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Abstract. Previous work has shown that actin binds 
specifically and saturably to liver membranes stripped 
of endogenous actin (Tranter, M. P., S. P. Sugrue, and 
M. A. Schwartz. 1989. J. Cell Biol. 109:2833-2840). 
Scatchard plots of equilibrium binding data were lin- 
ear, indicating that binding is not cooperative, as 
would be expected for F- or G-actin. To determine the 
state of membrane-bound actin, we have analyzed the 
binding of F- and G-actin to liver cell membranes. 
G-actin in low salt depolymerization buffer and EF-actin, 
a derivative that polymerizes very poorly in solution, 
bind to liver cell membranes as well as untreated actin 
in polymerization buffer. Phalloidin-stabilized F-actin 
binds, but to a lesser extent. The binding of F- and 
G-actins are mutually competitive and are inhibited by 

ATE suggesting that both forms of actin bind to the 
same sites. For untreated actin in polymerization 
buffer, the time course of binding is biphasic, with an 
initial rapid component which is followed by a plateau 
phase, then a second, slower component. The binding 
kinetics of pure F-actin and pure G-actin are both 
monophasic and match the fast and slower compo- 
nents, respectively, of untreated actin. In the recon- 
stituted system, membrane-bound actin does not stain 
with rhodamine-phalloidin, nor are actin filaments de- 
tected by EM. Distinct regions of amorphous material, 
however, are visible, which stain with an anti-actin an- 
tibody. The exact nature of this material has yet to be 
determined. A model of actin binding is presented. 

T 
HE actin cytoskeleton maintains the shape and struc- 
tural integrity of the plasma membrane and plays a 
dynamic role in a number of membrane-associated 

events, including cell migration, cell adhesion, phagocyto- 
sis, and the regulation of integral membrane protein distribu- 
tion and mobility (reviewed in Cohen and Smith, 1985; Gei- 
ger, 1983; Jacobson, 1983; Ishikawa, 1988). While these 
functions imply that an intimate link exists between the 
plasma membrane and the underlying cytoskeleton, the evi- 
dence for such an association is mostly indirect. To date, in- 
vestigators have relied heavily on EM (Begg, 1978; French 
and Davies, 1975; Phillips et al., 1981; Goodloe-Holland 
and Luna, 1984; Hirokawa and Tilney, 1982; Sugrue and 
Hay, 1981) and coisolation studies (Luna et al., 1981; 
Mescher et al., 1981; Carraway et al., 1982; Wolosin et al., 
1983; Hubbard and Ma, 1983; Yousef and Murray, 1978) to 
demonstrate that actin is physically connected to the plasma 
membrane. However, these methods provide only limited in- 
formation regarding the molecular nature of actin-membrane 
associations. 

In an attempt to gain a better understanding of actin- 
membrane interactions in mammalian cells, we measured 
the binding of radiolabeled actin to sedimentable liver cell 
membranes. The sedimentation actin-binding assay includes 
the actin-capping protein gelsolin, which, by limiting actin 
filament length, ensures that equilibrium-binding curves are 

saturable (Schwartz and Luna, 1986). This technique has 
previously been used to elucidate the mechanisms by which 
actin associates with plasma membranes isolated from the 
cellular slime mold Dictyostelium discoideum. Using this as- 
say, Schwartz and Luna (1986) found that F- but not G-actin 
binds specifically and saturably to highly purified D. dis- 
coideura membranes. Upon further analysis, actin binding 
and assembly were shown to be tightly coupled, with D. dis- 
coideum membranes inducing actin filament formation at 
concentrations well below the critical concentration for actin 
polymerization (Schwartz and Luna, 1986; Schwartz and 
Luna, 1988). Based on these results, a model was proposed 
in which D. discoideum membranes induce the formation of 
stable actin trimers and thereby directly nucleate actin as- 
sembly (Schwartz and Luna, 1988). Key features of this 
model have recently been supported by the direct demonstra- 
tion of a membrane-associated actin-nucleation activity 
(Shariff and Luna, 1990). Both the actin-nucleating and 
actin-binding activities of D. discoideum membranes now 
appear to be mediated by ponticulin, a 17-kD integral mem- 
brane glycoprotein (Wuestehube and Luna, 1987; Shariff 
and Luna, 1990). 

