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Abstract. In this report we analyze the protein prod- 
uct of a growth arrest-specific gene, gas2, by means 
of an affinity-purified antibody raised against the pro- 
tein produced in bacteria. The regulation of Gas2 bio- 
synthesis reflects the pattern of mRNA expression 
(Schneider, C., R. King, and L. Philipson. 1988. Cell. 
54:787-793): its relative level is tightly associated with 
growth arrest. Gas2 seems to be regulated also at the 
posttranslational level via a phosphorylation mecha- 
nism. Gas2 is well conserved during the evolution 
with the same apparent molecular mass (36 kD) be- 

tween mouse and human. 
We also demonstrate that Gas2 is a component of the 

microfilament system. It colocalizes with actin fiber, at 
the cell border and also along the stress fiber, in 
growth-arrested NIH 3T3 cells. The pattern of distri- 
bution, detected in arrested cells, can also be observed 
in growing cells when they are microinjected with the 
purified GST-Gas2 protein. 

In none of the analyzed oncogene-transformed NIH 
3T3 cell lines was Gas2 expression induced under se- 
rum starvation. 

T 
o gain insight about the mechanism that controls growth 
arrest in mammalian ceils, we have cloned a set of 
genes that are highly expressed during growth arrest 

mediated by either serum starvation or density-dependent in- 
hibition in NIH 31"3 mouse fibroblasts (30). 

These genes have been called growth arrest specific (gas)l; 
their expression is downregulated during the first hours after 
serum induction of arrested NIH 3T3 cells. The same strik- 
ing regulation of gas gene expression in relation to growth 
arrest appears, at least in one instance, to hold true also in 
vivo. The expression of the rat homologue of gas3 gene, (20) 
highly homologous to a membrane protein found as a myelin 
component (16), is in fact strongly downregulated during the 
cellular response to nerve injury, when Schwann cells 
proliferation starts (41). 

To understand the functional role of gas genes in the main- 
tenance and induction of growth arrest we have undertaken 
the characterization of their protein products. 

In this paper we report on the product of gas2; using a 
specific antibody it is shown that the regulation of its biosyn- 
thesis exactly reflects the pattern of mRNA expression. The 
protein seems to be regulated also at the posttranslational 
level via a phosphorylation mechanism. By double immuno- 
fluorescence analysis it colocalizes with actin filaments, its 
distribution being prevalent at the cell border, but it is also 
detectable along the stress fibers. 

We demonstrate that the purified fusion protein GST- 
Gas2, when microinjected in growing cells, is localized in 
the microfilament apparatus, both at the cell border and at 
the level of stress fibers, in a pattern similar to endogenous 
Gas2 in arrested cells. Moreover, when a microvillar appara- 

tus is present in the microinjected cells, GST-Gas2 becomes 
most intensely localized in this region. It is well known that 
distinct regional levels of organization exist within the mi- 
crofilament network: (a) at the level of the leading edge 
where ruffles and microspikes are present in tight connection 
with the plasma membrane; (b) at the level of stress fibers 
all along the cellular length; (c) at the ventral face of the cells 
in the adherent junctions; or (d) in microvillar structures at 
the dorsal side of the cells. 

The local differences of microfilaments system present in 
these cellular loci can be achieved by different rates of actin 
polymerization (25) and/or by the specific compartmental- 
ization of actin-binding proteins (ABPs) or microfilament- 
associated proteins (for review see 4, 22, 33, 34). For exam- 
ple, in cultured fibroblasts myosin is associated with stress 
fibers but is less abundant in the microfilament's rich ruffling 
membrane (39). On the contrary, fimbrin is largely absent 
in stress fibers (3), but present in the ruffling membrane, 
while vinculin and tensin are mainly present in adherent 
junctions (4, 9). Other organizing proteins seem to be more 
promiscuous such as a-actinin (26, 40), which can be de- 
tected both in adherent junctions and along the stress fibers. 

We have no results bearing on the role that Gas2 has in 
microfilament organization, or in what kind of structure it 
might serve as a component. The fact that its expression is 
induced in growth arrest may constitute a level of regulation 
whereby at least one unit of the microfilament system might 
be involved in a specific growth arrest organization. 

1. Abbreviations used in this paper: ABE actin-binding protein; BrdUrd, 
bromodeoxyuridine; gas, growth arrest-specific gene; Gas, growth arrest- 
specific protein; GST, glutathione-s-transferase. 
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Materials and Methods 

Cell Lines and Culture Conditions 
NIH 3T3 were routinely cultured in DME with 10% FCS. In each experi- 
ment 10 ~ cells/mi were seeded in 35-mm Petri dishes. 

For serum starvation, medium was changed to 0.5% FCS when cells 
were subcontluent, and cells were then left in this medium for 48 h. Under 
these conditions, incubation with 50 #M bromodeoxyuridine (BrdUrd) for 
an additional 3 h resulted in labeling of < 3 % of the nuclei. For induction 
of DNA synthesis, fresh medium containing 20% FCS was added to the ar- 
rested ceils. 18 h after activation with serum, a 2-h pulse of BrdUrd, 
resulted in ",,90% of the positive nuclei. For density-dependent inhibition, 
cells were plated at 104/cm 2 in 10% FCS. 12 h after plating (considered as 
the starting point for growing cells), the medium was changed every 2 d. 
After 4 d in culture, incubation with BrdUrd for 2 h resulted in <5 % incor- 
poration in the nuclei. Exponentially growing cells are cells cultured for 
24 h in 10% FCS. After this time, incubation with BrdUrd for 2 h resulted 
in 60% incorporation. 

