fight junctions on the surface 
of a porous filter permits the formation of a true polarized 
thyroid epithelium (Mauchamp et al., 1987; Chambard et 
al., 1987; and this report). Additionally, thyroid cells cul- 
tured in this manner continue to respond to secretagogues 
with stimulated Tg release. Thus to our knowledge, this sys- 
tem represents the first filter-grown epithelial monolayer 
with preserved apical/basal and regulated/constitutive secre- 
tory targeting ongoing concurrently. We have used this sys- 
tem to examine directly the exocytotic routes followed by two 
endogenous high molecular weight secretory proteins, Tg 
and p500. 

Tg, a large (660 kD) homodimeric protein which is 
secreted as an exocrine product after heterogeneous process- 
ing during biosynthetic transport, is designed to serve in in- 
trathyroidal storage of thyroxine in the apical lumen after its 
posttranslational iodination. It has been a long held view 
(Feeney and Wissig, 1972) that Tg secretion is a purely con- 
stitutive process. However, the data presented suggest that 
apically released Tg derives from both unstimulated and 
stimulated routes. These pools of Tg are unlikely to reside 
in different epithelial subpopulations, based on older au- 
toradiographic studies which do not reveal heterogeneity in 
the kinetics of the Tg secretory process between epithelial 
cells (Nadler et al., 1964), and based on an analogous obser- 
vations made in other systems (Moore and Kelly, 1985; 
Sporn et al., 1986; von Zastrow and Castle, 1987; Stoller 
and Shields, 1988). In the exocrine pancreas (a tissue whose 
structural organization is similar to that of the thyroid, ex- 
cept that the former contains a more developed regulated 
secretory pathway with numerous large storage granules), 
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Figure 9. Secretion of p500 can be stimulated by secretagogue. Confluent filter-grown monolayers were labeled to steady state, washed, 
and either stimulated with 5 mM 8 Br-cAMP or not stimulated, and the cells lysed as in Fig. 5. Four sequential 30-rain chase collections 
were made. (A) The apical and basolateral media were analyzed by 4% SDS-PAGE and fluorography (CON, lanes 1-4; STIM, lanes 5-8). 
Only the apical media is shown. Two different lengths of exposure of the identical samples are shown: in the shorter exposure (left set 
of two panels) a substantial stimulation of labeled Tg release is seen and p500 can be detected only in the 30-min stimulated sample but 
not in the control. The basolateral media showed detectable labeled protein only in long exposure, however, no secretagogue-stimulated 
effect was evident. In the long exposure, in which radioactivity in labeled apical proteins has saturated the film, it is evident that there 
is also unstimulated secretion of Tg and p500 in the control samples. (B) The same samples were analyzed for Tg secretion by immunopre- 
cipitation; p500 is not immunopreeipitated by the polyclonal anti-Tg antisera. 

unstimulated apical secretion of regulated secretory proteins 
can be divided into two kinetically distinct phases which de- 
rive from two different exocytotic routes: a quantitatively 
minor phase which exhibits relatively rapid release (com- 
plete by ,06 h of chase), and a quantitatively major, slower 
phase (half-life >12 d) that derives from exocytosis from the 
mature storage compartment (Aryan and Castle, 1987; Ar- 
van and Chang, 1987). In the present case of cultured thyroid 
monolayers, it appears that without secretory stimulation, 
most Tg is delivered to the apical surface in an early phase 
within 6 h after synthesis (Fig. 2 B), whereas only a small 
fraction is found in prolonged intraceUular storage and 
delayed secretion. Quantitative differences in the handling of 
secretory products by the different systems are likely to 
reflect tissue-specific differences, but we presume that 
qualitative handling of the secretory proteins is similar be- 
tween the exocrine secretions of pancreas and thyroid. 

