Temporal Shifts in Traits of Vibrio cholerae Strains Isolated from Hospitalized Patients in Calcutta: a 3-Year (1993 to 1995) Analysis

ASISH K. MUKHOPADHYAY,¹ SURABHI GARG,^{1,2} RUPAK MITRA,¹ ARNAB BASU,¹ K. RAJENDRAN,¹ DHARITRI DUTTA,¹ SUJIT K. BHATTACHARYA,¹ TOSHIO SHIMADA,³ TAE TAKEDA,⁴ YOSHIFUMI TAKEDA,² and G. BALAKRISH NAIR^{1*}

Department of Microbiology, National Institute of Cholera and Enteric Diseases, Calcutta 700 010, India,¹ and Research Institute, International Medical Center of Japan,² and Laboratory of Enteric Infection 1, National Institute of Health,³ Shinjuku-ku, Tokyo 162, and Department of Infectious Diseases Research, National Children's Medical Research Center, Setagaya-ku, Tokyo 154,⁴ Japan

Received 22 April 1996/Returned for modification 12 June 1996/Accepted 26 July 1996

This study presents results of a surveillance on cholera conducted with hospitalized patients admitted to the Infectious Diseases Hospital, Calcutta, India, from January 1993 to December 1995. The O139 serogroup of *Vibrio cholerae* dominated in 1993 but was replaced by O1 as the dominant serogroup in 1994 and 1995. The isolation rate of *V. cholerae* non-O1 non-O139 did not exceed 4.9% throughout the study period, while the isolation rate of the O139 serogroup in 1994 and 1995 was below 9%. No temporal clustering of any non-O1 non-O139 serogroup was observed. With the exception of 1 strain, none of the 64 strains belonging to the non-O1 non-O139 serogroup hybridized with *ctx*, *zot*, and *ace* gene probes, while 97.3 and 97.7% of the O139 and O1 strains, respectively, hybridized with all the three probes. Multiplex PCR studies revealed that all the O1 strains belonged to the EITor biotype. There was a progressive increase in the cytotoxic response on CHO and HeLa cells evoked by culture supernatants of strains of *V. cholerae* non-O1 non-O139 isolated during 1994 and 1995 compared with the response evoked by those isolated in 1993. Dramatic shifts in patterns of resistance to antibiotics between strains of *V. cholerae* belonging to different serogroups and within strains of a serogroup isolated during different time periods were observed. There was a discernible increase in the incidence of multi-drug-resistant strains of *V. cholerae* O1 isolated in 1994 and 1995 compared with that in 1993. On the basis of the results of this study, we predict the possibility of newer variants of *V. cholerae* emerging in the future.

The past few years have witnessed a remarkable resurgence in the global incidence of cholera. With the spread of the seventh pandemic of cholera into Latin America, the number of countries reporting cholera cases has dramatically increased from 35 in 1984 to 54 in 1991 (37). The epidemiology of cholera continues to be bewildering, and several events which have occurred in recent years defy explanation. Included among these enigmatic events are the sudden and explosive entry of the Vibrio cholerae O1 ElTor biotype in Latin America after a 100-year absence in that continent (16, 27), the exclusive distribution of the classical biotype of V. cholerae O1 in southern Bangladesh (30, 34), the explosive emergence of V. cholerae O139 (4, 25), and the reappearance in the Indian subcontinent of the O1 serogroup of V. cholerae, which apparently is a new clone different from those which existed earlier (18, 41).

Considering the alarming increase in the incidence of cholera and being the National Reference Centre for Cholera in India, we have fortified our surveillance at the national level in general and at Calcutta, an area where cholera is hyperendemic, in particular. Among others, we have adopted a holistic approach and are monitoring *V. cholerae* as a whole with emphasis on no particular serogroups, as was previously done. Our rationale to adopt this strategy was to understand changes at all levels and to be prepared for newer emerging variants of *V. cholerae*. In this study, we report the findings of a systematic holistic surveillance which has enabled us to precisely detect subtle changes in traits of *V. cholerae* which would have gone unnoticed in a more superficial surveillance.

MATERIALS AND METHODS

Hospital surveillance. The present study is a part of the continuing surveillance program of the National Institute of Cholera and Enteric Diseases on cholera. Analysis for this study was made for a period of 36 months encompassing the 3 years from January 1993 to December 1995. Stool specimens were obtained from patients admitted to the Infectious Diseases Hospital, the only hospital which admits cholera patients from the metropolitan city and suburban areas, with sterile catheters in sterile McCartney bottles. Rectal swabs were taken with sterile cotton-tipped swabs from patients from whom stool samples could not be obtained. Stool specimens and rectal swabs in Cary-Blair medium were transported within 1 h of collection and were bacteriologically examined within 1 h of arrival at the laboratory.

Bacteriology and serogrouping. Thiosulfate-citrate-bile salts-sucrose agar (Eiken, Tokyo, Japan) was used as the selective medium for the isolation of V. cholerae. Stool samples were inoculated on thiosulfate-citrate-bile salts-sucrose agar plates with sterile cotton-tipped swab sticks and then streaked for colony isolation. About 250 µl of the neat stool sample or the rectal swab was also introduced into 2 ml of alkaline peptone water (Bacto Peptone, 1%; NaCl, 1%; pH 8.5) used as an enrichment medium and incubated at 37°C for 18 h. The inoculated plates (directly from stool samples or from enrichment medium) were incubated at 37°C for 18 to 24 h and subsequently examined for the growth of typical V. cholerae-like colonies appearing as round, yellow, sucrose-fermenting colonies with elevated centers. A multitest medium was used for presumptive identification of V. cholerae (9, 21). All isolates were subsequently examined for the oxidase reaction, and the identity of V. cholerae O1 was thereafter confirmed by serogrouping, using growth from the multitest medium, with polyvalent O1 and monospecific Inaba and Ogawa antisera raised at this institute. V. cholerae strains which did not agglutinate with the O1 antiserum were checked with monoclonal O139 antiserum developed at our institute (6). The quality of the antisera was periodically checked with appropriate reference strains (MAK 757 [V. cholerae O1 ElTor biotype], 569B [V. cholerae O1 classical biotype], and ATCC 51394 [V. cholerae O139 Bengal]). V. cholerae strains which did not

^{*} Corresponding author. Mailing address: National Institute of Cholera and Enteric Diseases, P-33, CIT Rd., Scheme XM, Beliaghata, Calcutta 700 010, India. Fax: 91-33-350-5066.

agglutinate with either O1 or O139 antisera were assumed to belong to the non-O1 non-O139 serogroups, and these strains were further serogrouped by the somatic O-antigen serogrouping scheme of *V. cholerae* developed at the National Institute of Health, Tokyo, Japan (32).

Tissue culture assay. A representative 77 strains of *V. cholerae* non-O1 non-O139 isolated during the study period were examined by tissue culture assay using CHO and HeLa cells. The strains were grown in tryptic soy broth (Difco, Detroit, Mich.) supplemented with 0.6% yeast extract (Difco) and in AKI medium (Bacto Peptone, 1.5%; yeast extract, 0.4%; NaCl, 0.5%; NaHCO₃, 0.3%; pH 7.4 [8]) with shaking for 18 h. The culture supernatant obtained by centrifugation at 4°C was made cell free by passing it through a 0.22- μ m-pore-size filter unit (Millex-GS; Millipore, Bedford, Mass.) and collected in sterile test tubes which were kept at 4°C until used.

CHO and HeLa cells were grown as monolayers in Dubbecco's minimum essential medium (Nissui Pharmaceutical Co. Ltd., Tokyo, Japan) supplemented with 10% (vol/vol) horse serum (Gibco Laboratories, Grand Island, N.Y.). Cell lines were maintained in 25-cm² tissue culture flasks (Nunc, Roskilde, Denmark) at 37°C in a humidified 5% CO₂ atmosphere. A confluent monolayer of CHO and HeLa cells grown for 3 to 4 days was removed from the tissue culture flasks, and 200 µl of the cell suspension (ca. 6.4×10^3 cells) was added to each of the 96-well plates along with 50 µl of the cell-free culture flatrate and incubated as described above. Morphological changes in CHO or HeLa cells were recorded at 24 h. For negative controls, wells received the uninoculated culture medium, and pure cholera toxin (Sigma, St. Louis, Mo.) was used as the positive control.

Antimicrobial susceptibility. Representative strains of *V. cholerae* O1, O139, and non-O1 non-O139 from each of 3 years under analysis were examined for resistance to ampicillin (10 μ g), chloramphenicol (30 μ g); cotrimoxazole (25 μ g), ciprofloxacin (5 μ g), furazolidone (100 μ g), gentamicin (10 μ g), neomycin (30 μ g), nalidixic acid (30 μ g), norfloxacin (10 μ g), streptomycin (10 μ g), and tetracycline (30 μ g) with commercial discs (Hi Media, Bombay, India). A 3-h culture of *V. cholerae* O139 or a 4-h culture of *V. cholerae* O1 and non-O1 non-O139 in tryptic soy broth (Difco) was spread plated on well-dried Mueller-Hinton agar (Difco). Plates were incubated for 24 h at 37°C. Characterization of strains as susceptible, intermediately resistant, or resistant was based on the size of the inhibition zones around each disc according to the manufacturer's instructions, which matched the interpretive criteria recommended by World Health Organization (38). Strains showing intermediate zones of inhibition were interpreted as resistant to that drug on the basis of previous MIC studies conducted with *V. cholerae* (39).

DNA probes. A 540-bp XbaI-ClaI fragment of the ctxA gene (10), an EcoRI-PstI fragment of pMZP11 containing a 790-bp ScaI-AccI fragment of the zot gene (12), and an EcoRI-HindIII fragment of pKK2 which contains a 355-bp NruI-AccII fragment of the acc gene (15) were used as the specific DNA probes for the ctx, zot, and ace genes, respectively. The procedure employed to purify plasmid DNA and to isolate and purify the DNA fragment has been described previously (12, 36). Purified DNA was labelled by incorporating $[\alpha^{-32}P]$ dATP to a specific activity of 2 × 10⁸ to 8 × 10⁸ cpm/µg of DNA by nick translation. Radiolabelled probe DNA was purified by chromatography on NACSPREPAC as specified by the manufacturer (Bethesda Research Laboratories, Gaithersburg, Md.). The colony blot was prepared on autoclaved nitrocellulose filters (BA 85/20; Schleicher and Schuell Co., Keene, Germany), and hybridization was performed under high-stringency conditions as described previously (12).