NIH 3T3 transformed with v-ras, v-myc, and v-src (2) were kindly 
provided by Prof. F.Tato' (University of Rome, Italy). NII-I 3T3 transformed 
with v-fos were kindly provided by Prof. R. Muller (Institut f(ir Molekular 
Biologie und Tumorforschung, Marburg, Germany) (2). 

DNA Synthesis Assay 
Cells grown on coverslips in the same culture dishes from which protein 
extracts were prepared were incubated for 2 h in the presence of 50 I~M 
BrdUr. After this time cells were fixed for 20 rain in 3 % paraformaldehyde 
and permeabilized with 0.1% Triton X-100. DNA was then denatured by 
treatment for 10 s with 50 rnM NaOH. After neutralization the coverslips 
were incubated with mouse mAb against BrdUrd for 1 h at 37~ The sec- 
ond antibody was TRITC-conjugated rabbit anti-mouse Ig antibodies. Total 
nuclei were visualized with Hoechst 33342 (1 /zg/ml). The percentage of 
cells in S phase was calculated as the ratio between positive for TRITC and 
total cells (Hoechst 33342 stained). 

gas2 Expression in E. coli 
The gas2 expression vector was constructed by digesting gas2 eDNA with 
endonuclease HincII (fragment from nucleotide 378 to 1511). BamHI adap- 
tors were ligated to the recovered fragment inserted into BamHI site of pAR 
3040 vector which carries the promoter of the '~' 10 gene of T7 bacterio- 
phage (35). Expression ofT'/RNA polymerase was performed by infection 
of the host cells (E. coil bacterial strain Q 358) with bacteriophage X~CEG 
carrying bacteriophage T7 gene 1 with a multiplicity of infection of five to 
seven infectious phage particles per cell. 

Bacteria containing the plasmid pAR3040/gas2 were grown to saturation 
in LB medium supplemented with ampicillin (50 /~g/ml) and maltose 
(0.02%). The bacteria were diluted 1/100 in the same medium and grown 
to an optical density at 550 mn of 0.6-0.8. The expression of the T7 RNA 
polymerase was then induced by infection with the bacterial phage X~CEG. 

The cultures were incubated for a further 3 h, and bacteria were collected 
and lysed as previously described (23). Under these conditions the Gas2 
fusion protein can be isolated as inclusion bodies. These granules were 
separated from the cell debris by centrifngation. 

The pellets were washed once and dissolved in sample buffer (2% SDS, 
100 mM DTT, 60 mM Tris, pH 6.8) by boiling for 10 rain. These samples 
were run on a preparative polyacrylamide gel and stained with Coomassie 
blue in water (0.05%) (13). The band corresponding to the Gas2 fusion 
product was excised and the protein electroeluted as described (13) and used 
to immunize rabbits. 

To construct the GST-Gas2 fusion protein, oligonucleotides containing 
BamHI and Hindm sites were used to generate a polymerase chain reaction 
fragment of the complete gas20RF, which was cloned in pGEX3 vector 
(32). The fusion protein was expressed in E. coil JM 101 bacterial cells. 
For purification, 1 liter of culture was grown to an absorbance A600 of 0.4, 
induced for 3 h with 0.2 mM IFIG. The culture was then resnspended in 
25 ml of buffer A (PBS, 0.5% CHAPS) and subjected to mild sonication. 
The clarified extract was incubated with 1 mi glutathione-Sepharose beads 
(Pharmacia Fine Chemicals, Piscataway, NJ) previously washed in buffer 
A, for 1 h at 4~ in a rotating platform. The beads were subsequently 
washed with buffer A followed by buffer B (0.4 M NaC1) and finally PBS. 
Bound protein was eluted by two 5-rain incubations with 1 ml 50 mM Tris 
containing 5 mM glutathione (reduced, freshly prepared). Proteins for 
microinjection was dialyzed against 100 mM KC1. 

AjOinity-purified Polyclonal Antibody Preparation 
Rabbits were injected with 200/~g purified bacterial Gas2 protein mixed 
with complete Freund's adjuvant. Subsequently they were injected with the 
same amount of protein in incomplete Freund's adjuvant every 3 wk 
for 2 too. 

For the affinity purification of the antibodies, 0.6 nag of purified bacterial 
Gas2 protein was covalently coupled to Affi-Prep 10 support (Bio-Rad 
Laboratories, Cambridge, MA). 1 ml of immune serum, diluted 10 times 
in 0.1% Triton X-100, 50 mM Tris, pH 8, 100 mM NaC1, was incubated 
batchwise with the affinity matrix preequilibrated in the same buffer. 

After overnight incubation at 4~ the matrix was pouted in a column 
and washed with 50 vol column of the same buffer. Antibodies were eluted 
with 400 ~l of 0.2 M Glycine HC1, pH 2.8, and the fractions were neutral- 
ized with 50 ~l of 2 M Tris, pH 8. 

In Vitro Expression of gas2 
To express cDNA of gas2 in vitro, linearized plasmid was transcribed with 
T7 polymerase (Promega Biotec, Madison, WI) in the presence of 7mGpppG 
CAP (Pharmacia Fine Chemicals). 