We recently reported that direct interactions between actin 
and integral membrane proteins also occur in the mam- 
malian liver (Tranter et al., 1989). Using the sedimentation- 
binding assay mentioned above, we found that t2~I-actin 
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binds specifically and saturably to liver cell membranes and 
that integral membrane proteins appear to be responsible. In 
addition, the association of actin with rat liver membranes 
exhibits a number of distinctive features not observed in 
other actin-membrane systems. Actin binding is strongly tem- 
perature dependent, displays unusual kinetics, and is com- 
petitively inhibited by certain nucleotides. Scatchard plots of 
equilibrium-binding data are linear, which both indicates the 
presence of a single class of binding sites and suggests that 
binding is not cooperative. Given that actin binding occurs 
over the same concentration range as actin polymerization 
(the critical concentration for actin in the presence of gelso- 
lin is ,o30 #g/ml; Schwartz and Luna, 1986), it was expected 
that the preferential binding of either F- or G-actin would re- 
sult in positive or negative cooperativity, respectively. The 
absence of cooperativity is therefore inconsistent with known 
types of actin interactions. 

While electron micrographs show occasional filamentous 
structures attached to unstfipped liver cell membranes (Tran- 
ter et al., 1989), these filaments do not appear to be present 
in sufficient abundance to account for the level of endoge- 
nous membrane-bound actin (,o5 % of the total membrane 
protein). In addition, endogenous actin is very resistant to 
extraction by a variety of agents known to depolymerize actin 
filaments (Tranter et al., 1989; Hubbard and Ma, 1983). In- 
terestingly, Hubbard and Ma (1983) have reported that actin 
bound to liver cell membranes does not bind myosin S-1. 
Since these observations suggest that endogenous actin may 
not be in the filamentous form, we have systematically ex- 
plored the state of membrane-bound actin in our system. 

Materials and Methods 

Materials 

Phalloidin was obtained from Calbiochem-Behring Corp. (San Diego, CA), 
rhodamine phalloidin from Molecular Probes Inc. (Junction City, OR), and 
diethylpyrocarbonate (DEPC) l from Aldrich Chemical Co. (Milwaukee, 
WI). All other chemicals were as described in Tranter et al. (1989). 

Actin was isolated from rabbit skeletal muscle by the method of Spudich 
and Watt (1971) and further purified by gel-filtration on Sephadex G-150 
(Pharmacia Fine Chemicals, Piscataway, NJ) as described by MacLean- 
Fletcher and Pollard (1980). Gel-filtered actin was radiolabeled with Na125I 
(Amersham Corp., Arlington Heights, IL) according to the method of 
Schwartz and Luna (1986). Both radiolabeled and unlabeled actin were 
stored in the G-form by dialysis against depolymerization buffer (50 ttM 
CaC12, 1 mM ATE 1 mM DTT, 0.02% sodium azide, 2 mM Tris-HC1, 
pH 8.0). After 3 wk at 4"C, the actin was either cycled by polymerization 
and depolymerization or discarded. 

Porcine plasma gelsolin was purified as previously described (Tranter et 
al., 1989) using a modified procedure of Cooper et al. (1987). 

Hepatocytes isolated by the method of Aiken et al. (1990) were a gener- 
ous gift from the laboratory of Dr. Donald Ingber. 

Protein concentrations were determined in the presence of 1% SDS by 
the method of Lowry et al. (1951) using BSA as the standard. 

Membrane Preparation and Extraction 
Liver call membranes were prepared as previously described (Tranter et al., 
1989; membrane preparation 1). Briefly, excised livers were homogenized 
in an ice-cold low-salt/CaCl2 buffer, then centrifuged at 150 g to remove 
nuclei and debris. The supernatants were pooled, and the membranes were 
collected by a 10 rain centrifugation at 2,000 g. The resultant membrane 
pellet was washed once with homogenization buffer, resuspended to a final 
concentration of 5--10 mg/ml and stored at -80°C in 0.5 ml aliquots. To 

1. Abbreviation used in this paper: DEPC, diethylpyrocarbonate. 

remove endogenous aetin before use in a binding assay, membranes were 
extracted for 30 min at 0--4"C with 1 M Na2CO3/NaHCO3, pH 10.5, as 
previously described (Tranter et al., 1989). The final pellet was stored at 
4"C in low-salt buffer (2 mM "l~is-HC1, 0.5 mM DTT, 0.4 mM EDTA, 0.4 
mM PMSF, 4/zg/ml aprotinin, 4 ttg/ml leupeptin, pH 7.6) for use the follow- 
ing day. 