Multiplex PCR. A multiplex PCR-based assay was used to biotype strains of *V. cholerae* by determining the presence of *ctxA* (encoding the enzymatic subunit of cholera toxin) and *tcpA* (encoding the major structural subunit of the toxin-coregulated pilus), as described elsewhere (13). Thirty, 30, and 40 representative strains of *V. cholerae* belonging to the O1, O139, and non-O1 non-O139 sero-groups, respectively, were examined. Three pairs of primers as described previously (13) were used to detect the following: a 301-bp sequence of *ctxA* (33), a 470-bp fragment of the ElTor variant of the *tcpA* sequence, and a 671-bp sequence of the classical variant of *tcpA* (35).

The following were added to each 100 µl of PCR mixture: 10 µl of Mg-free 10× amplification buffer (500 mM KCl, 100 mM Tris HCl [pH 9.0], 0.1% Triton X-100); 8 µl of 25 mM MgCl₂; 2 µl each of 2 mM dATP, dTTP, dGTP, and dCTP; 50 pmol each of the primers; and 2.5 U of Taq DNA polymerase (Takarashuzo, Otsu, Japan). PCR was carried out in 0.5-ml microcentrifuge tubes, with 43.5 µl of the PCR mixture described above and 6.5 µl of Luria broth (Difco) culture of the test strains heated at 94°C for 5 min. The solution was overlaid with a drop of sterile mineral oil (Sigma), and PCR was performed in an automated thermocycler (FTS 320; Corbett Research, N.S.W., Australia). PCR amplification was performed for 30 cycles, and the cycling conditions were as follows: denaturation at 94°C for 1.5 min, annealing at 60°C for 1.5 min, and extension at 72°C for 1.5 min. A reagent blank (containing all the components of the reaction mixture and water instead of broth containing template DNA), VC20 (V. cholerae O1 ElTor Ogawa), and 569B (V. cholerae O1 classical Inaba) were run as controls. Amplified products from PCR were electrophoresed on 1% agarose gels and were stained with ethidium bromide. A 1-kb molecular size ladder (Gibco BRL, Gaithersburg, Md.) was run with each gel.

Statistical analysis. The Mantel-Haenszel chi-square, Yates correction, and Fisher exact chi-square tests (14) were employed to compare and assess yearwise significance in the increase or decrease of drug resistance of *V. cholerae* O1, O139, and non-O1 non-O139.

 TABLE 1. Isolation rates of V. cholerae O1, O139, and non-O1 non-O139 from patients with acute secretory diarrhea admitted to the Infectious Diseases Hospital, Calcutta

Yr	No. of samples screened	No. (%) of samples							
			Of serogroup:						
		Positive for V. cholerae		01	O139	Non-O1 non-O139			
			Inaba	Ogawa	0139				
1993	890	491 (55.2)	1 (0.1)	23 (2.6)	443 (49.8)	24 (2.7)			
1994	748	400 (53.5)	0	296 (39.6)	67 (8.9)	37 (4.9)			
1995	873	399 (45.7)	1 (0.1)	304 (34.8)	62 (7.1)	32 (3.7)			

RESULTS

A total of 2,511 patients hospitalized with acute secretory diarrhea were examined during the 3-year period under analysis. The rate of isolation of the various serogroups of V. cholerae is shown in Table 1. The O139 serogroup dominated in 1993 but was replaced by O1 as the dominant serogroup in 1994 and 1995. Monthly isolation of various serogroups of V. cholerae is shown in Fig. 1 along with prominent events which occurred in relation to subtle changes in the traits of V. cholerae at that point. The O1 serogroup of V. cholerae, after being displaced for a period of 6 months, reappeared sporadically in July 1993 and became the dominant serogroup by February 1994. In 1994, the peak incidence of V. cholerae O1 occurred in July, while in 1995, the peak incidence occurred in May. The pattern of monthly isolation of the O139 and the non-O1 non-O139 serogroups followed trends more or less similar to that of the O1 serogroup in 1994 and 1995 with the exception of September to November 1995, when the incidence of the O139 serogroup was anticoincidental to that of the O1 serogroup. All the O1 strains of V. cholerae, with the exception of two, isolated in the 3 years belonged to the Ogawa serotype. Two strains of the Inaba serotype were isolated, one in December 1993 and one in May 1995.

The isolation rate of non-O1 non-O139 *V. cholerae* did not exceed 4.9% throughout the study period, while the isolation rate of the O139 serogroup in 1994 and 1995 was below 9%. Table 2 shows the different non-O1 non-O139 serogroups isolated from patients with acute secretory diarrhea during the 3 years. No temporal clustering of any non-O1 non-O139 serogroup was observed. Of the possible 155 currently recognized O serogroups (31), 16 (10%) were encountered in 1993, 22 (14.2%) were encountered in 1994, and 18 (11.6%) were encountered in 1995. During the later half of 1995, three strains of *V. cholerae* belonging to newly designated serogroups O174, O178, and O183 were isolated.

Representative strains of V. cholerae O1, O139, and non-O1 non-O139 isolated during the period of study were examined with DNA probes specific for ctxA, zot, and ace. With the exception of 1 strain, none of the 64 strains of V. cholerae non-O1 non-O139 hybridized with the three probes (Table 2), while 73 of the 75 O139 strains and 130 of the 133 O1 strains hybridized with all the three probes. One strain each, among the O139 and O1 serogroups, was nontoxigenic, while the remaining strains (one in O139 and two in O1) possessed an incomplete virulence cassette, with either zot or ace missing. The single non-O1 non-O139 strain (SG36) which hybridized with the ctx, zot, and ace gene probes belonged to serogroup O74 and was isolated in February 1993. Multiplex PCR studies revealed that all the representative strains of V. cholerae O1 and O139 examined were positive for the 301-bp ctxA and the 470-bp tcpA (of the ElTor biotype) amplicons, indicating that the O1

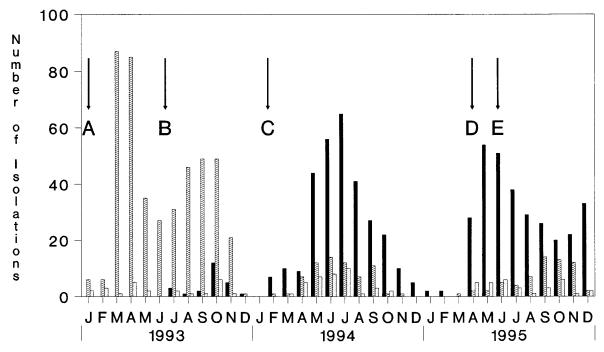


FIG. 1. Monthly isolation of various serogroups of *V. cholerae* from patients hospitalized because of acute secretory diarrhea at the Infectious Diseases Hospital, Calcutta, from January 1993 to December 1995 (J to D, respectively). Arrows denote the precise month when an unusual event in relation to the traits of *V. cholerae* occurred: A, replacement of *V. cholerae* O1 by *V. cholerae* O139 in January 1993; B, reappearance of *V. cholerae* O1 in July 1993; C, domination of *V. cholerae* O1 and the abrupt appearance of nalidixic acid-resistant strains of *V. cholerae* O1 in February 1994; D, first nontoxigenic strain of *V. cholerae* O139 isolated in April 1995; E, appearance for the first time of cotrimoxazole-susceptible strains of *V. cholerae* O139. \blacksquare , O1; \blacksquare , O139; \blacksquare , non-O1 non-O139.

strains belonged to the ElTor biotype. Only 1 of the 40 non-O1 non-O139 strains was positive for the 301-bp ctxA amplicon, but the same strain was negative for the tcpA amplicon.

To further understand the probable virulence factor associated with infection caused by *V. cholerae* non-O1 non-O139, we examined 77 representative strains of *V. cholerae* non-O1 non-O139 isolated during the study period by tissue culture assay using CHO and HeLa cell lines. There was a progressive increase in the cytotoxic response evoked by culture supernatant of strains of *V. cholerae* non-O1 non-O139 isolated during 1994 and 1995 compared with that by those isolated in 1993 (Table 2). This pattern was consistent in both cell lines used as well as in both the media used. Fewer non-O1 non-O139 strains, as shown in Table 2, caused morphological changes of CHO and HeLa cells consistent with cell elongation.

The patterns of resistance of representative strains of V. cholerae O1, O139, and non-O1 non-O139 isolated during the 3 years against commonly used antibiotics are shown in Fig. 2a, b, and c, respectively. Interesting shifts in patterns of resistance between strains of V. cholerae belonging to different serogroups and within strains of a serogroup isolated during different time periods were observed. For instance, there was striking increase in resistance of V. cholerae O1 strains isolated in 1994 and 1995 to nalidixic acid, ampicillin, and neomycin compared with that of those isolated in 1993. Resistance of V. cholerae O1 to chloramphenicol showed an increase in 1994 compared with the level in 1993 and subsequently declined in 1995. A statistical analysis comparing the differences in resistance to each drug of V. cholerae O1, O139, and non-O1 non-O139 for each year is shown in Table 3. The remarkable difference in antimicrobial resistance patterns between O1 and O139 serogroups was with nalidixic acid, with the O139 serogroup being mostly susceptible to nalidixic acid. The other interesting event was the appearance, for the first time since its genesis in Calcutta, of cotrimoxazole-susceptible *V. cholerae* O139 strains in June 1995 (Fig. 1).

The resistance pattern of the V. cholerae non-O1 non-O139 serogroups (Fig. 2c) differed from those of the O1 and O139 serogroups (Fig. 2a and b), with few strains being resistant to tetracycline, norfloxacin, and ciprofloxacin. The dominant drug resistance patterns of V. cholerae O1 in 1993, 1994, and 1995 were CoFzS (25.0%), ACCoFzNNaS (43.5%), and ACoFzNNaS (53.6%), respectively (see Table 2, footnote a, for definitions of resistance abbreviations), while the dominant drug resistance patterns for V. cholerae O139 in 1993, 1994, and 1995 were ACCoFzS (30%), ACCoFzNS (48.1%), and ACoFzS (49.0%), respectively. A discernible increase in the incidence of multidrug-resistant O1 strains isolated in 1994 and 1995 compared with that of 1993 was observed. In the case of O139 strains, there was a decline in the occurrence of multidrugresistant strains compared with that of 1993 and 1994, and a similar pattern was found for the non-O1 non-O139 strains.