500 ng of the generated RNA was translated in rabbit reticulocyte extract 
containing [35S]methionine, as recommended by Novagene (Madison, 
wi). 

For immunoprecipitation, 2 /~1 of reticulocyte translation mixture was 
mixed with 0.1 ml of the NP-40 buffer (50 mM TEA, pH ZS, 0.1% NP-40, 
150 mM NaC1) and incubated for 30 min on ice with anti-Cras2 antibodies. 
After this time, 50 ~1 of (10% wt/vol) suspension of protein A-Sepbarose 
(Pharmacia Fine Chemicals) was added and the incubation was prolonged 
for 30 rain at 4oc by rocking. After three washes with the NP-40 buffer the 
immunocomplex was resolved on SDS-PAGE. 

Immunoblotting 
Preparation of cellular or organ extracts was performed by adding 10 vol 
of sample buffer (2% SDS, 100 mM DTT, 60 mM Tris, pH 6.8), which was 
vigorously mixed and boiled for 5 min. Before performing the final SDS- 
PAGE for the blot, the protein extracts were checked for equal amounts on 
separate gel stained by Coomassie blue. Proteins were transferred to 0.2-~m 
pore sized nitrocellulose (Schleicher & Schuell, Dassel, Germany) using 
a semi-dry blotting apparatus (Bio-Rad Laboratories, Cambridge, MA) 
(transfer buffer: 20% methanol, 48 mM Tris, 39 raM glycine, and 1.3 mM 
SDS). After staining with Ponceau S, the nitrocellulose sheets were satu- 
rated for 2 h in Blotto-Tween 20 (13) (50 mM Tris-HCl, pH 7.5, 200 mM 
NaC1, 5% nonfat dry milk, and 0.1% Tween 20) and incubated overnight 
at room temperature with 1/zg/rni of anti-Gas2 affinity-purified antibodies 
in Blotto-Tween 20 or with 1/500 dilution of antivimentin or antitubulin as- 
cites fluids. After incubation, the nitrocellulose sheets were rinsed three 
times with Blotto-Tween 20 and reacted with alkaline phosphatase-con- 
jugated sheep antirabbit (Dako Corp., Santa Barbara, CA) or goat an- 
timouse (ICN Pharmaceuticals, Inc., Irvine, CA) for 1 h at room tempera- 
ture. The blot was then washed four times in Blotto-Tween 20, rinsed in 100 
mM Tris-HCl, pH 9.5, 100 mM NaCi, 5 mM MgCi2, and developed in the 
same buffer containing 0.3 mg/mip-nitro blue tetrazolium chloride and 0.15 
mg/ml 5-bromo-4-chlom-3-indoyl phosphate, p-toluidine salt. 

Immunoprecipitation 
Cells growing in 35-ram petri dishes were labeled for the appropriate times 
in 1 mi of DME methionine-free 10% FCS when needed, containing 150 
~Ci/mi [35S]methionine (Amersham Corp., Arlington Heights, IL; 1,000 
Ci/mmol; 1Ci = 37 GBq). 

Cell monolayers were lysed with 0.5 mi of (100 mM NaCI, 50 mM TEA, 
pH 7.5, 0.8% SDS) lysis buffer on ice and then boiled for 4 rain. After boil- 
ing 0.5 ml of SDS-quenching buffer (100 mM NaC1, 50 raM TEA, pH 7.5, 
4% Triton X-100) was added containing (final concentration) 1 mM PMSF 
and 10/xg/ml each of aprotinin, leupeptin, antipnin, and pepstatin. (In some 
cases Triton X-100 lysis buffer was used [0.1% Triton X-100, 100 mM NaC1, 
50 mM TEAl.) The lysates were cleared by centrifugetion for 2 rain. The 
supernatants were incubated with 20/B of normal rabbit serum for 1 h on 
ice and transferred to a new Eppendorf tube containing 20/~1 wet volume 
pellet of prewashed Staph A. After resuspension of the Staph A., the lysates 
were incubated by continuous rocking at 4~ for 30 rain and then cen- 
trifuged for 2 rain in an Eppendorf centrifuge. This was repeated and the 
lysates were centrifuged for 10 rain: the resulting supernatants were then 
used for immunoprecipitation. These lysates were incubated with the af- 
finity-purified anti-GAS2 antibody for 3 h at 4~ with rocking. Finally, 
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80/~1 of protein A-Sepharose (10% wt/vol) suspension was added and the 
incubation was continued for 1/2 h by rocking at 4~ Protein A-Sepharose 
was recovered by centrifugation, washed three times in Triton X-100 lysis 
buffer and finally resuspended in sample buffer. Immune complexes were 
released by boiling for 5 min. 

For 32p labeling, NIH 3T3 cells were cultured for 40 h in 0.5% FCS; 
after this time phosphate-free medium containing 0.25 mCi/ml 32p and 
0.5% FCS was added and left for a further 8 h. At the end of the labeling 
period they were either stimulated by addition of 20% FCS (activated ceils) 
or left in the same labeling medium (resting cells) for 3 h. 