Preparation of EF-actin and Phalloidin Actin 
EF-actin was prepared essentially as described by Schwartz and Luna 
(1988). Unlabeled or radiolabeled actin (~2 mg/ml) was dialyzed against 
0.2 mM CaC12, 0.2 mM ATE 2 mM 2-(N-morpholino) ethanesulfonic 
acid, pH 6.5 for 2 h, and then centrifuge gel filtered on a Sephadex G-25 
(Pharmacia Fine Chemicals) minicolunm which had been equilibrated with 
the same buffer. DEPC dissolved in ethanol was added at a mole ratio of 
DEPC to actin of 12:1. The sample was then mixed thoroughly and in- 
cubated on ice for 20 rain. 10x polymerization buffer was then added to 
yield a final concentration of 50 mM KC1, 2 mM MgCI2, 20 mM Pipes, 
pH 7.0. The actin was polymerized for 1 h at room temperature then 
sedimented in an airfuge (Beckman Instruments, Palo Alto, CA) at 30 psi 
for 45 rain. To remove excess DEPC, the supernatant containing EF-actin 
was centrifuge gel filtered on a Sephadex G-25 minicolunm equilibrated 
with 2 mM Tris-HC1, 50/zM CaC12, 1 mM DTT, 0.02% sodium azide, pH 
7.0. EF-actin was then used immediately in a binding assay. 

Unless otherwise indicated, phalloidin actin was prepared as follows. 
Unlabeled or radiolabeled actin mixed with gelsolin at a 15:1 mole ratio of 
actin to gelsolin was polymerized for 1 h at room temperature in 50 mM 
KCI, 2 mM MgCI2, 20 mM Pipes, 100/xM CaC12, pH 7.0, containing 
phalloidin at a concentration equimolar to actin. For some experiments, the 
polymerized actin was then loaded onto a Sepharose 6B column (Pharmacia 
Fine Chemicals) and eluted with 50 mM KCI, 2 mM MgC12, 20 mM 
Pipes, 100 #M CaC12, 10/tM phalloidin, pH 7.0. The excluded volume, 
containing phalloidin-stabilized F-actin, was then used in a binding assay. 

Actin-membrane Binding Assays 
Actin membrane-binding assays were performed essentially as described by 
Tranter et al. (1989). Assays were done in a total volume of 30 #1 of binding 
buffer (100 mM KCI, 2 mM MgC12, 1 mM DTT, 20 mM Pipes, 100/~M 
CaCI2, 100/~M PMSE 0.4 #g/ml leupeptin, pH 6.8) containing 0.5 mg/ml 
stripped membranes, 20 mg/ml ovalbumin, and various amounts of actin. 
For some experiments, binding was measured in low salt buffer instead of 
binding buffer. Unless otherwise indicated, samples contained gelsolin at 
a 15:1 mole ratio of actin to gelsolin. 10/zM phalloidin was also included 
in assays using phalloidin actin. Samples were incubated for 2.5 h at room 
temperature, layered onto 350/~1 10% sucrose in assay buffer, and cen- 
trifuged for 20 min at 11,600 g in a microfuge model 11; (Beckman Instru- 
ments, Inc.) Total actin added and actin bound were then calculated from 
the amount of radioactivity in the pellets and supernatants. Specific actin 
bound was calculated by subtracting the actin bound in control samples from 
total actin bound. For controls, actin binding was measured in the presence 
of unlabeled excess actin or in the presence of 25 mM ATP. These controls 
have been found to yield essentially identical results. For all figures binding 
is expressed as pg/ml actin bound/0.5 mg membrane protein. 

Kinetic assays were performed at room temperature (25-27°C). Samples, 
were assembled on ice, and then immediately transferred to a room temper- 
ature water bath upon the addition of actin. After the indicated period of 
time, each sample was spun through sucrose and analyzed as described 
above. 

The binding of actin to isolated hepatocytes was measured as follows. 
Freshly isolated hepatocytes (,'-,250,000 cells) were incubated in 100 #1 
WiUiam's E medium (Gibco Laboratories, Grand Island, NY) containing 
,°80/~g/ml untreated 125I-actin and 20 mg/ml ovalbumin, with or without 
10 mM AMP-PNP. After 1 h at either 37°C or 0-4°C, cells were layered 
onto 1.0 mi 10% sucrose and spun for 4 min at 3,000 rpm in a microcen- 
trifuge (Beckman Instruments, Inc.). The pellets and supernatants were then 
counted in a gamma counter. Alternatively, isolated hepatocytes were cul- 
tured overnight in Williams E medium in a 24-weU culture dish (,o250,000 
cells/well). The following day, the media was removed and replaced by 100 
#1 W'dliam's E medium containing ,o80/~g/ml untreated 125I-actin and 20 
mg/ml ovalbumin, with or without 10 mM AMP-PNP. After a 1-h incuba- 
tion at 37°C, the medium was removed, and the cells were rinsed several 
times. The cells were then dissolved in 2% SDS and counted in a gamma 
counter. 
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Rhodamine-phalloidin Staining and EM a 