DISCUSSION

The genesis of *V. cholerae* O139 as the new serogroup associated with cholera (20) and its probable evolution as a result of horizontal gene transfer between non-O1 and O1 strains (3) has led to a heightened interest in the *V. cholerae* non-O1 serogroups. Clinically, apart from the O139 serogroup, the non-O1 serogroups continue to be of negligible significance since these strains are associated with only a low percentage of patients hospitalized because of acute secretory diarrhea, as evident from this and from previous studies conducted in Calcutta and elsewhere (17, 19, 24). However, recent trends indicate that the non-O1 non-O139 strains evidently play an im-

TABLE 2. Serogroups, tissue culture activities, and antibiograms of *V. cholerae* non-O1 non-O139 strains isolated from hospitalized patients with acute secretory diarrhea during the study period^{*a*}

Strain no. Date of isolation (dy.moy) Serve group ¹ Issue clause (HO cells) HeLa cells HeLa cells Antibiogram SG33 2.2.93 039 Ce Nc Nc ND SG34 102.93 056 Nc Cr Nc Nc ND SG36 13.2.93 074 Ce Nc Ce Nc Nc ND SG38 13.2.93 074 Ce Nc Nc Nc ND SG43 1.3.93 032 Nc Cr Nc Nc <t< th=""><th colspan="8">Tissue culture activity in:</th></t<>	Tissue culture activity in:							
no. (dsy.moyr) group' CHO cells FIELA cells Antibility SG33 22.93 O39 Ce Nc Nc Nc ND SG34 102.93 O74 Ce Nc Nc ND SG36 13.293 O74 Ce Nc Nc Nc ND SG38 23.293 O74 Ce Nc Nc Nc ND SG43 13.393 O32 Nc Ce Nc Nc Nc ACOFZNS C047 1.493 OUT Nc Nc Nc Nc ACOFZNS C0310 16.4.93 O36 Nc Nc Nc ACOFZNS C0170 24.5.93 OUT Ce Nc Nc ACOFZNS C0216 23.6.93 O53 Ce Nc Nc ACOFZNS C0325 27.9.93 O5 Ce Nc Nc AFZNS C03251 1.10.03 <td>Strain</td> <td></td> <td>Sero-</td> <td colspan="2"></td> <td colspan="2"></td> <td></td>	Strain		Sero-					
TSB-YE AKI TSB-YE AKI SG34 10.2.93 OS6 Nc Nc Nc ND SG34 10.2.93 OT4 Ce Nc Cr ND SG36 10.2.93 OT4 Ce Nc Ce Ce ND SG38 23.2.93 OT4 Ce Nc Ce Ce ND SG43 13.393 OT Ce Nc Nc Nc Nc ACoF2NaS CO81 7.4.93 OIT Nc Nc Nc Ce ACoF2NS CO130 164.93 O37 ND ND ND ND ACoF2NS CO216 23.6.93 O51 Ce Nc Nc ACAF2NS CO235 4.1.93 O10 Ce Nc Nc AF2NS CO235 11.1.0.93 O36 Ce Nc Nc AF2NS CO351 4.1.0.93 O36 Nc Nc AF2NS				CHO cells		HeLa cells		Antibiogram
SG34 10.2.93 O76 Ne Cr Ne Cr ND SG36 13.2.93 O74 Ce Ne Ce Ce NE ND SG34 13.393 O32 NE Cr NE NE NE NE ND NE Cr NE NE ACOF2NS CO216 23.6.93 O54 NE NE NE NE NE NE ACOF2NS CO236 25.7.93 O5 Ce NE NE ACOF2NS CO236 25.7.93 O5 Ce NE NE AE2NS CO351 1.10.93 O10 Ce NE NE AE2NS CO351 1.10.93 O14 NE Cr NE		(day.iiio.yr)		TSB-YE	AKI	TSB-YE	AKI	
SG36 ^r 19.2.93 074 Ce Nc Ce Ce Ce ND SG38 23.2.93 074 Ce Nc Nc ND SG89 15.3.93 07 Ce Nc Nc Ne ND C047 1.4.93 OUT Nc Nc Nc Nc AC Co ACOF2N3S C081 7.4.93 O145 Nc Nc Nc Nc Ce Ce ACOF2NS C0130 16.4.93 O37 ND ND ND ND ACOF2NS C0216 23.6.93 O43 Nc Nc Nc Nc AC ACOF2NS C0235 27.9.93 O5 Ce Nc Nc Nc AC ACF2NS C0351 1.10.93 O4 Nc Nc Nc Nc ACAF2NS C0355 15.10.93 OUT Ce Nc Nc Nc AF2NS C0355 15.10.93 OUT Ce Nc Nc Nc AF2NS	SG33	2.2.93	O39	Ce	Nc	Nc	Nc	ND
SG38 23.2.93 O74 Ce Ne Ce Ne Ne ND SG43 1.3.93 O32 Ne Cr Ne Ne Ne ND SG89 15.3.93 OT Ne Ne Ne Ne Ne AC ACoFzNST C095 13.4.93 O35 Ne Ne Ne Ne Ne AC AFz C0130 16.4.93 O37 ND ND ND ND ACoFzNS C0210 12.4.5.93 OUT Ce Ne Ne Ne AFzNS C0216 23.6.93 O54 Ne Ne Ne Ne Cr AFzNS C0214 58.93 O53 Ce Ne Ne Ne AFzNS C0325 27.93 O5 Ce Ne Ne AFzNS C0335 1.10.93 OH Ce Ne Ne AFzNS C0335 1.10.93 OH Ce Ne Ne AFzNS C03398 18.10.93 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SG43 1.3.93 O32 Nc Cr Nc Nc NC ND SG89 15.3.93 O7 Ce Nc Nc Nc NC ND CO47 1.4.93 OUT Nc Nc Nc Nc Nc ACOFZNST CO98 13.4.93 O36 Nc Nc Nc Nc ACOFZNS C0170 24.5.93 OUT Ce Nc Nc Nc Nc ACOFZNS C0216 23.6.93 OS4 Nc Nc Nc Nc Nc ACOFZNS C0226 28.7.93 O43 Nc Nc Nc Nc ACOFZNS C0315 4.10.93 O40 Nc Nc Nc Nc ACOFZNS C0375 11.10.93 O40 Nc Nc Nc Nc ACAFZNS C0399 18.10.93 O140 Nc Nc Nc Nc AFZNS C0345 28.3.94 O27 ND ND ND ND ND ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
SG89 15.3.93 O7 Ce Nc Nc Nc Nc Nc ACOFZNAS CO81 7.4.93 OUT Nc Nc Nc Nc ACOFZNAS CO81 7.4.93 OJ5 Nc Nc Nc Nc Ce Ce ACOFZNAS CO95 13.4.93 O3 Nc Nc Nc Nc Nc AC Ce ACOFZNAS CO130 16.4.93 O37 ND Nc Cr Nc Nc AC AFZNS CO219 19.7.93 ND Nc Cr Nc Nc Nc AC AFZNS CO325 27.9.93 O5 Ce Nc Nc Nc AC AFZNS CO351 1.10.93 OH Ce Nc Nc Nc AFZNS CO355 15.10.93 OHT Ce Nc Nc Nc AFZNS CO399B 18.10.93 OH4 Nc Cr Nc Nc AFZN CO4040 18.10.93								
C047 1.4.93 OUT Nc Nc Nc Ac ACoFzNas C081 7.4.93 O145 Nc Nc Nc C C C ACoFzNsT C095 13.4.93 O36 Nc Nc Nc Nc Nc Ac ACoFzNsT C0130 16.4.93 O37 ND ND ND ND ACOFZNS C0170 24.5.93 OUT Ce Nc Nc Nc Nc AC AFZNS C0216 23.6.93 O34 Nc Nc Nc Nc Nc AC AFZNS C0232 27.9.93 O5 Ce Nc Nc Nc AFZNS C0351 1.10.93 O10 Ce Nc Nc Nc AFZNS C0395 15.10.93 O114 Nc Cr Nc Nc AFZNS C0395 15.10.93 O114 Nc Nc Nc Nc AFZNS C0395 15.10.93 O114 Nc Nc Nc								
CO81 7.4.93 O145 Nc Nc Ce Ce A CoF2NST CO98 13.4.93 O5 Nc Nc Nc Nc Ce AFz C0130 16.4.93 O37 ND ND ND ND ACoFzNS C0110 24.5.93 OUT Ce Nc Nc Nc Nc AC C0216 23.6.93 O43 Nc Nc Nc Nc Nc AC C0248 5.8.93 O5 Ce Nc Nc Nc Nc AC AFzNS C0351 1.10.93 Of Ce Nc Nc Nc AFzNS C0355 15.10.93 OUT Ce Nc Nc Nc AFzNS C03998 18.10.93 O149 Nc Nc Nc Nc AFzNS C03995 15.10.93 OUT Ce Nc Nc Nc AFzN C0421								
CO95 13.4.93 O5 Nc Nc Nc Nc Nc Nc ACC AFZ C0130 16.4.93 O37 ND ND ND ND ND ACOFZNS C0110 24.5.93 OUT Ce Nc Nc Nc AFZNS C0216 23.6.93 O53 Ce Nc Nc Nc C AFZNS C0236 28.7.93 O53 Ce Nc Nc Nc Nc AFZNS C0325 27.9.93 O5 Ce Nc Nc Nc AFZNS C0351 4.10.93 O10 Ce Nc Nc Nc AFZNS C0351 15.10.93 OUT Ce Nc Nc Nc AFZNS C0395 15.10.93 OUT Ce Nc Nc Nc AFZNS C0440 18.10.93 O134 Nc Nc Nc Nc AFZN								
C0130 16.4.93 O37 ND ND ND ND ACoFzNS C0170 24.5.93 OUT Ce Nc Nc Nc AFZ C0216 23.6.93 O54 Nc Nc Nc Nc Nc AFZ C0236 28.7.93 O53 Ce Nc Nc Nc AC AFZNS C0325 27.9.93 O5 Ce Nc Nc Nc AC AFZNS C0325 27.9.93 O5 Ce Nc Nc Nc AC AFZNS C0375 11.10.93 O6 Nc Nc Nc Nc AFZNS C0395 15.10.93 OUT Ce Nc Nc Nc AFZN C0400 18.10.93 O149 Nc Nc Nc Nc AFZN C04421 3.11.93 O54 Nc Nc Nc Nc Nc Nc C0464	CO95		O5					
C0170 24.5.93 OUT Ce Nc Nc Nc Ac AFz C0216 23.6.93 O54 Nc Nc Nc Nc Nc AFz C0216 23.6.93 O53 Ce Nc Nc Nc AFzNS C0236 28.7.93 O5 Ce Nc Nc Nc ACACF2NS C0325 27.9.93 O5 Ce Nc Nc Nc ACACF2NS C0375 11.10.93 O10 Ce Nc Nc Nc AFzNS C0395 15.10.93 OUT Ce Nc Nc Nc Nc AFzNS C0430 18.10.93 O149 Nc Nc Nc Nc AFzN C0441 3.11.93 O54 Nc Nc Nc Nc AFzN C0445 28.3.94 O27 ND ND ND ND ND ND C0446 4.4.94	CO98	13.4.93	O36	Nc	Nc	Nc		
CO216 23.6.93 O54 Nc Nc Nc Nc Nc Nc Nc AFz CO219 19.7.93 ND Nc Nc Nc Nc Nc AFZNS CO248 58.93 O53 Ce Nc Nc Nc AFZNS CO351 4.10.93 O10 Ce Nc Nc Nc AFZNS CO375 11.10.93 O34 Nc Cr Nc Nc AFZNS CO395 15.10.93 O17 Ce Nc Nc Nc AFZN CO400 18.10.93 O149 Nc Nc Nc Nc AFZN CO421 3.11.93 O54 Nc Nc Nc Nc AFZN CO440 18.10.93 O149 Nc ND ND ND ND ND CO440 18.10.93 O149 Nc ND ND ND ND ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