Immunofluorescence Microscopy 

For indirect immunofluorescence microscopy of cultured cells, the cells on 
coverslips were fixed with 3 % paraformaldehyde in PBS for 20 min at room 
temperature. The fixed cells were permeabilized with 0.1% Triton-X 100 in 
PBS for 5 min and then washed with PBS/0.1 M Glycine, pH 7.5. The sam- 
pies were treated with the first antibody (anti-&as2 diluted in PBS 3 % BSA) 
for 1 h in a moist chamber at 37"C. They were then washed with PBS three 
times, followed by incubation with antirabbit biotinylated second antibody 
(Dako Corp.) for 1 h at 37"C. The immunocomplexes were visualized by 
incubation with rhodamine-conjugated streptavidin (Jackson Laboratory, 
Bar Harbor, ME). For the detection of actin filaments, FITC-phalloidin 
(Sigma Chemical Co., St. Louis, MO) was used. In the same experiments 
cells were treated before fixation with extraction buffer (2 mM MgC12, 150 
mM KCI, 20 mM TEA, 0.i % Triton X-100) for 2 min in ice. Anti-GST anti- 
bodies and F-actin were visualized using antirabbit FITC-conjugated (Dako 
Corp.) and TRITC-phalloidin (Sigma Chemical Co.), respectively. A Zeiss 
microscope was used for all the analysis with the following set of filters: 
rhodamine and (BP546, FT580, LP 590) fluoresceine (450-490, FT 510, 
LP520). 

Microinjection 

GST-Gas2 fusion protein was microinjected at the concentration of 4 mg/ml 

in exponentially growing ceils using AIS system (Zeiss) as described else- 
where (27). Cells were fixed and processed for immunofluorescence 1 h 
later. 

Resul ts  

Affinity-purified Polyclonal Antibody Recognizes 
the Protein Product (Gas2) of  the gas2 Gene 

The growth arrest-specific gene (gas2) has been previously 
characterized at the structural and expressional level (30). To 
analyze the protein product of  the gas2 gene we immunized 
a rabbit with the E. coli expressed Gas2 protein, The antise- 
rum was further purified on a Gas2 affinity column and ini- 
tially used to compare the immunoprecipitat ion products 
from whole cell lysates of  [35S]methionine-labeled NIH 
3T3 cells (Fig. 1 a ,  lane 5), with the immunoprecipitat ion 
product obtained from in vitro transcription/translation of  
gas2 eDNA (Fig. 1 a,  lane 4). 

The pr imary translation product of  gas2 eDNA (Fig. 1 a,  
lane 2) is recognized by the antibody (Fig. 1 a,  lane 4) and 
appears to have the same size (apparent molecular  mass •36 
kD) as the polypeptide immunoprecipitated from growth- 
arrested NIH 3T3 cell lysate (Fig. 1 a,  lane 5). 

The expression of gas2 mRNA is abundant at growth ar- 
rest induced by either serum starvation or  saturation density 
(30). Furthermore,  it becomes downregulated when arrested 
cells are reintroduced into cycle. We therefore examined first 
if  the protein was similarly controlled. 

Exponentially growing (Fig. 1 b, lanes I and 3) growth ar- 

Figure L Immunoprecipitation analysis of Gas2. (a) (lane 1 ) Mock translation; 0ane 2) in vitro translation of gas2 mRNA; (lane 3) immu- 
noprecipitation of mock translation; (lane 4) immunoprecipitation of the in vitro-translated product of gas2 gene; (lane 5) immunoprecipi- 
tation of Gas2 from serum-starved cellular lysates after rSS]methionine in vivo labeling. (b) Immunoprecipitation analysis of Gas2 under 
different growth conditions of NIH 3T3 cells. Exponentially growing cells, 24 h after seeding in 10% FCS (lane 1) and serum-starved 
cells, 48 h in 0.5% FCS (lane 2) were labeled for 3 h with [35S]methionine. Equal numbers ofTCA precipitable cpm from the respective 
lysates were processed for immunoprecipitation. Exponentially growing cells, 24 h after seeding in 10% FCS (lane 3) and density- 
dependent, growth-inhibited NII-I 3'1"3 cells, 8 d after seeding in 10% FCS (lane 4) were labeled for 3 h with [3SS]methionine. Equal num- 
bers of TCA procipitable cprn from the respective lysates were processed for immunoprecipitation. Serum-starved NIH 3"1"3 cells, 48 h 
in 0.5% FCS (lane 5) and serum-starved cells followed by 6 h of incubation with 20% FCS (lane 6) were labeled for 3 h with [35S]methio- 
nine. Equal numbers of TCA precipitable cpm from the respective lysates were processed for immunoprecipitation. 
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rqgure 2. Western blot analysis of Gas2 expression. Proteins were extracted from: (a) actively growing NIH 3T3 cells and various times 
after serum starvation; (b) exponentially growing NIH 3T3 cells various days after ceils seeding; and (c) from serum-starved NIH 3T3 
cells various hours after 20% addition. Immunodecorations were performed with anti-Gas2, antivimentin, and antitubulin antibodies. 
BrdUrd incorporation is shown in diagram analysis. 

rested by serum starvation (Fig. 1 b, lane 2) or by density- 
dependent inhibition (Fig, 1 b, lane 4) NIH 3"1"3 cells were 
labeled for 3 h with [3sS]methionine. After cell lysis equal 
numbers of cpm were immunoprecipitated with anti-Gas2 
antibody. Growth arrest induces in both cases a clear in- 
crease in the level of Gas2 protein. Moreover, when cells are 
growth arrested by serum starvation and reintroduced into 
a synchronous cell division cycle by addition of 20% FCS, 
the biosynthesis of Gas2 is clearly downregulated 6 h after 
serum stimulation (Fig. 1 b, lane 6). 