50 
Stripped liver membranes (100 /zg) were incubated with or without 100 
~g/ml actin in 200 #1 binding buffer containing 20 mg/ml ovalbumin. After E 
incubation at room temperature for indicated periods of time, samples were "~ 40 
layered onto 1.0 ml of 10% sucrose in assay buffer and centrifuged for 15 
min at 13,600 g in a microcentrifuge (Fisher Scientific Co., Pittsburgh, PA). ~ 30 
The pellets were washed once with binding buffer, and then fixed in 1.0 ml 
of 3.7% formaldehyde in binding buffer for 30 rain at room temperature, m 
Samples were spun for 15 min in the microcentrifuge, washed once with ~= 20 
PBS (0.15 M NaC1, 10 mM sodium phosphate, pH 7.0), and resuspended ,~ 
in 100 #1 PBS containing 33-nM rhodamine-phalloidin. Samples were in- 
cubated for 30 min at room temperature, diluted to 1.5 ml with PBS, and ~ 10 
centrifuged as before. After a final wash with PBS, pellets were resuspended 
in 10/zl PBS, mounted on microscope slides, and examined with a micro- 
scope (Photomicroseope; Zeiss, Oberkoehen, FRG) equipped with phase 
contrast and epifluorescence optics. 

For EM, stripped membranes (500 #g/ml) were incubated with or with- 
out 500 t~g/ml untreated actin in binding buffer for various lengths of time, 
and then processed for thin sectioning as previously described (Tranter et 
al., 1989). 

For immunoelectron microscopy, two methods were used. For direct de- b 

tection, polyclonal antibody (ICN Radiochemicals, Irvine, CA) against rab- 5 0 -  

bit muscle actin was purified on protein A-Sepharose (Pharmacia Fine E Chemicals) and adsorbed to 12-am colloidal gold particles as described ~ 40 
(Larsson, 1988). Excess ovalbumin was added to block remaining free sites, .~ 
and the particles washed and collected. IgG-gold conjugates were added to 
the membranes to give 5/~g IgG per 100/A sample. They were incubated 
1 h at room temperature, then the membranes sedimented, rinsed 3x with t~ 
PBS +5 % normal goat serum, and processed for EM as above. ~_ 

For indirect detection, anti-actin IgG was added to membranes to give 
1.5 #g in 100/A. The samples were vortexed vigorously and then souicated o 

very briefly (<10 s) in a bath sonicator, to ensure complete dispersal of the 
membrane pellet. Membranes were incubated 1 h at room temperature, and o £L 

then sedimented and rinsed 3 x with PBS + 10% normal goat serum. Then t~ 
goat anti-rabbit IgG-coated 5-rim gold particles (Amersham Corp.) were 
added, and samples again vortexed and sonicated. They were again in- 
cubated 1 h, rinsed, and processed for EM as before. 

Resul ts  and  Discussion 

In this study, we have explored the state of  membrane-bound 
actin by examining the ability of  F- and G-actin to bind to 
liver cell membranes. The binding of  untreated t2SI-actin to 
stripped liver membranes was first measured in the absence 
and presence of  the actin-capping protein gelsolin. Gelsolin 
is routinely used in this assay (Schwartz and Luna, 1986) to 
prevent actin-actin associations which tend to render bind- 
ing nonsaturable (Jacobson, 1980; Cohen and Foley, 1980; 
Schwartz and Luna, 1986). In contrast to what has been ob- 
served in other systems (Jacobson, 1980; Cohen and Foley, 
1980; Schwartz and Luna, 1986), the binding of  actin to liver 
cell membranes is saturable with or without gelsolin (Fig. 
1 a). In fact, gelsolin has little, if any, effect on the extent 
of  actin binding. Since liver cell membranes also have no 
consistent effect on the viscosity of  F-actin solutions, as mea- 
sured by low shear viscometry (Fowler et al., 1981; Luna et 
al., 1981), they do not appear to cross-link actin filaments 
(data not shown). Taken together, these results indicate that 
actin bound to liver cell membranes does not polymerize 
into the bulk solution away from the membrane surface. 