In contrast to the many published reports concerning Tg 
biosynthesis and secretion (Malthiery et al., 1989), p500 is 
a newly described protein secreted constitutively from thy- 
roid ceils. We are confident that p500 is a product expressed 
by the epithelial cells because of the relative purity of the cell 
preparation, the apparent abundance of the protein in secre- 
tion and cell homogenates, and the ability to stimulate its 
secretion by thyroid epithelial cell secretagogues (Fig. 9; and 
data not shown). Based on SDS-PAGE mobility after treat- 
ment with reducing agents (Fig. 5), differences in secretory 
behavior (kinetics, polarity, and sensitivity to pH-perturbing 
drugs; Figs. 2 and 6) immunologic criteria (Fig. 9), and 
tryptic maps (Fig. 8),it seems unequivocal that p500 and Tg 
are distinct and unrelated proteins. The fact that these two 
proteins are initially secreted from the same ceils with differ- 
ing relative polarity can be taken as strong evidence for true 
molecular sorting, presumably at the level of the TGN. Our 
data further suggest that the initial targeting of Tg and p500 
to the two different plasmalemmal surfaces involves mecha- 

nisms that are relatively pH insensitive and sensitive, respec- 
tively. 

In contradistinction to the model of Moore (Chung et al., 
1989) in which all constitutively secreted proteins are envi- 
sioned as lacking specific conserved signals present in regu- 
lated secretory proteins, the observation in exocrine (and 
many endocrine) systems that there is a substantial unstimu- 
lated release of regulated secretory proteins has led to the 
postulate that such a process is not due to inefficiency 
of sorting into the immature storage compartment, but 
rather to the extent to which vesicular traffic diverted from 
this compartment to the cell surface (Aryan and Castle, 
1987) reduces the storage capacity of the regulated pathway 
in a tissue-specific manner. Storage capacity may be de- 
creased or lost in many tissue culture conditions, and is a pa- 
rameter likely to be under physiologic control (Scammell 
et al., 1986). The hypothesis of a vesicular diversion of regu- 
lated secretory proteins from immature granules (Arvan and 
Chang, 1987) that may be either tethered to, or separated 
from the TGN (yon Zastrow and Castle, 1987), describes a 
somewhat different phenomenon than the sorting of regu- 
lated from constitutive molecules by a putative sorting recep- 
tor. It should be emphasized that models of these two differ- 
ent processes are not mutually exclusive and may now be 
distinguished better in polarized cell systems where consti- 
tutively secreted proteins are released with a secretory polar- 
ity different from that of the vesicular diversion from imma- 
ture granules. Thus, lack of sorting does not appear to 
explain the large fraction of newly synthesized Tg which is 
secreted "constitutively; since it is still faithfully delivered 
with an apical predominance despite the fact that other pro- 
teins such as p500 are routed constitutively with basolateral 
preference. To demonstrate whether one of these two mole- 
cules (or both) is sorted away from the "default secretory 
pathway S it will be necessary to establish the volume of bulk 
flow of different routes going from the trans-Golgi to the cell 
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surface (Burgess and Kelly, 1987; Pfeffer and Rothman, 
1987; Klausner, 1989). Such studies in cultured thyroid epi- 
thelial cells are now in progress in our laboratory. 

Perhaps the most striking finding of all is the change in 
secretory polarity for p500 from basolateral to apical at 
prolonged chase times, unlike Tg which is always apically 
predominant. Control experiments demonstrated that such a 
change is due neither to leakage nor to transcytosis from the 
basolateral to apical sides (Fig. 7). In addition, we have no 
evidence to favor the notion of multiple or different sorting 
signals on p500 which could cause different targeting. By 

proteolytic fingerprints (Fig. 8), p500 collected apically is 
identical to p500 collected basolaterally. Thus, we hypothe- 
size that a fraction of p500 fails to be excluded from the ma- 
ture storage compartment and as such becomes a component 
of the regulated pathway, which must be a precommitted exo- 
crine (apical) route in thyroid epithelial cells. Based on our 
experiments (Fig. 6), it appears that the net amount of newly 
synthesized p500 actually conveyed to the apical surface by 
the delayed pathway is small. However, it appears that pro- 
teins positively sorted, passively sorted, or missorted to the 
mature storage compartment become virtually indistinguish- 
able in terms of secretory polarity. If true, this observation 
suggests the possibility of a targeting hierarchy in such cell 
types wherein routing to the immature storage compartment 
may be a way of insuring apical surface delivery, albeit by 
both early and delayed routes. Such a hierarchy would have 
important implications regarding the targeting signals 
directing regulated secretion and apical delivery, including 
the possibility that there could be overlap, redundancy, or 
even identity in such signals. 
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