CO219 19.7.93 ND Nc Cr Nc Nc Nc AC AF2NS CO236 28.7.93 O53 Ce Nc Nc Nc Nc AC AF2NS CO325 27.9.93 O5 Ce Nc Nc Nc AC AF2NS CO355 11.10.93 O10 Ce Nc Nc Nc AF2NST CO355 15.10.93 OUT Ce Nc Nc Nc AF2NN CO400 18.10.93 O149 Nc Nc Nc Nc AF2N CO421 3.11.93 O54 Nc Nc Nc Nc AF2N CO426 28.3.94 O27 ND ND ND ND ND ND CO441 3.11.93 O54 Nc Nc Nc AF2N CO442 28.3.94 O27 ND ND ND ND ND CO470								
CO236 28.7.93 Od3 Nc Nc Nc Nc AC AFZNS CO248 5.8.93 O53 Ce Nc Nc Nc AC AC </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO248 5.8.93 O53 Ce Nc Nc Nc ACOFZNS C0325 27.9.93 O5 Ce Nc Nc Ce Nc AC ACOFZNS C03351 4.10.93 O10 Ce Nc Nc Nc AC AFZNST C0395 15.10.93 OUT Ce Nc Nc Cr AC AFZNNX C03995 15.10.93 OUT Ce Nc Nc Nc AC AFZNNX C03990 18.10.93 O149 Nc Nc Nc Nc AFZNNX C0400 18.10.93 O149 Nc Nc Nc Nc AFZNN C04421 3.11.93 O54 ND								
C0325 27.9.93 O5 Ce Nc Ce Nc Nc AFZNST C0375 11.10.93 O6 Nc Nc Nc AC AFZNST C0375 11.10.93 O6 Nc Nc Nc Nc AFZNS NT638/1 14.10.93 O14 Nc Cr Nc Nc AFZNS C0395 15.10.93 OUT Ce Nc Nc Nc AFZNS C0400 18.10.93 O149 Nc Nc Nc Nc AFZN C0421 3.11.93 O54 Nc Nc Nc AFZN AFZN C0456 28.3.94 O27 ND ND ND ND ND ND ND C0446 4.4.94 O26 ND								
C0351 4.10.93 OIO Ce Nc Nc Nc AFZNS NT638/1 14.10.93 O34 Nc Cr Nc Cr AFZNS C0395 15.10.93 OUT Ce Nc Nc Nc AFZNS C0399 18.10.93 O134 Nc Cr Nc Nc AFZNS C0400 18.10.93 O149 Nc Nc Nc Nc AFZN C0421 3.11.93 O54 Nc Nc Nc Nc AFZN C0464 4.4.94 O26 ND ND ND ND ND C0476 19.4.94 O37 ND ND ND ND ND C0476 19.4.94 O37 ND ND ND ND ND ND C0476 19.4.94 O26 ND ND ND ND ND ND ND C0476 19.4.94 O5 ND ND ND ND ND ND ND ND ND								
NT638/1 14.10.93 024 Nc Cr Nc Cr AFZN C0399 15.10.93 0014 Nc Cr Nc Nc AFZNNx C0399B 18.10.93 0144 Nc Cr Nc Nc AFZN C0421 3.11.93 0149 Nc Nc Nc Nc AFZN C0456 28.3.94 027 ND ND ND ND ND ND C0464 4.4.94 026 ND ND ND ND ND ND C0470 11.4.94 023 ND ND ND ND ND C0447 19.4.94 037 ND ND ND ND ND C0491 6.5.94 026 ND ND ND ND ND ND C0491 6.5.94 011 ND ND ND ND ND ND C0507 13.5.94 05 Ct Ct Ct Ct ACC ACCoFzNS CO545 31.5.94 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO395 15.10.93 OUT Ce Nc Nc Nc AFZNNx CO399B 18.10.93 O149 Nc Nc Nc Nc ACOCFF2NNaS CO400 18.10.93 O149 Nc Nc Nc Nc AFZN CO421 3.11.93 O54 Nc Nc Nc AC AFZN CO464 4.4.94 O26 ND ND ND ND ND ND CO464 4.4.94 O26 ND ND ND ND ND ND CO470 11.4.94 O23 ND ND ND ND ND ND CO476 19.4.94 O37 ND ND ND ND ND ND CO476 19.4.94 O26 ND ND ND ND ND ND ND CO476 19.4.94 O2 O26 ND ND </td <td></td> <td>11.10.93</td> <td><u>06</u></td> <td></td> <td></td> <td></td> <td>Nc</td> <td></td>		11.10.93	<u>06</u>				Nc	
CO399B18.10.93 O134 NcCrNcNcNcNcACCPACOCIFENNASCO40118.10.93 O149 NcNcNcNcNcAFZNCO45628.3.94 O27 NDNDNDNDNDCO4644.4.94 O26 NDNDNDNDNDCO4644.4.94 O26 NDNDNDNDNDCO4644.4.94 O23 NDNDNDNDNDCO47011.4.94 O23 NDNDNDNDNDCO47619.4.94 O37 NDNDNDNDNDCO47619.4.94 O37 NDNDNDNDNDCO48428.4.94 O5 NDNDNDNDNDCO47619.4.94 O37 NDNDNDNDCO48428.4.94 O5 NDNDNDNDCO4916.5.94 O65 NDNDNDNDCO50713.5.94 O9 NDNDNDNDCO52018.5.94 O10 CtCtCtACCoFzNSCO5668.6.94 O27 CtCtCtCtACCoFzNSCO56713.6.94 O7 CtCtCtACCoFzNSCO56813.6.94 O26 CtNcCtCtACCoFzNSCO66813.6.94 O22 CtNc <td< td=""><td>NT638/1</td><td></td><td><u>034</u></td><td>Nc</td><td>Cr</td><td>Nc</td><td>Cr</td><td>AFzN</td></td<>	NT638/1		<u>034</u>	Nc	Cr	Nc	Cr	AFzN
CO400 18.10.93 0149 Nc Nc Nc Nc Nc Ac AFZN CO421 3.11.93 054 Nc Nc Nc Nc Nc Ac AFZN CO456 28.3.94 027 ND ND ND ND ND ND CO464 4.4.94 026 ND ND ND ND ND ND CO470 11.4.94 023 ND ND ND ND ND ND CO476 19.4.94 037 ND ND ND ND ND ND CO491 6.5.94 026 ND ND ND ND ND CO507 13.5.94 09 ND ND ND ND ND CO536 31.5.94 010 Ct								
C0421 $3.11.93$ 054 Nc Nc Nc Nc AFZN C0456 $28.3.94$ 027 ND ND ND ND ND C0464 $4.4.94$ 026 ND ND ND ND ND C0469 $7.4.94$ 055 ND ND ND ND ND C0470 $11.4.94$ 027 ND ND ND ND ND C0476 $19.4.94$ 027 ND ND ND ND ND ND C0481 15.94 026 ND ND ND ND ND ND C0507 $13.5.94$ 0211 ND ND ND ND ND ND C0546 $31.5.94$ 05 Ct Ct Ct ACC ACCoFzNS C0546 $31.5.94$ 05 Ct Ct Ct Ct ACCoFzNS C0546 $31.6.94$ 027 Ct Ct Ct Ct ACCoFzNS C0567 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO456 28.3.94 O27 ND ND ND ND ND ND ND ND CO464 4.4.94 O26 ND ND ND ND ND ND ND ND CO469 7.4.94 O3 ND ND ND ND ND ND ND CO470 11.4.94 O33 ND ND ND ND ND ND ND CO476 19.4.94 O37 ND ND ND ND ND ND ND CO484 28.4.94 O5 ND ND ND ND ND ND ND CO507 13.5.94 O9 ND ND ND ND ND ND ND ND CO556 31.5.94 O10 Ct Ct Ct Ct Ct Ct AC ACCoF2NS CO567 13.6.94 O2 Ct Ct Ct Ct AC AC AC AC AC AC AC AC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
CO464 4.4.94 O26 ND ND ND ND ND ND ND CO469 7.4.94 O5 ND								
CO469 7.4.94 $\overline{O5}$ ND ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO47011.4.94O23NDNDNDNDNDNDCO47619.4.94O37NDNDNDNDNDNDNDCO48428.4.94O5NDNDNDNDNDNDNDCO4916.5.94O65NDNDNDNDNDNDCO49110.5.94O26NDNDNDNDNDCO50713.5.94O9NDNDNDNDNDCO52018.5.94O11NDNDNDNDNDCO53626.5.94O18NDNDNDNDCO54531.5.94O5CtCtCtCtACCOF2NSCO5608.6.94O27CtCtCtCtAF2NCO56713.6.94O7CtCtCtCtACTCO56813.6.94O22CtNcCtCtACCOF2NASTCO603B27.6.94O10CtCtCtCtACCOF2NATCO611B28.6.94O22CtNcCtCtACCOF2NSTCO6251.7.94O110CtCtCtCtCtACCOF2NSTCO627B1.7.94O8CtCtCtCtCtACCOF2NSTCO621B30.6.94O22CtNcCtCtCtCtACCOF2NSTCO621B20.5.7.94O110CtCtCtC								
CO47619.4.94 037 NDNDNDNDNDNDNDCO48428.4.9405NDNDNDNDNDNDNDCO4916.5.94026NDNDNDNDNDNDCO50713.5.9409NDNDNDNDNDNDCO53626.5.94018NDNDNDNDNDNDCO54531.5.9405CtCtCtCtACCOFZNSCO54631.5.9407CtCtCtCtAFZTCO5608.6.94027CtCtCtCtAFZTCO56113.6.9407CtCtCtCtAFZTCO56327.6.9402CtNcCtCtACCOFZNASTCO603B27.6.94010CtCtCtACCOFZNASTCO611B28.6.9402CtNcCtCtACCOFZNSCO621B30.6.9402CtNcCtCtCTACCOFZNSCO6251.7.940110CtCtCtCtCtACCOFZNSCO6385.7.94011CtCtCtCtCtACCOFZNSCO6395.7.94011CtCtCtCtCtACCOFZNSCO6385.7.9405CtCtCtCtCtCtCtCo6395.7.94011Ct <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO4916.5.94065NDNDNDNDNDND $CO498$ 10.5.94026NDNDNDNDNDND $CO507$ 13.5.9409NDNDNDNDNDND $CO520$ 18.5.94011NDNDNDNDNDND $CO536$ 26.5.94018NDNDNDNDNDND $CO545$ 31.5.9405CtCtCtCtACCoFzNS $CO560$ 8.6.94027CtCtCtCtAFZN $CO567$ 13.6.9407CtCtCtCtAFZT $CO568$ 13.6.94022CtNcCtACCoFzNaST $CO603B$ 27.6.94010CtCtCtCtACCoFzNaST $CO611B$ 28.6.9402CtNcCtCtACCoFzNST $CO611B$ 28.6.9402CtNcCtCtACCoFzNST $CO621B$ 17.94010CtCtCtCtCtACCoFzNS $CO625$ 1.7.94010CtCtCtCtCtACCoFzNS $CO623B$ 5.7.94011CtCtCtCtCtACCoFzNS $CO638$ 5.7.94011CtCtCtCtACCoFzNS $CO639$ 5.7.94011CtCtCtCtACCoFzNS $CO639$ 5.7.94011Ct	CO476					ND	ND	ND
CO49810.5.94O26NDNDNDNDNDNDCO50713.5.94O9NDNDNDNDNDNDCO52018.5.94O11NDNDNDNDNDCO53626.5.94O18NDNDNDNDNDCO54531.5.94O5CtCtCtCtACC oFzNSCO5608.6.94O27CtCtCtCtAFzNCO56713.6.94O7CtCtCtCtAFzNCO56813.6.94O2CtNcCtCtACC oFzNSTCO66813.6.94O2CtNcCtCtACC oFzNASTCO603B27.6.94O10CtNcCtCtACC oFzNASTCO611B28.6.94O2CtNcCtCtACC oFzNASTCO611B28.6.94O2CtNcCtCtCtACC oFzNSCO621B30.6.94O44CtCrCtCtACC oFzNSCO621B30.6.94O44CtCrCtCtACC oFzNSCO62517.94O10CtCtCtCtACC oFzNSCO6395.7.94O10CtCtCtCtCtACC oFzNSCO6395.7.94O11CtCtCtCtACC oFzNSCO6395.7.94O5CtNcCtCtCtACC oFz	CO484	28.4.94	05	ND	ND	ND	ND	ND