Binding of  Monomeric and Filamentous Actin 
to Liver Cell Membranes 

Treatment of G-actin with DEPC generates an actin deriva- 
tive that polymerizes very poorly in solution (Miilr',td et al., 
1969; Hegyi et al., 1974; Schwartz and Luna, 1988). This 
derivative, termed EF-actin (Schwartz and Luna, 1988), has 
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Figure 1. (a) Specific binding of untreated 12SI-actin to stripped 
liver cell membranes in the absence (o) and (A) presence of gelso- 
lin (15:1 mole ratio of actin to gelsolin). (b) Specific binding of 
125I-EF-actin to stripped liver membranes. 

been particularly useful since it allows the association of 
monomeric actin with stripped liver membranes to be mea- 
sured under the same binding conditions used for untreated 
actin. 

Experiments with EF-actin were performed in binding 
buffer, in the absence of  gelsolin. Fig. 1 b shows that EF- 
actin binds to stripped liver membranes in a specific and 
saturable manner, and the affinity and stoichiometry of bind- 
ing (EF-actin concentration at half saturation = 65 + 5 
#g/ml; 58 + 10/~g EF-actin bound/mg membrane protein 
at saturation; n = 3) are very similar to those for untreated 
actin in the presence of  gelsolin (actin concentration at half 
saturation = 65 + 15 #g/ml; 78 + 26 #g actin bound/mg 
membrane protein at saturation; n = 6). Actin binding mea- 
sured in low salt depolymerization buffer was also similar to 
that observed under standard conditions, with the amount of 
actin bound at saturation generally the same or greater (actin 
concentration at half saturation = 55 + 5/~g/ml; 90 + 10 
#g actin bound/mg membrane protein at saturation; n = 3; 
data not shown). 

To determine if liver cell membranes also bind filamen- 
tous actin, we incubated stripped liver cell membranes with 
phalloidin-stabilized actin filaments. Phalloidin binds to ac- 
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Figure 2. Comparison of the specific binding of 
phalloidin-stabilized '~I-F-actin (n) and untreated 
]25I-actin (e) to stripped liver membranes. 

tin filaments in a 1:1 molar ratio and stabilizes them against 
depolymerization (Estes et al., 1981; Coluccio and Tilney, 
1984). In initial experiments, actin was polymerized in the 
presence of equimolar phalloidin and then added directly to 
our samples. Results from these experiments revealed that 
phalloidin substantially reduces the extent of specific actin 
binding but does not completely abolish it. Although phal- 
loidin stabilizes actin filaments, it does not alter the kinetics 
of polymerization. As a result, it seemed possible that resid- 
ual G-actin was responsible for this low level of binding. 
Thus, to ensure that actin was completely filamentous, we 
polymerized actin as before in the presence of phalloidin, 
then gel filtered it on a Sepharose 6B column. This proce- 
dure separates short actin filaments from actin monomers. 
Actin from the excluded volume was then used for binding 
assays. Assays performed this way yielded results essentially 
identical to those without gel filtration and are displayed in 
Fig. 2. As can be seen, the extent of binding in the presence 
of phalloidin is considerably less, being 20-50% of the bind- 
ing of untreated actin (n = 4). 

Competitive-binding assays have been carded out to deter- 

mine if F- and G-actin bind to the same sites. Fig. 3 shows 
the effect of increasing concentrations of EF-, phalloidin-, 
and untreated actin on the binding of untreated l~I-actin to 
stripped liver cell membranes. All three forms of unlabeled 
actin clearly reduced the binding of untreated ~2SI-actin to 
the same extent. Curiously, both EF- and phalloidin-actin 
also appear to have a higher affinity for these binding sites 
than untreated actin. That these three forms of actin are 
mutually competitive suggests that they bind either to the 
same site or to nearby sites on the same protein. However, 
given that ATP effectively inhibits the binding of all three 
forms of actin (data not shown), the first alternative is 
strongly favored. This conclusion is also consistent with 
Scatchard analysis which indicated that the association of ac- 
tin with liver cell membranes is mediated by a single class 
of binding sites (Tranter et al., 1989). 