Analysis of Gas2 Expression under Different 
Growth Condiffons 

To study the steady-state expression of Gas2 during different 
growth conditions we performed Western immunoblot anal- 
yses. Equal amounts of extracted proteins were loaded for 
each time point (as assessed by Coomassie blue staining of 
separate gels). Fig. 2 a shows the level of Gas2 expression 
after various times of serum deprivation of exponentially 
growing NIH 3T3 cells. Cells were shifted to 0.5 % FCS 24 h 
after seeding in 10% FCS. 

Gas2 is detectable in all lanes as a 36-kD band; in accor- 
dance with the previous analysis its level is lower in exponen- 
tially growing cells and remains low during the first 24 h of 

serum deprivation but increases dramatically, between 24 
and 48 h of serum starvation. 

The same lysates were also probed with mAbs against 
vimentin used as invariant control and with a polyclonal anti- 
body against tubulin whose level is known to be cell cycle 
regulated (29). The percentage of cells in S phase was also 
measured by analyzing the incorporation of BrdUrd in newly 
synthesized DNA on coverslips for each time point as shown 
in the diagram. 

To assess the expression of Gas2 during density-dependent 
growth inhibition, NIH 3T3 cells were seeded in 10% FCS, 
and every 2 d the medium was replaced with fresh 10% FCS. 
Gas2 increases between day 4 and 6 and continues to in- 
crease up to 8 d from seeding while the amount of both 
vimentin and tubulin does not change. DNA synthesis analy- 
sis shows a complete block at 4 d after seeding, concomi- 
tantly with the increased level of Gas2 expression (Fig. 2 B). 

Finally serum-deprived cells were reintroduced into the 
growth cycle by adding 20% of FCS and Gas2 was analyzed 
at different times. Despite the documented down regulation of 
gas2 mRNA (30), the level of Gas2 remains constant, slightly 
decreasing only after 15 h after stimulation (Fig. 2 C). 

DNA synthesis was checked by BrdUrd incorporation dur- 
ing the synchronous induction into cell cycle. Vimentin 
seems to be expressed at a constant level, whereas the 
amount of tubulin increases during growth induction. 
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l~gure 3. Immunoprecipitation analysis of Gas2 expression during 
Go-"G1 transition. (a) Serum-starved NIH 3T3 cells were labeled 
for 12 h with [35S]methionine. 20% FCS medium containing cold 
methionine chase was added for the indicated times before cell 
lysis. Immunoprecipitations were performed using an equal num- 
ber OfICA precipitable counts. (b) NIH 3T3 cells that were serum 
starved and activated with 20% FCS for the indicated times were 
labeled with [35S]methionine for 3 h before cell lysis. Immuno- 
precipitations were performed using same numbers of TCA pre- 
cipitable counts. 

Behavior o f  Gas2 during the Go-*G1 Transition 

The lack of "steady-state" Gas2 downregulation during the 
Go---G1 transition, (Fig. 2 C) appears to be in contrast with 
the immunoprecipitation results shown in Fig. 1 b, showing 
a clear downregulation in Gas2 biosynthesis 6 h after serum 
stimulation, together with a tight coupling of Gas2 synthesis 
with the Go state. 

To gain further knowledge on the regulation of Gas2 in 
vivo biosynthesis we dissected the Go~G1 transition by a 
detailed immunoprecipitation analysis. NIH 3T3 cells were 
grown for 36 + 12 h labeling with psS]methionine in 0.5% 
of FCS. 20% FCS, in medium containing a cold methionine 
chase, was then added to the individual dishes. After the in- 
dicated times the cells were processed for immunoprecipita- 
tion using equal numbers of TCA precipitable counts for 
each time point. 

Fig. 3 a shows the result of such an analysis: Gas2 is de- 
tectable at a similar level at time 0 (growth arrest) and after 
12 h from the addition of 20% FCS in medium containing 
cold methionine. Intermediate times show a similar level of 
Gas2 product as that at time 0. The same results were also 
obtained when serum-starved cells were grown for 12-h 
periods in the presence of 0.5% FCS and cold methionine 
(data not shown). This result together with Western analysis 
(see Fig. 2 C) indicates that the half-life of Gas2 is longer 
than 12 h. 

Fig. 3 b represents the immunoprecipitation analysis of 
Gas2 from serum-starved NIH 3T3 cells, and after different 
times of 20% FCS growth stimulation. Cells were labeled for 

Figure 4. Phosphorylation of Gas2 after addition of 20% FCS to 
serum-starved NIH 3T3 cells. NIH 3T3 cells serum starved (0) or 
serum activated for 3 h (3) were prelabeled for 8 h with 32pi. Af- 
ter cell lysis immunoprecipitations were performed using same 
numbers of TCA prccipitable counts. 