CO50713.5.94 09 NDNDNDNDNDNDCO52018.5.94 011 NDNDNDNDNDNDCO53626.5.94 018 NDNDNDNDNDNDCO54531.5.94 05 CtCtCtCtACCoFzNSCO54631.5.94 010 CtCrNcCcACCoFzNSCO5608.6.94 027 CtCtCtCtAFzNCO56713.6.94 07 CtCtCtCtAFzTCO56813.6.94 022 CtNcCtCtACcoFzNaSTCO603B27.6.94 010 CtNcCtCtACcoFzNaTCO611B28.6.94 022 CtNcCtCtACcoFzNASCO621B30.6.94 044 CtCrCtCtACcoFzNSCO6251.7.94 010 CtCtCtCtACcoFzNSCO6251.7.94 010 CtCtCtCtCtACcoFzNSCO6385.7.94 011 CtCtCtCtAFzNCO6395.7.94 011 CtCtCtCtACcoFzNSCO6395.7.94 011 CtCtCtCtACcoFzNSCO6395.7.94 011 CtCtCtCtCtACcoFzNSCO66813.7.94 05 CtCtCt </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO52018.5.94 $O11$ NDNDNDNDNDND $CO536$ 26.5.94 $O18$ NDNDNDNDNDND $CO545$ 31.5.94 $O5$ CtCtCtCtCtACCoFzNS $CO546$ 31.5.94 $O10$ CtCrNcCeACCoFzNS $CO560$ 8.6.94 $O27$ CtCtCtCtCtAFzN $CO567$ 13.6.94 $O7$ CtCtCtCtAFzNS $CO568$ 13.6.94 $O22$ CtNcCtCtACFZPNAST $CO603B$ 27.6.94 $O22$ CtNcCtCtACCoFzNaST $CO604$ 27.6.94 $O10$ CtCtCtCtACCoFzNaT $CO611B$ 28.6.94 $O2$ CtNcCtCtACCoFzNST $CO611B$ 28.6.94 $O2$ CtNcCtCtCTACCoFzNST $CO621B$ 30.6.94 $O44$ CtCrCtCtACCoFzNS $CO625$ 1.7.94 $O10$ CtCtCtCtCtCtACCoFzNS $CO638$ 5.7.94 $O10$ CtCtCtCtCtACCoFzNS $CO639$ 5.7.94 $O10$ CtCtCtCtCtACCoFzNS $CO639$ 5.7.94 $O10$ CtCtCtCtCtACCoFzNS $CO668$ 13.7.94 $O11$ CtCtCtCt								
CO536 $26.5.94$ $\overline{\textbf{O18}}$ NDNDNDNDNDNDCO545 $31.5.94$ $\textbf{O5}$ CtCtCtCtCtACCOFZNSCO546 $31.5.94$ $\textbf{O10}$ CtCrNcCeACCOFZNSCO560 $8.6.94$ $\textbf{O27}$ CtCtCtCtAFZNCO567 $13.6.94$ $\textbf{O7}$ CtCtCtCtAFZNSCO568 $13.6.94$ $\textbf{O20}$ CtNcCtCtACCOFZNASTCO603B $27.6.94$ $\textbf{O20}$ CtNcCtCtACCOFZNASTCO604 $27.6.94$ $\textbf{O10}$ CtCtCtCtACCOFZNASTCO611B $28.6.94$ $\textbf{O22}$ CtNcCtCtACCOFZNSCO625 $1.7.94$ $\textbf{O10}$ CtCtCtCtACCOFZNSCO625 $1.7.94$ $\textbf{O110}$ CtCtCtCtCTACCOFZNSCO638 $5.7.94$ $\textbf{O110}$ CtCtCtCtCTACCOFZNSCO639 $5.7.94$ $\textbf{O11}$ CtCtCtCtACCOFZNSCO638 $5.7.94$ $\textbf{O11}$ CtCtCtCtACCOFZNSCO639 $5.7.94$ $\textbf{O11}$ CtCtCtCtACCOFZNSCO638 $5.7.94$ $\textbf{O2}$ CtCtCtCtCtACCOFZNSCO668 $13.7.94$ $\textbf{O2}$ CtNcCt								
CO54531.5.94O5CtCtCtCtCtACCoFzNSCO54631.5.94 $\underline{O10}$ CtCrNcCeACCoFzNSCO5608.6.94 $\underline{O27}$ CtCtCtCrAFzNCO56713.6.94 $\underline{O7}$ CtCtCtCtAFzNSCO56813.6.94 $\underline{O2}$ CtNcCtCtAFzTCO59927.6.94 $\underline{O2}$ CtNcCtCtACCoFzNaSTCO603B27.6.94 $\underline{O10}$ CtNcCtCtACCoFzNaSTCO60427.6.94 $\underline{O10}$ CtCtCtCtACCoFzNASTCO611B28.6.94 $\underline{O2}$ CtNcCtNcCoFzNaTCO621B30.6.94 $\underline{O44}$ CtCrCtCtACCoFzNSCO6251.7.94O110CtCtCtCrACCoFzNSCO6385.7.94O6CtCtCtCtACCoFzNSCO6395.7.94O11CtCtCtCtACCoFzNSCO6385.7.94O5CtCtCtCtACCoFzNSCO66813.7.94OUTCeCtCtCtACCoFzNSCO67214.7.94OUTCeCtCtCtCtACCoFzNSCO67919.7.94O5CtNcCtCtCtACCoFzNSCO67919.7.94O5CtNc <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
CO54631.5.94 010 CtCrNcCeACCoFzNSCO5608.6.94 027 CtCtCtCtCrAFzNCO56713.6.94 07 CtCtCtCtCtAfzNSCO56813.6.94 056 CtCtCtCtACAFzTCO59927.6.94 02 CtNcCtCtACoFzNaSTCO603B27.6.94 010 CtNcCtCtACoFzNaSTCO611B28.6.94 02 CtNcCtCtACCoFzNaSTCO621B30.6.94 044 CtCrCtCtACCoFzNSCO6251.7.94 0110 CtCtCtCtACCoFzNSCO6385.7.94 0110 CtCtCtCtACCoFzNSCO6395.7.94 011 CtCtCtCtFzNaCO66813.7.94 05 CtCtCtCtFzNaCO66813.7.94 $00T$ CeCtCtCtACCoFzNSCO67214.7.94 $0UT$ CtCtCtCtACCoFzNSCO67919.7.94 05 CtNcCtCtAFzTCO68421.7.94 054 CtCtCtCtAFzTCO70228.7.94 054 CtCtCtCtAFzTCO74226.8.94 041 CtCtCtCtA								
CO560 $8.6.94$ 027 Ct $AFzT$ $CO568$ 13.6.94 02 Ct Nc Ct Ct Ct $AFzT$ $CO599$ 27.6.94 010 Ct Nc Ct Ct $ACcoFzNaST$ $CO603B$ 27.6.94 010 Ct Nc Ct Ct $ACcoFzNST$ $CO611B$ 28.6.94 02 Ct Nc Ct Nc Ct $ACcoFzNST$ $CO621B$ 30.6.94 024 Ct Cr Ct Ct Cr $ACcoFzNS$ $CO627B$ 1.7.94 010 Ct Ct Ct Ct Ct $ACcoFzNS$ $CO627B$ 1.7.94 08 Ct Cr Ct Cr $ACcoFzNS$ $CO638$ 5.7.94 011 Ct Ct Ct Ct Ct $ACcoFzNS$ $CO651$ $11.7.94$ 05 Ct Ct Ct Ct Ct $ACcoFzNS$ $CO672$ $14.7.94$ $0UT$ Ct Ct Ct Ct Ct Ct $ACcoFzNS$ $CO671$ $14.7.94$ $0UT$ Ct Ct Ct Ct Ct $ACcoFzNS$ $CO672$ $14.7.94$ 02 Ct Nc Ct Ct Ct								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							Cr	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO567	13.6.94	<u>07</u>	Ct	Ct	Ct	Cr	AfzNS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
CO611B $28.6.94$ 02 CtNcCtNcCoFzNaTCO621B $30.6.94$ 0.44 CtCrCtCrACCoFzNSCO625 $1.7.94$ 0110 CtCtCtCrACCoFzNSCO627B $1.7.94$ 08 CtCrCeCrACCoFzNSCO638 $5.7.94$ 06 CtCtCtCtCrAFzNSCO639 $5.7.94$ 06 CtCtCtCtCtFzNaCO651 $11.7.94$ 05 CtCtCtCtFzNaCO668 $13.7.94$ $00T$ CeCtCtCtFzNaCO668 $13.7.94$ $00T$ CtCtCtCtACCoFzNSCO672 $14.7.94$ $00T$ CtCtCtCtCtACCoFzNSCO679 $19.7.94$ 05 CtNcCtCtCtAFzTCO684 $21.7.94$ 02 CtNcCtCtAFzTCO702 $28.7.94$ 054 CtCtCtCtAFzTCO742 $26.8.94$ 041 CtCrCtCtAFzNSCO75 $13.9.94$ 037 CeNcNcNcAFzNSCO795 $27.9.94$ 09 CtCtCtCtCtAFzNSCO755 $27.9.94$ 09 CtCtCtCtCtCtCtC0809 $18.10.94$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
CO621B $30.6.94$ 0.44 CtCrCtCrA CCoFzNSCO625 $1.7.94$ 0110 CtCtCtCtCrA CCoFzNSCO627B $1.7.94$ 08 CtCrCeCrA CCoFzNSCO638 $5.7.94$ 06 CtCtCtCtCrA A CoFzNSCO639 $5.7.94$ 06 CtCtCtCtCrA A A A A A A A A A A A A A A A A A A								
CO6251.7.94 $O110$ CtCtCtCtCrA CCoFzNS $CO627B$ 1.7.94 $O8$ CtCrCeCrACCoFzNS $CO638$ 5.7.94 $O6$ CtCtCtCtCrAFzNS $CO639$ 5.7.94 $O11$ CtCtCtCtCrAFzNS $CO639$ 5.7.94 $O11$ CtCtCtCtCrAFzN $CO651$ $11.7.94$ $O5$ CtCtCtCtCtFzNa $CO668$ $13.7.94$ OUT CeCtCtCtCtACCoFzNS $CO672$ $14.7.94$ OUT CtCtCtCtCeFzN $CO684$ $21.7.94$ $O2$ CtNcCtCtCtACCoFzNS $CO679$ $19.7.94$ $O5$ CtNcCtNcCCoNCO00N $CO702$ $28.7.94$ $O5$ CtNcCtCtAFzT $CO742$ $26.8.94$ $O41$ CtCrCtCtAFzNS $CO75$ $13.9.94$ $O37$ CeNcNcNcAFzNS $CO795$ $27.9.94$ $O14$ NcNcNcNcAFzNS $CO809$ $18.10.94$ $O7$ CtCtCtCtAFzNS $CO818$ $25.10.94$ $O43$ CtCtCtCtAFzNS $CO844$ $3.4.95$ $O5$ CtCtCtCtAFzNS <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<u>08</u>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO638	5.7.94	06	Ct	Ct	Ct	Cr	AFzNS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
CO742 26.8.94 041 Ct Cr Ct Cr AFzNS CO775 13.9.94 037 Ce Nc Ce Cr AFzNS CO794 27.9.94 014 Nc Nc Nc Nc AFzNS CO795 27.9.94 014 Nc Nc Nc Nc AFzNS CO795 27.9.94 09 Ct Ct Ce Ct ACCoFzNS CO809 18.10.94 07 Ct Ct Ct Ct AFzNS CO818 25.10.94 043 Ct Ct Ct Ct AFzNS CO844 3.4.95 05 Ct Ct Ct Ct AFzNS CO845 4.4.95 08 Ct Ct Ct Ct AFzNS								
CO775 13.9.94 O37 Ce Nc Ce Cr AFzNNa CO794 27.9.94 O14 Nc Nc Nc Nc AFzNS CO795 27.9.94 O9 Ct Ct Ce Ct ACCoFzNS CO809 18.10.94 O7 Ct Ct Ct Ct AFzNS CO818 25.10.94 O43 Ct Ct Ct Ct AFzNS CO844 3.4.95 O5 Ct Ct Ct Ct AFzNS CO845 4.4.95 O8 Ct Ct Ct Ct AFzNS								
CO794 27.9.94 O14 Nc Nc Nc Nc AFzNS CO795 27.9.94 O9 Ct Ct Ce Ct ACCoFzNS CO809 18.10.94 O7 Ct Ct Ct Ct AFzNS CO818 25.10.94 O43 Ct Ct Ct Ct AFzNS CO844 3.4.95 O5 Ct Ct Ct Ct AFzNS CO845 4.4.95 O8 Ct Ct Ct AFzNS			037					
CO809 18.10.94 O7 Ct Ct Ct Cr AFzNS CO818 25.10.94 Q43 Ct Ct Ct Ct AFzNS CO844 3.4.95 Q5 Ct Ct Ct Ct AFzNS CO845 4.4.95 O8 Ct Ct Ct AFzNS						Nc		
CO818 25.10.94 Q43 Ct Ct Ct Ct AFzNS CO844 3.4.95 Q5 Ct Ct Ct Ct AFzNS CO845 4.4.95 Q8 Ct Ct Ct AFzNS								
CO844 3.4.95 O5 Ct Ct Ct Ct AFzNS CO845 4.4.95 O8 Ct Ct Ct Ct AFzNS								
CO845 4.4.95 O8 Ct Ct Ct Ct AFzNS								
		т.75	00	0	Ci	Ci	Ci	