Kinetics of Actin Binding 

To further characterize their association with liver cell mem- 
branes, we have measured the kinetics of binding for un- 
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Figure 3. Binding of untrea~.xi '25I-actin (70- 
90 t~g/ml) to stripped liver cell membranes (500 
/~g/ml) in the presence of unlabeled untreated actin 
(o); unlabeled phaUoidin actin (D); and unlabeled 
EF-actin (A). 
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Figure 4. Kinetics of actin mem- 
brane binding with three different 
forms of actin: (a) untreated ac- 
tin; (b) EF-actin; (c) phalloidin 
actin. Approximately 85 t~g/ml of 
each form of ~25I-actin was incu- 
bated with stripped liver cell mem- 
branes for the indicated periods 
of time. Samples were then spun 
through sucrose and the radioac- 
tivity in the pellets and superna- 
tants was counted. Specific bind- 
ing was determined as described 
in Materials and Methods. 

treated, EF-, and phalloidin-actin. The same concentra- 
tion of each form of 'zSI-labeled actin was incubated with 
stripped membranes for various lengths of time at room tem- 
perature, and then sedimented through sucrose. Binding was 
determined as before. As shown in Fig. 4, the three forms 
of actin bind to liver cell membranes with very different ki- 
netics. For untreated actin, the time course of binding is 
biphasic (Fig. 4 a). The initial binding phase is very rapid 
(t½ '~5 min) beginning immediately upon mixing and reach- 
ing a plateau within 15 min of incubation. This plateau lasts 
for 30-60 rain and is then followed by a slower second phase 
of binding (tlA '~15 min). Although the absolute values for 
the amount of actin bound (18 5:10/~g actin bound at plateau/ 
mg membrane protein; 44 5 :10  #g actin bound at steady 

state/mg membrane protein) and the length of the lag phase 
(30-60 min) varied somewhat between experiments, the 
overall pattern was highly reproducible (n = 5). The kinetics 
for EF-actin binding are monophasic (Fig. 4 b), with a half- 
time of ,~10-15 min. Untreated G-actin under low salt de- 
polymerization conditions exhibits essentially identical ki- 
netics, having a half-time for binding of '~15 min (data not 
shown). In sharp contrast, the kinetics of phalloidin-actin 
binding are monophasic, but are extremely fast (t~h "~2 min) 
(see Fig. 6 c). The half-time for the rapid component, how- 
ever, must be regarded as an approximation, since it is close 
to the limit of resolution for the method. 

Interestingly, the kinetics of binding for untreated actin 
consists of two components, the first of which is similar to 
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Figure 5. Rhodamine-phalloidin staining of membrane- 
bound actin. (A) Unstripped membranes; (B) stripped 
membranes incubated without actin; (C) stripped mem- 
branes incubated with 100/zg/ml untreated actin for 2 h. 

the rate and extent of binding for F-actin alone and the sec- 
ond of which is similar to the rate and extent of binding of 
EF-actin alone. 

Rhodamine-Phalloidin Staining and EM 
To assess the state of assembly of membrane-bound actin, 

we processed samples for rhodamine-phalloidin staining 
and for EM. To determine if membrane-bound-untreated ac- 
tin is in the filamentous form, we incubated stripped liver 
cell membranes with 100/~g/ml actin, then stained with 
rhodamine-phaUoidin. Since rhodamine-phaUoidin binds 
specifically to F- but not G-actin (Estes et al., 1981), it is 
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Figure 6. Electron micrographs of liver cell membranes with or without bound actin. (A) Unstripped membranes; (B) stripped membranes; 
(C) stripped membranes incubated with 500 #g/ml actin for 2 h. (Small arrows) Amorphous material; (/arge arrows) smooth membranes; 
(D) higher magnification of amorphous material associated with the membranes in (C). 

a useful marker for the presence of actin filaments. As shown 
in Fig. 5, only a low level of diffuse staining was detectable 
on stripped membranes alone or on stripped membranes 
with actin bound. Unstripped membranes, on the other 
hand, did exhibit specific, punctate staining, indicating that 
freshly isolated membranes do contain some actin filaments. 

Membranes incubated with or without actin were also ex- 
amined by EM. In agreement with our rhodamine-phalloidin 
staining results, no discernible actin filaments could be de- 
tected (Fig. 6). Whereas stripped membranes alone appeared 
quite smooth, membranes to which actin was added had 
regions where amorphous material was visible. This mate- 
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Figure 7. Immunoelectron microscopy. (Large arrowheads) Gold particles decorate amorphous material. (Small arrows) Areas of smooth 
membranes do not label. (A) Direct detection with anti-actin IgG on 12-rim gold particles. (B) Indirect detection, with soluble antiactin 
followed by anti-rabbit IgG on 5-nm gold particles, 

rial was most often apparent on large sheets or vesicles, sug- 
gestive of plasma membranes. In any event, it was clearly 
localized to a subset of the preparation. We have been un- 
able, however, to reach any further conclusions as to the 
structure of this material, other than it is distinct from nor- 
mal F-actin. 