3 h with [~sS]methionine before cell lysis, and equal amounts 
of TCA precipitable cpm were used for each immunoprecipi- 
tation. The amount of Gas2 protein synthesized during the 
first 3 h of the transition is '~50% of the protein synthesized 
during the Go state; but already during 3-6 h from growth 
induction, de novo Gas2 biosynthesis is much lower and 
keeps on decreasing in the following times. The analysis of 
Gas2 de novo biosynthesis during the Go~G1 transition thus 
reflects the pattern of mRNA expression. 

Posttranslational Modifications 

As the steady-state level of Gas2 does not change dramati- 
cally during the Go~G1 transition, we asked whether post- 
translational mechanisms might control its activity during 
the Go-'G1 transition. 

To answer this question we took advantage of the computer 
analysis of the gas2 eDNA sequence to screen consensus se- 
quences for posttranslational modifications. We found two 
sites for cAMP/cGMP-dependent kinase, five for protein ki- 
nase C, and five for casein kinase II. 

We thus analyzed the in vivo state of Gas2 phosphoryla- 
tion as a function of time after serum addition. Quiescent 
NIH 3T3 cells were incubated in phosphate-free culture 
medium containing [32P]orthophosphate and 0.5 % FCS for 
8 h. After this labeling period the medium was either added 
with 20% FCS (activated cells) or left unchanged (resting 
cells) for a further 3 h. Equal numbers of TCA precipitable 
cpm were immunoprecipitated with anti-gas2 antibodies. 

Fig. 4 shows that in serum-starved cells Gas2 is phos- 
phorylated at a very low level, but it is strongly phos- 
phorylated in cells induced into growth cycle with 20 % FCS 
for 3 h (Fig. 4). Thus, a candidate posttranslational regula- 
tory mechanism to control Gas2 activity is the regulation of 
its phosphorylation level by mitogens. 
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Figure 5. Immunofluorescence microscopy localization of Gas2, and F-actin in NIH 3T3 ceils. Serum-starved cells stained with anti-Gas2 
antibody (A) or phalloidin-FITC (B). Exponentially growing cells stained with anti-Gas2 antibody (C) or with phalloidin-FITC (D). Bar, 
7 #m. 

lntraceUular Localization of Gas2 
To help understand the functional role of a protein it is im- 
portant to determine its intracellular localization. We used 
anti-gas2 antibodies to immunostain NIH 3T3 cells under 
different growth conditions. 

Fig. 5 A represents the indirect immunofluorescence local- 
ization of Gas2 in serum-starved cells. Cells were fixed with 
3 % paraformaldehyde, permeabilized with Triton X-100 and 
processed for immunofluorescence, (similar results were ob- 
tained after fixation in 1/1 acetone methanol). 

Gas2 is present at the periphery of the cells in an area close 
to the cell border and along the stress fibers of actin. 

An interesting observation concerns the heterogeneity of 
the signal: not all cells show a comparable level of intensity. 
Some of them are negative (Fig. 5 A, arrow) and some others 
are strongly positive, and a third type shows intermediate in- 
tensity of the signal. Fig. 5 B represents the same field 
stained with phalloidin-FITC to decorate the distribution of 
microfitaments. By a comparative analysis between Fig. 5 A 
and B, it can be noticed that the pattern of immunofluores- 
cence of Gas2 resembles the pattern of distribution of the ac- 
tin filaments, although actin is present in all ceils, whereas 
some ceils are negative for staining with anti-gas2 antibodies 
(Fig. 5 A, arrows). 

As expected from the Western and immunoprecipitation 
analysis Gas2 is undetectable in exponentially growing cells 
(Fig. 5 C). Permeabilization of the growth-arrested cells 
with extraction buffer (20 mM TEA, 100 mM KCI, 2 mM 

MgC12, 0.1% Triton X-100, 1 mM PMSF) before fixation 
eliminated most antibody labeling at the immunofluores- 
cence level. The loss of signal seems to be insensitive to salt 
concentration from 10 to 150 mM KC1 and to the presence 
of 20% ethanendiol (31) (data not shown). 

These results have also been confirmed by biochemical 
fractionation analysis: immunoprecipitations performed from 
SDS or NP40-solubilized, [~sS]methionine-labeled lysates 
do not show any difference in the intensity of the correspond- 
ing Gas2 band (data not shown). 

Microinjection of GST-Gas2 Fusion Protein 
To confirm the association of Gas2 with the microfilament 
system, a GST-Gas2 fusion protein was microinjected in 
cells which normally do not express it (growing cells), and 
its cellular localization was followed by anti-GST antibody. 

The purified fusion protein GST-Gas2 produced in bacte- 
ria was microinjected in exponentially growing NIH 3T3 
cells where the amount of endogenous Gas2 is undetectable 
by immunofiuorescence. Its pattern of distribution was fol- 
lowed using antibodies directed against GST, (the same 
results were obtained also using anti-Gas2 antibody). As a 
control, GST protein alone was microinjected and identified 
using antibodies directed against GST protein. Cells were 
fixed I h after microinjection and processed for immuno- 
fluorescence. 