Continued

TABLE 2-Continued

	Date of isolation (day.mo.yr)	Sero- group ^b	Tissue culture activity in:					
Strain no.			CHO cells		HeLa cells		Antibiogram	
	(uay.iii0.yr)		TSB-YE	AKI	TSB-YE	AKI		
CO848B	5.4.95	026	Ct	Nc	Ct	Ct	ACoFzNa	
CO861	25.4.95	<u>054</u>	Ct	Ct	Ct	Ct	AFzNaS	
CO872	27.4.95	013	Ct	Ct	Ct	Ct	AFzNS	
CO883	3.5.95	08	Ct	Cr	Ct	Cr	AFzNS	
CO890	5.5.95	0110	Ct	Ct	Ct	Ct	ACCoFzNS	
CO923	24.5.95	08	Ct	Ct	Ct	Ct	AFzNS	
CO926	26.5.95	010	Ce	Nc	Ce	Nc	ACCoFzNS	
CO932	30.5.95	014	Ct	Ct	Ct	Ct	AFzNS	
CO942	5.6.95	071	Ct	Ct	Ce	Ct	AFzNT	
CO944	5.6.95	045	Ct	Ct	Ce	Nc	AFz	
CO963	14.6.95	0183	Ct	Ct	Ct	Ct	ACFzT	
CO984	27.6.95	012	Ct	Ct	Ct	Cr	AFz	
CO987	27.6.95	09	Cr	Cr	Cr	Ct	ANa	
CO990	28.6.95	0174	Nc	Nc	Nc	Ce	FzNaS	
CO1007	6.7.95	O178	Nc	Nc	Ct	Ct	ND	
CO1035	25.7.95	O128	Ct	Ct	Ct	Nc	ACoCfFzNT	
CO1039	26.7.95	ND	ND	ND	ND	ND	ND	
CO1070	25.8.95	O39	Ct	Ct	Ct	Ct	AFzNS	
CO1098	14.9.95	<u>O4</u>	ND	ND	ND	ND	ND	
AM2	15.9.95	O9	Nc	Nc	Ct	Nc	ACfCoFzNxT	
AM25	28.9.95	O39	Nc	Nc	Ct	Nc	AFzNS	
AM29	9.10.95	O6	ND	ND	ND	ND	ND	
AM33	10.10.95	<u>O39</u>	Ct	Ct	Nc	Ct	AFz	
AM37	11.10.95	O43	Ct	Ct	Ct	Ct	ND	
AS10	20.10.95	O5	Ct	Ct	Ct	Ct	ACoFz	
AS12/1	21.10.95	O 10	Ct	Ct	Ct	Ct	AFzNST	
AS15	23.10.95	<u>O9</u>	ND	ND	ND	ND	ACoFzGNNaS	
AS16	24.10.95	<u>01</u> 44	Ct	Ct	Ct	Ct	ACoFzNST	
AS50	7.12.95	ND	Ct	Ct	Ct	Nc	ACoFzNxS	
AS58	21.12.95	<u>ND</u>	Nc	Ct	Ct	Nc	FzNS	

^{*a*} Abbreviations: Nc, no change; Ct, cytotoxic; Ce, cell elongation; Cr, cell rounding; ND, not done; OUT, O untypeable; TSB-YE, tryptic soy broth with yeast extract; A, ampicillin; C, chloramphenicol; Co, cotrimoxazole; Cf, ciprofloxacin; Fz, furazolidone; G, gentamicin; N, neomycin; Na, nalidixic acid; Nf, norfloxacin; S, streptomycin; T, tetracycline.

