Supplementary Methods and Results

The Cys-AL (CGGAPTYSPPPPLL) and Cys-AT (CEAIYAAPFAKKK) peptides were tethered to the surface *in trans* through sequential Michael additions via the crosslinker bisacrylamide. The kinase reaction and

chemiluminiscent detection were performed as described in Materials and Methods. Cvs-AT at 1 mM showed a moderate phosphorylation signal while Cys-AL at the same concentration was not phosphorylated (Fig. S1). Combining 1 mM Cys-AT with 1 mM Cys-AL increased the signal roughly two fold while combining 0.25 mM Cys-AT with 0.25 mM Cys-AL resulted in a signal that was still stronger than 1 mM Cys-AT alone.

Fig. S1. Enhanced phosphorylation of Cys-AT with Cys-AL. Cys-AT and Cys-AL alone and combination of Cys-AT and Cys-AL in the indicated concentration were immobilized to hydrogel surface, followed by the kinase assay with 25 μ g of K562 cell lysate.

To quantitate peptide immobilization, we synthesized Cys-AT with biocytin replacing the terminal lysine (Cys-AT-Biocytin, CEAIYAAPFAKKB). The density

of peptide immobilized on the surface is low, in the picomole range, thus it cannot be measured with typical detection methods. Briefly, after the plate was activated, either 50 µl SR415 or bisacrylamide were added at 25 mM. The Cys-AL and Cys-AT-Biocytin peptides were added to the hydrogel plate in 1:1 ratio at 0.5, 0.05, or 0 mM. The plate was again washed and then blocked overnight with 10% BSA in 50 mM TBS, pH 7.5 at 4°C. The FluoReporter kit (Invitrogen, Carlsbad, CA, U.S.A.) was then used to determine the amount of biocytin bound as a direct

Concentration Abltide and Abl ligand (mM)

Fig. S2. Comparison of the binding capacity of Cys-Abltide with Biocytin at C-terminus via different crosslinkers. The peptide was immobilized to the hydrogel plate as described in Materials and Methods. Cys-AL and Cys-AT-Biocytin peptides were attached at 0.5, 0.05, or 0 mM to the hydrogel plate via biscarylamide or SR415. The FluoReporter kit was used to determine the amount of Biocytin present on the surface. measure of tethered Cys-AT. First, 50 µl per well 1X PBS was added to each well. Next, 50 µl per well 2X Biotective Green reagent was added. After a five minute incubation at room temperature, the fluorescence was read with a Bio-Rad Molecular Imager FX using excitation at 488 nm and emission at 532 nm. A standard curve was set up to evaluate biocytin levels. The FluoReporter kit showed SR415 significantly increased the amount of Cys-AT-Biocytin on the hydrogel surface compared to bisacrylamide (Fig. S2).

A screen of all 27 pyridopyrimidine compounds from the focused library is shown in Fig. S3.

We also demonstrated that the assay could be used to compare the effects of weaker small-molecule inhibitors on Bcr-Abl kinase activity. Here, K562 cell extracts were treated with imatinib (5 μ M) and the 80 inhibitors from the BioMol ScreenWellTM Kinase Inhibitor Library (200 μ M each). None of the compounds in the ScreenWell library are potent inhibitors of c-Abl or Bcr-Abl, although PP1 and PP2 are known Src family kinase inhibitors. In the presence of imatinib the majority of compounds appeared to have no further inhibitory effect on Bcr-Abl activity; however, several compounds diminished Cys-AT phosphorylation significantly. In particular, the inhibitors staurosporine (compound number 6), AG1478 (#18), damnacanthal (#22), PP1 (#24), and PP2 (#52) each appeared to decrease Bcr-Abl activity markedly compared to imatinib (5 μ M) alone (Fig. S4 and Table.S1).