Fig. 6 A shows a field of cells microinjected with GST- 
Gas2 protein and Fig. 6 C shows the same field stained with 
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Figure 6. Immunofluorescence microscopy localization of GST-Gas2 fusion protein or GST after microinjoction in exponentially growing 
cells. (A) Exponentially growing cells microinjected with GST-Gas2 fusion protein and visualized with anti-GST antibody. (arrow indicates 
cell border). (B) Same field as in A stained with phalloidin-TRITC. (C) Exponentially growing cells microinjected with GST protein and 
visualized with anti-GST antibody. (D) Same field as in C stained with phalloidin-TRITC. Bar, 7/zm. 

phalloidin-TRITC. Gas2 is detectable along the stress fibers 
and at the cell border (Fig. 6 A, arrow) with a distribution 
quite similar to endogenous Gas2 as visualized in growth- 
arrested cells (Fig. 5 A). The diffuse staining in the cyto- 
plasm may be due to an excess of GST-Gas2. Fig. 6 C shows 
a cell microinjected with GST protein and stained with anti- 
body specific for the GST, the same field is visualized for ac- 
tin staining using phalloidin-rhodamine (Fig. 6 D). As can 
be seen, the GST microinjected protein is only detectable in 
the cytoplasm, with no staining of the actin filaments or of 
the cell border. 

An interesting feature regarding the pattern of distribution 
of Gas2 emerges when it is microinjected in cells that exhibit 
a developed system of microvilli on the cell surface. It has 
been previously reported (6, 7) that NIH 3T3 ceils can nor- 
mally develop short microvilli on the cell surface and their 
appearance is favored by high cell density, reaching ~10-  
15% of population in near confluent cells. 

Gas2 seems to be localized specifically in the microvilli 
on the cell surface (Fig. 7 A) following the pattern of the actin 
microfilaments (Fig. 7 B). 

GST was not detectable in this structure (Fig. 7 C) even 
if microvilli are detectable in the microinjected cells (see 

Fig. 7 D, arrows). We microinjected a total of 292 cells with 
GST-Gas2 protein and in 60 of them GST-Gas2 was preferen- 
tially localized in the microvillar structures. In the case of 
GST alone 242 cells were microinjected and no GST was de- 
tectable at the level of microvilli. These data thus strengthen 
the view that Gas2 is a component of the microfilament net- 
work system. 

Analysis of Gas2 Expression in Human 
Diploid Fibroblasts IMR 90 and in NIH 3T3 Cells 
Transformed with Various Oncogenes 

To both understand the evolutionary conservation of Gas2 
and its tight growth regulation with respect to other cellular 
systems, we performed a Western analysis on human diploid 
fibroblasts IMR 90 induced into growth arrest by density- 
dependent inhibition. IMR 90 were seeded in 10% FCS and 
every 2 d the medium was replaced with fresh 10% FCS. Hu- 
man Gas2 is detectable as a band of 36 kD (apparent molecu- 
lar mass) (Fig. 8) indistinguishable in size from the murine 
form, and shows a similar behavior in both IMR 90 and NIH 
3T3 cells, concerning its tight association with growth arrest 
(Fig. 2 b). The amount of vimentin and DNA synthesis anal- 
ysis are also reported. 
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Figure 7. Immunofluorescence microscopy localization of GST-Gas2 fusion protein or GST after microinjection in exponentially growing 
ceils. (A) Exponentially growing cells microinjected with GST-Gas2 fusion protein and visualized with anti-GST antibody. (B) Same field 
as in A stained with phalloidin TRITC. (C) Exponentially growing cells microinjected with GST protein and visualized with anti-GST 
antibody. (D) Same field as in C stained with phaUoidin TRITC. Bar, 5 #m. 

Thus, Gas2 is a protein whose expression is coordinately 
regulated during growth arrest also in diploid fibroblast and 
evolutionarily conserved throughout species. 

Cellular transformation, on the other hand, leads to altera- 
tions in cell shape, cellular metabolism, gene expression, 
and growth control and, as a prerogative, is defective in 
reaching growth arrest (17). 

We thus decided to analyze the pattern of Gas2 expression 
in a series of single oncogene transformed NIH 3T3 cells. 
Fig. 9 shows such analysis: exponentially growing and 
serum-starved cells were used for a Western analysis. Gas2 
expression increases in nontransformed cells when serum 
starved for 48 h. On the contrary, in all the oncogene trans- 
formed cells analyzed: (v-fos, v-myc, v-ms, v-src), the ex- 
pression of Gas2 fails to increase in response to serum star- 
vation: the amount of Gas2 protein is comparable to the 
amount detectable in growing cells, 

Discussion 

Growth arrest, out of cycle or Go has been generally looked 
upon as a "negative" phase existing only in relation to the "in 
cycle" phase. The isolation of genes highly expressed at 
growth arrest (gas) has given credit to its existence by 

providing new tools in the dissection of the cellular biology 
of growth arrest. 

In this report we have identified, both at the biochemical 
and cell biological level, the product of one of these genes 
(gas2). Gas2 is present in serum-starved cells at the level of 
the cell border where it colocalizes with the actin fibers; it 
is also present, albeit at lower intensity, along the stress 
fibers. The interaction between Gas2 and actin filaments was 
strengthened by microinjection experiments. 

First, we have found that Gas2, when microinjected in 
growing cells, has a similar distribution as the endogenous 
Gas2 in arrested cells. Secondly, in the same set of experi- 
ments, we have also noticed the localization of Gas2 at the 
level of microvilli when they are present in the microinjected 
cells. A very similar localization is also achieved by other, 
more characterized ABPs such as villin (for review see ref. 
8). In fact, when villin is overexpressed in CV-1 monkey kid- 
ney fibroblasts it can localize both at the cell border and in 
the microvillar apparatus (7). 