To determine if this amorphous material was actin, we per- 
formed immunoelectron microscopy with an anti-actin anti- 

body. Samples were labeled with antiactin directly adsorbed 
to 12-nm gold particles, or were labeled by incubation with 
free anti-actin IgG followed by addition of 5-nm gold coated 
with second antibody. Both methods showed no staining of 
smooth membranes but heavy labeling of the amorphous ma- 
terial (Fig. 7). Labeling appeared to be specific since nega- 
tive controls with ovalbumin-gold particles showed no label- 
ing, and positive controls with unstripped membranes showed 
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Figure 8. A diagrammatic model for the binding of actin to liver 
cell membranes. Initially, F-actin binds rapidly to the membrane 
surface and precludes the binding of actin monomers (step 1). Mem- 
brane-bound actin then undergoes a slow rearrangement which re- 
veals or creates additional binding sites (step 2). After this rear- 
rangement, more actin binds until equilibrium is reached (step 3). 
When no F-actin is present, actin monomers can bind directly to 
the membrane via step 3, bypassing steps 1 and 2. 

strong labeling of filaments and junctional complexes, as 
well as amorphous material (not shown). 

Actin Binding to Intact Hepatocytes 

To rule out the possibility that binding of actin is to the 
extracellular side of the plasma membrane, we measured 
the binding of untreated ~25I-actin to intact, isolated hepato- 
cytes. For these experiments, freshly isolated hepatocytes 
were incubated with ,,o80 t~g/ml ~25I-untreated actin in the 
absence and presence of 10 mM AMP-PNP. AMP-PNP, like 
ATE inhibits actin binding but is nonhydrolyzable (Tranter 
et al., 1989). While some actin binding that was inhibited 
by excess unlabeled actin was detected, it was not inhibited 
by AMP-PNP nor was it prevented by carrying out the bind- 
ing at 0--4°C (data not shown). Essentially identical results 
were also obtained with hepatocytes that were cultured over- 
night. Thus, no binding with the appropriate characteristics 
was observed. Membranes prepared from isolated hepato- 
cytes do, however, bind actin in our assay (not shown). While 
these results argue that the binding activity is not extraceUu- 
lar, it cannot be ruled out that the binding sites become oc- 
cupied by actin released during cell or membrane isolation 
(despite the fact that membrane isolation is carded out in the 
cold, conditions which inhibit actin binding in vitro) and that 
binding sites are not regenerated in culture. 

A Model for Binding 

Based on the results from our equilibrium binding and ki- 
netics experiments, we propose a model for the binding of 
actin to liver cell membranes (Fig. 8). This model is meant 
to organize the results which have been presented. We em- 
phasize, however, that the actual states of membrane-bound 
actin are unknown, and the structures depicted in Fig. 8 are 
not intended to be interpreted literally. It should be noted 
that there was no evidence for the presence of normal fila- 

ments on the membranes at any time during the time course 
of actin binding, as assayed by EM and rhodamine-phalloidin 
staining (data not shown). 

Recall that the time course of binding for untreated ac- 
tin has two components, the first of which approximately 
matches the rate and extent of binding for F-actin alone and 
the second of which approximately matches the rate and ex- 
tent of binding of G-actin alone. According to this model, 
F-actin, which in assay buffer exists in equilibrium with actin 
monomers, binds rapidly to the membrane surface and 
precludes the further binding of actin monomers (step 1). 
This step represents the first phase of binding and occurs 
with both untreated and phalloidin-stabilized actin filaments. 
During step 2, the plateau phase, membrane-bound actin un- 
dergoes a slow rearrangement which reveals or creates ad- 
ditional binding sites. This step is blocked by phalloidin. 
Together with step 1, this step accounts for the ability of 
phalloidin-actin to effectively compete with other forms of 
actin for membrane-binding sites, even though it binds to 
membranes to a lesser extent. Following rearrangement, a 
second phase of binding occurs during which monomeric ac- 
tin binds to the membrane until equilibrium is reached (step 
3). This step might also involve new actin-actin associations 
in addition to actin-membrane contacts. Under conditions 
where no F-actin is present, actin monomers can bind di- 
rectly to the membrane via step 3, bypassing steps 1 and 2. 