Screen of 27 candidate Abl/Bcr-Abl inhibitors for apparent IC_{50} values

No	Inhibitor	R Group	1 10 10 ² 10 ³ (nM)	IC ₅₀ (nM)				
1	PD166326	HO		~20				
2	PD173958	H ₃ C O		~500				
3	PD173956	F N ¹		~300				
4	PD173955	H ₃ C S		~100				
5	PD173952			~35				
6	DV1-10	H ₂ N-\-\\NH		~20				
7	DV2-43	H ₂ N N H		~20				
8	DV2-281			~15				
9	DV2-47	но-		~45				
10	DV2-89	HONN		~40				
Without compound								
IM								
11	DV-M016	H ₃ C N H		~20				
12	DV-M017	H ₃ C-O		~55				
13	DV2-87	H ₃ C		~1000				
14	DV2-103	HN_N-}-		>1000				
15	DV2-273			<1				
16	DV2-271			~8				
17	DV3-081	H ₃ C-NH		~150				
18	DV3-096	HO NH		~40				
19	DV2-37	I-NH		~150				
20	DV2-53	но−√∽ч́ч́		~300				
Without compound								
IM								

Fig S3B

The screen was performed using the standard assay conditions: $25 \ \mu$ I 0.05 mM Cys-AT and Cys-AL were bound to a hydrogel plate with SR415 as the crosslinker. During the kinase reaction, 0.005 U c-Abl were treated with a titration of each compound (1, 10, 100 or 1000 nM) for 1 h at 30°C with 10 μ M ATP, where without compound is DMSO only and IM is imatinib mesylate. Detection was done with chemiluminiscence. The x-ray film was scanned and the density of each spot was quantified by Quantity one software. The relative density of each spot was obtained by normalized to the untreated control and apparent IC₅₀ calculated as the concentration of the compounds corresponding to a 50% decrease in relative density.

Fig S4. Model screen with BioMol В Screen-WellTM Kinase Inhibitor Library. (A) Kinase assays were with K562 cell lysates with 200 µM each compound С from the Library (B1 to H8) in the presence D of 5 µM IM. (B) The relative fluorescence reading is calculated by: (fluorescence reading of the compound)/ Ε (mean fluorescence at 5 μ M IM) *100. The solid line is the mean of all the compounds F and the dashed lines represent one standard deviation (SD).

12

8

Compound number

В

0

Table S1 The BioMol ScreenWell TM compounds name and plate location

Number	Plate Location	Inhibitor Name	Number	Plate Location	Inhibitor Name
1	B1	PD-98059	41	E5	KN-93
2	B2	U-0126	42	E6	ML-7
3	B3	SB-203580	43	E7	ML-9
4	B4	H-7	44	E8	2-Aminopurine
5	B5	H-9	45	E9	N9-Isopropyl-olomoucine
6	B6	Staurosporine	46	E10	Olomoucine
7	B7	AG-494	47	E11	iso-Olomoucine
8	B8	AG-825	48	E12	Roscovitine
9	B9	Lavendustin A	49	F1	5-lodotubercidin
10	B10	RG-14620	50	F2	LFM-A13
11	B11	Tyrphostin 23	51	F3	SB-202190
12	B12	Tyrphostin 25	52	F4	PP2
13	C1	Tyrphostin 46	53	F5	ZM 336372
14	C2	Tyrphostin 47	54	F6	SU 4312
15	C3	Tyrphostin 51	55	F7	AG-1296
16	C4	Tyrphostin 1	56	F8	GW 5074
17	C5	Tyrphostin AG 1288	57	F9	Palmitoyl-DL-carnitine Cl
18	C6	Tyrphostin AG 1478	58	F10	Rottlerin
19	C7	Tyrphostin AG 1295	59	F11	Genistein
20	C8	Tyrphostin 9	60	F12	Daidzein
21	C9	HNMPA	61	G1	Erbstatin analog
22	C10	Damnacanthal	62	G2	Quercetin dihydrate
23	C11	Piceatannol	63	G3	SU1498
24	C12	PP1	64	G4	ZM 449829
25	D1	AG-490	65	G5	BAY 11-7082
26	D2	AG-126	66	G6	DRB
27	D3	AG-370	67	G7	HBDDE
28	D4	AG-879	68	G8	SP 600125
29	D5	LY 294002	69	G9	Indirubin
30	D6	Wortmannin	70	G10	Indirubin-3'-monooxime
31	D7	GF 109203X	71	G11	Y-27632
32	D8	Hypericin	72	G12	Kenpaullone
33	D9	Ro 31-8220	73	H1	Terreic acid
34	D10	Sphingosine	74	H2	Triciribine
35	D11	H-89	75	H3	BML-257
36	D12	H-8	76	H4	SC-514
37	E1	HA-1004	77	H5	BML-259
38	E2	HA-1077	78	H6	Apigenin
39	E3	HDBA	79	H7	BML-265 (Erlotinib analog)
40	E4	KN-62	80	H8	Rapamycin