Prior treatment of unfixed cells with nonionic detergents 
determines its complete extraction: this is in accordance 
with its putative interaction with some components of the 
cellular membrane similar to what has been demonstrated 
for some ABPs (15). However, computer sequence analysis 
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Figure 9. Western blot analysis of Gas2 expression in various trans- 
formed NIH 3T3 cell lines. Proteins were extracted from actively 
growing cells (g) or serum starved for 48 h (r)  from nontrans- 
formed cells and various transformed NIH 3T3 cell lines as indi- 
cated. Equal amounts of proteins (as estimated by Coomassie blue 
staining of separate gels) were run on SDS/15%PAGE and blotted 
onto nitrocellulose. 

Figure 8. Western blot analysis of Gas2 expression in human fibro- 
blast IMR 90. Proteins were extracted from actively growing cells 
and various days after cells seeding, as reported in the figure. 
Immunodecorations were performed with anti-Gas2 and antivi- 
mentin antibodies. BrdUr incorporation is shown as a diagram at 
the bottom. 

of Gas2 has not pointed out any significant homology to pre- 
viously cloned ABPs or other proteins' components of the 
microfilament system (36). Therefore, we cannot say if Gas2 
interacts directly with actin or if this interaction is mediated 
by other proteins (ABPs) or other factors. The availability 
of the GST-Gas2 fusion protein and deleted derivatives will 
allow us to investigate this important problem. The demon- 
stration that GST-Gas2, microinjected into growing cells ex- 
pressing an undetectable endogenous level, is able to local- 
ize in similar compartments as found in growth-arrested 
cells, infers that its expression is the first level for the regula- 
tion of its activity. The biochemical analysis has in fact 
shown that Gas2 becomes induced only at growth arrest. The 
apparent heterogeneity of Gas2 staining in growth-arrested 
cells is not inconsistent with this relation. In fact double- 
labeling experiments for Gas2 expression and S phase 
marker (BrdUrd) have revealed that the fraction of cells 

showing stronger reactivity with Gas2 is the one with a lower 
number of BrdUrd-labeled nuclei, when BrdUrd labeling is 
performed for 14 h in 0.5% FCS (data not shown). 

As Gas2 seems to have quite a long half-life, the next ques- 
tion to clarify was how it can be "negatively" regulated when 
quiescent cells are reintroduced into the cell cycle. We have 
in fact shown that its steady-state level does not change ap- 
preciably during Go~G1/S transition, while its de novo bio- 
synthesis is clearly downregulated, as was expected from the 
mRNA expression. A clue to the putative mechanism of its 
regulation in the transition Go~G1/S might be a control of 
its phosphorylation level. Gas2 becomes highly phosphor- 
ylated after serum addition to arrested cells; a fast switch, 
as provided by phosphorylation rather than the regulation of 
its abundance level, might be more efficient in regulating its 
activity. Our future work will focus on the role of phosphor- 
ylation in the control of Gas2 function. 

The same regulation between Gas2 expression and growth 
arrest is also found in other cellular systems such as IMR90 
human diploid fibroblast but is dramatically perturbed in 
several transformed cell lines that we have analyzed. It is in 
fact well known that there is a tight relation between cell 
growth and cell shape. One of the most evident examples is 
the pattern of distribution of actin in transformed cells. 
Transformation causes a loss of stress fiber bundles of actin 
with a concomitant alteration in cell shape, loss of contact 
inhibition, and enhanced tumor-forming potential (1, 28). 

Tropomyosin isoforms have been identified that are down- 
regulated during transformation (23). More recently it has 
been demonstrated that gelsolin is downregulated during cel- 
lular transformation (37) and two other ABPs are also down- 
regulated in some transformed cells (31). 
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Although there is evidence that some ABPs could be in- 
volved in regulating the transition shape-growth during 
transformation, little is known about the same changes dur- 
ing normal cell growth. However, it could not be misleading 
to hypothesize that ABPs or components of the microfila- 
ment system are involved in the regulation of actin state dur- 
ing different phases of cell growth. More recently a tight link 
between signal transduction pathways and cell shape has 
been demonstrated in vitro. Profilin (for a review see ref. 11), 
an ABP that inhibits the polymerization of actin monomers, 
binds tightly to phosphoinositol-biphosphate (18). When 
profilin is bound to polyphosphoinositides, it cannot bind ac- 
tin monomers (18). In parallel, profilin prevents the action 
of phospholipase C71 on phosphoinositol-biphosphate, but 
in vitro phosphorylation of the phospholipase C71 mediated 
by EGF receptors can overcome the protection of the profilin 
on phosphoinositol-biphosphate (12). 

Recently it has been demonstrated in vivo that the poly- 
phosphoinostide binding profilin (19) is able to replace 
COOH-terminal domain mutants of CAP (38), a component 
of adenylyl cyclase in Saccharomyces cerevisiae involved in 
the RAS pathway (5, 10). 

Thus, the identification of functions of well-characterized 
components of the microfilaments system has opened a new 
area of research in the connection between regulation of the 
microfilament network and cell growth. Conversely our ap- 
proach, based on the identification of genes expressed in a 
distinct phase of cell proliferation (growth arrest), has led us 
to the characterization of a new component of the mierofila- 
ment system that it is connected in a still undetermined way 
to growth control. 
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