While it is conceivable that these complex kinetics could 
result from the partial sealing of membrane vesicles (i.e., 
rapid binding to inside out vesicles and slow binding to par- 
tially sealed right side out vesicles), this notion is unlikely. 
First, previous experiments failed to detect any sealing of 
vesicles before or after incubation in binding buffer (Tranter 
et al., 1989). Second, while sealing could possibly explain 
the two kinetic components, it is difficult to understand how 
it could account for the observed lag phase. 

Conclusions 

The major conclusion drawn from these studies is that actin 
reconstituted onto stripped liver cell membranes has proper- 
ties inconsistent with either F- or G-actin. This conclusion 
is supported by several lines of evidence. First, Scatchard 
plots of equilibrium-binding data obtained with untreated 
actin are linear, indicating that actin-membrane binding is 
not cooperative under conditions that promote actin polymer- 
ization (Tranter et al., 1989). Second, both F- and G-actin 
bind with similar affinities, as evidenced by results with EF-, 
phalloidin-, and untreated actin. Third, no actin filaments 
have been detected in the reconstituted system, either by 
rhodamine-phalloidin staining or EM. Distinct regions of 
membrane-associated amorphous material which label with 
colloidal gold have, however, been visualized. This amor- 
phous material thus appears to be actin, but its structure has 
yet to be determined. 

This work reveals a phenomenon that is clearly complex 
and somewhat puzzling. Its major significance is that it 
raises the question of whether membrane-bound actin might 
be nonfilamentous. While it has generally been assumed that 
only filamentous actin binds to cell membranes, there are 
many reports in the literature that are difficult to explain with 
this model. In fact, there are numerous instances where 
membrane-associated actin appears to be in a "nontradi- 
tional" form. In the echinoderm sperm, specialized areas of 
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the nuclear envelope and the acrosomai vacuole membrane 
become tightly associated with a pool of nonfilamentous 
actin (Tilney, 1976). Similarly, a domain of membrane- 
associated actin that does not stain with rhodamine-phalloidin 
has been identified in unfertilized sea urchin eggs (Bonder 
et al., 1989). In both of these systems, nonfilamentous actin 
appears to be stored in regions where it can rapidly be re- 
cruited into actin filaments. 

Nonfilamentous actin has also been reported to be tightly 
associated with microvillar membranes from ascites tumor 
cells (Carrawey et al., 1982) and plasma membranes from 
murine tumor and lymphoid cells (Mescher et al., 1981). 
Likewise, Hubbard and Ma (1983) have isolated membranes 
from the rat liver which contain a substantial amount of en- 
dogenous actin which does not decorate with myosin S-1. 
Thus, it seems that a least a portion of the actin bound to cell 
membranes is in a form about which we know very little. 
Mescher and co-workers (Mescher et al., 1981; Apgar et al., 
1986; Apgar and Mescher, 1986) have suggested that a 
nonfilamentous form of membrane-bound actin may be an 
integral part of a distinct membrane skeletal structure. Their 
results may prove to be highly relevant to the phenomenon 
in liver. 

It is likely that more than one form of membrane-bound 
actin is present in intact hepatocytes, as in other systems 
(Mescher et al., 1981; Gruenstein et al., 1975). While 1 M, 
pH 10.5, carbonate buffer is required to remove all endoge- 
nous actin from liver cell membranes, a fraction of the actin 
is removed by milder conditions (Tranter et al., 1989). Also, 
actin filaments are present on freshly isolated membranes, 
but not in the reconstituted system (Figs. 5 and 6). Further- 
more, indirect associations would not be detected by our as- 
say, for example, those mediated by the analogues of spectrin 
(Amrein-Gloor and Gazzotti, 1987) and ankyrin (Bennett, 
1979) that are found in rat liver. 

An important question that remains to be answered is the 
physiological significance of this interaction. The major 
difficulty in answering this question is that so little is known 
about actin in the hepatocyte. While it is unlikely that the 
binding activity which we have measured represents a mech- 
anism by which the cortical cytoplasm becomes anchored to 
the plasma membrane, a structural role in another type of 
membrane skeleton is quite possible, perhaps a membrane 
skeleton analogous to that described by Mescher and col- 
leagues (Mescher et al., 1981; Apgar et al., 1985; Apgar and 
Mescher, 1986). Alternatively, while available data argue 
against it, we cannot absolutely rule out the possibility that 
the actin-binding sites are extracellular. Resolution of these 
questions will very likely require the identification and char- 
acterization of the proteins responsible for this unusual as- 
sociation. 
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