^b Serogroups in boldface were examined by DNA probes specific for *ctxA*, *zot*, and *ace*. Underlined serogroups were examined by multiplex PCR specific for *ctxA*, *tcpA* (EITor), and *tcpA* (classical).

^c Strain SG36 was the only non-O1 non-O139 serogroup strain in this study which hybridized with the DNA probes specific for *ctxA*, *zot*, and *ace* and was positive for the 301-bp *ctxA* amplicon but negative for the *tcpA* amplicon in the multiplex PCR.

portant role in the shifting dynamics of V. cholerae and in the evolution of new strains. This was the rationale to include the non-O1 non-O139 serogroups in our surveillance. In previous studies (22, 26), we monitored the incidence of non-O1 non-O139 serogroups among hospitalized patients and also examined the potential of these strains to produce cholera toxin, which fortuitously led to the discovery of the O139 serogroup (25). In this study, we performed a more comprehensive surveillance and also examined the non-O1 non-O139 strains for a variety of other virulence-associated genes.

After a brief period of displacement, *V. cholerae* belonging to the O1 serogroup reappeared rapidly and became the dominant serogroup causing cholera in Calcutta from 1994 onwards. Although phenotypically very similar (18), the O1 strains of *V. cholerae* which reappeared after being temporarily displaced by the O139 serogroup in Calcutta were quite dissimilar to the O1 strains which prevailed prior to the genesis of O139 when examined by pulsed-field gel electrophoresis (41). In this study, we compared the O1 and O139 strains isolated in the past 3 years but did not see any remarkable variations in

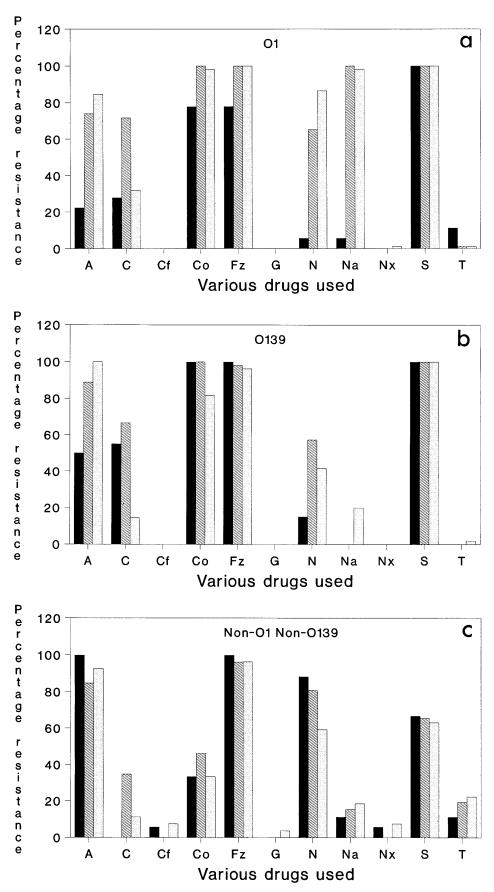


FIG. 2. Antibiotic resistance patterns of *V. cholerae* O1 (a), O139 (b), and non-O1 non-O139 (c) to commonly used antibiotics. Abbreviations are explained in Table 2, footnote *a*. **I**, 1993; 🖾, 1994; 🗮, 1995.

 TABLE 3. Statistical analysis showing significant changes in drug resistance (either increase or decrease) between years among *V. cholerae* O1, O139, and non-O1 non-O139

		P value ^{a}				
Antibiotic	Serogroup	1993 vs 1994	1993 vs 1995	1994 vs 1995		
Ampicillin	01	0.0003*	< 0.0001*	0.0619		
	O139	$< 0.0001^{*}$	$< 0.0001^{*}$	0.0127*		
	Non-O1 non-O139	0.1101	0.3545	0.5828		
Chloramphenicol	01	0.0004^{*}	0.7327	$< 0.0001^{**}$		
-	O139	0.1785	$< 0.0001^{**}$	$< 0.0001^{**}$		
	Non-O1 non-O139	0.0044^{*}	0.2061	< 0.0429**		
Cotrimoxazole	01	0.0005^{*}	0.0035*	0.2953		
	O139	NC	$< 0.0001^{**}$	0.0007^{**}		
	Non-O1 non-O139	0.4005	1.000	0.3447		
Furazolidone	01	0.0005*	0.0003*	NC		
	O139	0.4029	0.1642	0.5069		
	Non-O1 non-O139	0.5909	0.6000	0.7453		
Neomycin	01	$< 0.0001^{*}$	$< 0.0001^{*}$	0.0004^{*}		
	O139	$< 0.0001^{*}$	0.0005*	0.1055		
	Non-O1 non-O139	0.3879	0.0698	0.0912		
Nalidixic acid	01	$< 0.0001^{*}$	$< 0.0001^{*}$	0.2953		
	O139	NC	$< 0.0001^{*}$	0.0016^{*}		
	Non-O1 non-O139	0.5244	0.4092	0.5252		
Tetracycline	01	0.0690	0.0516**	0.7050		
-	O139	NC	0.4074	0.5046		
	Non-O1 non-O139	0.3879	0.2424	0.7903		

 a^* , statistically significant increase in resistance to the antibiotic in question between the years of comparison; **, statistically significant decrease in resistance to the antibiotic in question between years of comparison; NC, not comparable data.

phenotypic traits and in virulence-associated genes with the exception of rapid changes in antibiotic resistance patterns.

Comparison of the O1 strains isolated between the 3 years revealed interesting fluctuations in the patterns of resistance to various antibiotics. For instance, there was a striking and abrupt emergence of nalidixic acid-, ampicillin-, and neomycinresistant strains of V. cholerae O1 from 1994 onwards. The pattern of resistance of V. cholerae O1 to cotrimoxazole, on the other hand, varied between years. These rapid shifts in antimicrobial resistance are in contrast to earlier decades, when antibiotic resistance among V. cholerae O1 strains was not a usual phenomenon and multiple-antibiotic-resistant strains were few and far between (23). However, this pattern of quick shifts is consistent with reports in recent years which indicate an enhanced mobility in genetic elements which confers resistance to antibiotics (18). A multiple-antibiotic resistance plasmid belonging to incompatibility group C has been associated with drug resistance plasmids of V. cholerae O1 (7) and O139 (40). It has been predicted that since the multiple-drug resistance plasmid is self-transmissible by conjugation, the incidence of plasmid-carrying strains may increase (40). There were differences in the antibiotic resistance patterns of V. cholerae O1 and O139 isolated during the 3 years, with the O139 strains being susceptible, by and large, to nalidixic acid and neomycin compared with the O1 strains. Cotrimoxazole-susceptible strains of V. cholerae O139 began appearing from June 1995, representing another shift because since the serogroup's genesis, O139 strains isolated in Calcutta and elsewhere were completely resistant to cotrimoxazole and furazolidone (1, 25). Yamamoto et al. (39) revealed differences in antimicrobial susceptibility patterns between clones of V. cholerae isolated from different geographic areas, with the Indian O1 ElTor strains (97%) and Bangladeshi ElTor strains (50%) being highly resistant to streptomycin, sulfamethoxazole, and trimethoprim and moderately resistant to chloramphenicol and furazolidone, which sharply contrasted with the resistance of the O1 Peruvian ElTor and Bangladeshi O1 classical strains.

The most interesting observation in this study was the progressive increase in the production of a factor which was cytotoxic to CHO and HeLa cells by strains belonging to the non-O1 non-O139 serogroups. Among the 1993 strains of V. cholerae non-O1 non-O139, cytotoxin production was not observed and most of the strains did not affect the cell lines used. However, among the 1994 and 1995 strains, there was a dramatic increase in the number of non-O1 non-O139 strains producing a cytotoxic effect. We are currently examining these strains to understand the nature of the cytotoxin. By analysis of the sequence variation of the asd gene (encodes aspartate semialdehyde dehydrogenase; a housekeeping gene) within V. cholerae, Karaolis et al. (11) concluded that the sixth and seventh cholera pandemics were due to independent clones separately derived from environmental, nontoxigenic, non-O1 V. cholerae and that among V. cholerae strains there is a high level of genetic exchange and a relatively low level of clonality. If this be the case, the incidence of cytotoxic V. cholerae non-O1 non-O139 may be an ominous sign and might be a prelude to the genesis of newer strains of V. cholerae having hitherto unrecognized toxigenic traits.

Indications to this effect are already coming to light with the recent report on outbreaks of cholera-like disease caused by unusual strains of *V. cholerae*, including nontoxigenic strains of *V. cholerae* O1 which produce a factor that evokes a rapid cell rounding effect when introduced on confluent layer of CHO and HeLa cells (29) and *V. cholerae* non-O1 strains producing the heat-stable enterotoxin (2), and two recent reports in which serogroups such as O10 and O12 have been causes of concern since they were associated with outbreaks of cholera-like diarrhea (5, 28). The precise reasons for such rapid shifts and emergence of newer variants of *V. cholerae* is not certain but might relate to the same factors responsible for the overall resurgence of infectious diseases. Effective surveillance, especially in high-risk areas, could abort some of the damages caused by the emerging variants.

ACKNOWLEDGMENT

This work was partially supported by grant BT/TH/9/63/91 from the Department of Biotechnology, New Delhi, India.

REFERENCES

- Albert, M. J., A. K. Siddique, M. S. Islam, A. S. G. Faruque, M. Ansaruzzaman, S. M. Faruque, and R. B. Sack. 1993. Large outbreak of clinical cholera due to V. cholerae non-O1 in Bangladesh. Lancet 341:704.
- Bagchi, K., P. Echeverria, J. D. Arthur, O. Sethabutr, O. Serichantalergs, and C. W. Hoge. 1993. Epidemic diarrhea caused by *Vibrio cholerae* non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J. Clin. Microbiol. 31:1315–1317.
- Bik, E. M., A. E. Bunschoten, R. D. Gouw, and F. R. Mooi. 1995. Genesis of the novel epidemic *Vibrio cholerae* O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14:209–216.
- Cholera Working Group. 1993. Large epidemic of cholera-like disease in Bangladesh caused by *Vibrio cholerae* O139 synonym Bengal. Lancet 342: 387–390.
- Dalsgaard, A., M. J. Albert, D. N. Taylor, T. Shimada, R. Meza, O. Serichantalergs, and P. Echeverria. 1995. Characterization of *Vibrio cholerae* non-O1 serogroup obtained from an outbreak of diarrhea in Lima, Peru. J. Clin. Microbiol. 33:2715–2722.
- Garg, S., T. Ramamurthy, A. K. Mukhopadhyay, B. C. Deb, G. B. Nair, T. Shimada, T. Takeda, A. Huq, R. R. Colwell, and Y. Takeda. 1994. Production and cross reactivity patterns of a panel of high affinity monoclonal antibodies to *Vibrio cholerae* O139 Bengal. FEMS Immunol. Med. Microbiol. 8:293– 298.
- Hedges, R. W., J. L. Vialard, N. J. Perason, and F. O'Grady. 1977. Plasmids from Asian strains of *Vibrio cholerae*. Antimicrob. Agents Chemother. 11: 585–588.

- Iwanaga, M., and T. Kuyyakanond. 1985. New medium for the production of cholera toxin by *Vibrio cholerae* O1 biotype ElTor. J. Clin. Microbiol. 22: 405–408.
- 9. Kaper, J. B. 1979. Isolation, ecology and taxonomy of human pathogens in an estuary. Ph.D. thesis. University of Maryland, College Park.
- Kaper, J. B., Jr., J. G. Morris, and M. Nishibuchi. 1992. DNA probes for pathogenic *Vibrio* species, p. 65–77. *In* F. C. Tenover (ed.), DNA probes for infectious disease. CRC Press, Inc., Boca Raton, Fla.
- Karaolis, D. K. R., R. Lan, and P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 *Vibrio cholerae*. J. Bacteriol. 177:3191– 3198.
- Karasawa, T., T. Mihara, H. Kurazono, G. B. Nair, S. Garg, T. Ramamurthy, and Y. Takeda. 1993. Distribution of the *zot* (zonula occludens toxin) gene among strains of *Vibrio cholerae* O1 and non-O1. FEMS Microbiol. Lett. 106:143–146.
- Keasler, S. P., and R. H. Hall. 1993. Detecting and biotyping V. cholerae O1 with multiplex polymerase chain reaction. Lancet 341:1661.
- Kirkwood, B. R. 1988. Essentials of medical statistics. Blackwell Scientific Publications, Oxford.
- Kurazono, H., A. Pal, P. K. Bag, G. B. Nair, T. Karasawa, T. Mihara, and Y. Takeda. 1995. Distribution of genes encoding cholera toxin, zonula occludens toxin, accessory cholera toxin, and eltor hemolysin in *Vibrio cholerae* of diverse origins. Microb. Pathog. 18:231–235.
- Levine, M. M. 1991. South America: the nature of cholera. Lancet 338:45–46.
 Morris, J. G., Jr. 1990. Non-O group 1 *Vibrio cholerae*: a look at the epidetic state of the st
- miology of an occasional pathogen. Epidemiol. Rev. 12:179–191.
 Mukhopadhyay, A. K., S. Garg, G. B. Nair, S. Kar, R. K. Ghosh, S. Pajni, A. Ghosh, T. Shimada, T. Takeda, and Y. Takeda. 1995. Biotype traits and antibiotic susceptibility of *Vibrio cholerae* serogroup OI before, during and after the emergence of the O139 serogroup. Epidemiol. Infect. 115:427–434.
- Mukhopadhyay, A. K., P. K. Saha, S. Garg, S. K. Bhattacharya, T. Shimada, T. Takeda, Y. Takeda, and G. B. Nair. 1995. Distribution and virulence of *Vibrio cholerae* belonging to serogroups other than O1 and O139: a nationwide survey. Epidemiol. Infect. 114:65–70.
- Nair, G. B., M. J. Albert, T. Shimada, and Y. Takeda. 1996. Vibrio cholerae O139 Bengal: the new serogroup causing cholera. Rev. Med. Microbiol. 7:43–51.
- Nair, G. B., S. Misra, R. K. Bhadra, and S. C. Pal. 1987. Evaluation of the multitest medium for rapid presumptive identification of *Vibrio cholerae* from environmental sources. Appl. Environ. Microbiol. 53:1203–1205.
- Nair, G. B., T. Ramamurthy, S. Garg, T. Takeda, and Y. Takeda. 1993. Characteristics of *Vibrio cholerae* isolated from hospitalized patients with acute diarrhoea in Calcutta, India: a four year analysis. LabMedica Int. X:29–33.
- O'Grady, F., M. J. Lewis, and N. J. Pearson. 1976. Global surveillance of antibiotic sensitivity of *Vibrio cholerae*. Bull. W. H. O. 54:181–185.
- Ramamurthy, T., P. K. Bag, A. Pal, S. K. Bhattacharya, M. K. Bhattacharya, D. Sen, T. Shimada, T. Takeda, Y. Takeda, and G. B. Nair. 1993. Virulence patterns of *Vibrio cholerae* non-O1 strains isolated from hospitalized patients with acute diarrhoea in Calcutta, India. J. Med. Microbiol. 39:310–317.
- Ramamurthy, T., S. Garg, R. Sharma, S. K. Bhattacharya, G. B. Nair, T. Shimada, T. Takeda, T. Karasawa, H. Kurazano, A. Pal, and Y. Takeda. 1993. Emergence of a novel strain of V. cholerae with epidemic potential in

southern and eastern India. Lancet 341:703-704.

- 26. Ramamurthy, T., A. Pal, M. K. Bhattacharya, S. K. Bhattacharya, A. S. Chowdhury, Y. Takeda, T. Takeda, S. C. Pal, and G. B. Nair. 1992. Serovar, biotype, phagetype, toxigenicity and antibiotic susceptibility patterns of *Vibrio cholerae* isolated during two consecutive cholera seasons (1989–90) in Calcutta. Indian J. Med. Res. 95:125–129.
- Ries, A. A., D. J. Vugia, L. Beingolea, A. M. Palacios, E. Vasquez, J. G. Wells, N. G. Baca, D. L. Swerdlow, M. Pollack, N. H. Bean, L. Seminario, and R. V. Tauxe. 1992. Cholera in Piura, Peru: a modern urban epidemic. J. Infect. Dis. 166:1429–1433.
- Rudra, S., R. Mahajan, M. Mathur, K. Kathuria, and V. Talwar. 1996. Cluster of cases of clinical cholera due to *Vibrio cholerae* O10 in east Delhi. Indian J. Med. Res. 103:71–73.
- Saha, P. K., H. Koley, A. K. Mukhopadhyay, S. K. Bhattacharya, G. B. Nair, B. S. Ramakrishna, S. Krishnan, T. Takeda, and Y. Takeda. 1996. Nontoxigenic *Vibrio cholerae* O1 serotype Inaba biotype ElTor associated with a cluster of cases of cholera in southern India. J. Clin. Microbiol. 34:1114– 1117.
- Samadi, A. R., M. I. Huq, N. Shahid, M. U. Khan, A. Eusof, A. S. M. M. Rahman, M. M. Yunus, and A. S. G. Faruque. 1983. Classical Vibrio cholerae biotype displaces ElTor in Bangladesh. Lancet i:805–807.
- 31. Shimada, T., E. Arakawa, K. Itoh, T. Nakazako, T. Okitsu, S. Yamai, M. Kusum, G. B. Nair, and Y. Takeda. 1994. Two strains of *Vibrio cholerae* non-O1 possessing somatic (O) antigen factors in common with *V. cholerae* serogroup O139 "Bengal." Curr. Microbiol. 29:331–333.
- Shimada, T., E. Arakawa, K. Itoh, T. Okitsu, A. Matsushima, Y. Asai, S. Yamai, T. Nakazato, G. B. Nair, M. J. Albert, and Y. Takeda. 1994. Extended serotyping scheme for *Vibrio cholerae*. Curr. Microbiol. 28:175–178.
- Shirai, H., M. Nishibuchi, T. Ramamurthy, S. K. Bhattacharya, S. C. Pal, and Y. Takeda. 1991. Polymerase chain reaction for detection of the cholera enterotoxin operon of *Vibrio cholerae*. J. Clin. Microbiol. 29:2517–2521.
- Siddique, A. K., A. H. Baqui, A. Eusof, K. Haider, M. A. Hossain, I. Bashier, and K. Zaman. 1991. Survival of classic cholera in Bangladesh. Lancet 337:1125–1127.
- Sun, D., J. M. Seyer, I. Kovari, R. A. Sumrada, and R. K. Taylor. 1991. Localization of protective epitopes within the pilin subunit of the *Vibrio* cholerae toxin-coregulated pilus. Infect. Immun. 59:114–118.
- 36. Takeda, T., Y. Peina, A. Ogawa, S. Dohi, H. Abe, G. B. Nair, and S. C. Pal. 1991. Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of *Vibrio cholerae* O1. FEMS Microbiol. Lett. 80:23–28.
- World Health Organization. 1991. Cholera in 1990. Weekly Epidemiol. Rec. 66:133–140.
- World Health Organization. 1993. Guidelines for cholera control. World Health Organization, Geneva.
- Yamamoto, T., G. B. Nair, C. C. Parodi, and Y. Takeda. 1995. In vitro susceptibilities to antimicrobial agents of *Vibrio cholerae* O1 and O139. Antimicrob. Agents Chemother. 39:241–244.
- Yamamoto, T., G. B. Nair, and Y. Takeda. 1995. Emergence of tetracycline resistance due to multiple drug resistance plasmid in *Vibrio cholerae* O139. FEMS Immunol. Med. Microbiol. 11:131–136.
- 41. Yamasaki, S., G. B. Nair, S. K. Bhattacharya, S. Yamamoto, H. Kurazono, and Y. Takeda. Cryptic appearance of a new clone of *Vibrio cholerae* serogroup O1 biotype ElTor in Calcutta, India. Submitted for publication.