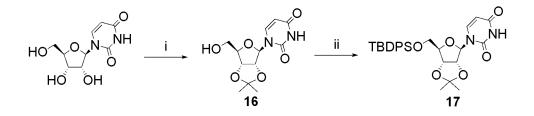
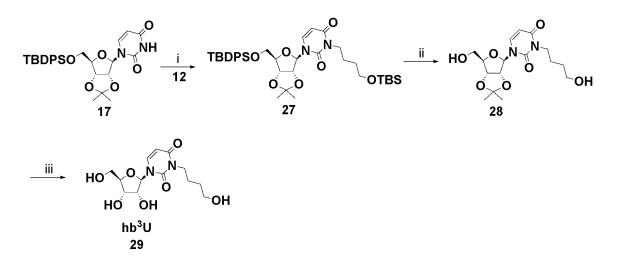
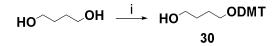

Supplementary Material for


Synthesis and Solution Conformation Studies of 3-Substituted Uridine and Pseudouridine Derivatives

Yu-Cheng Chang, Jayatilake Herath, Tony H.-H. Wang, and Christine S. Chow* Department of Chemistry, Wayne State University, Detroit, MI, USA


Scheme S1. *Reagents and conditions*: (i) *tert*-butyldimethylsilyl chloride, imidazole, DMF, rt, 2 h, 68%; (ii) 7, DIAD, PPh₃, THF, rt, 1 h, 77%; (iii) tetrabutylammonium fluoride, THF, rt, 2.5 h, 89%; (iv) TFA, H₂O/acetone (9/1, v/v), rt, 2 h, 99%.


Scheme S2. *Reagents and conditions*: (i) *conc*. H₂SO₄, acetone, rt, 2.5 h, 95% yield; (ii) *tert*butyldiphenylsilyl chloride, imidazole, DMF, rt, 18 h, 95% yield.

Scheme S3. *Reagents and conditions*: (i) 9, DIAD, PPh₃, THF, rt, 1 h, 92%; (iii) a) 0.67 N NaOH_(aq), dioxane, rt, 25 min; b) TFA/H₂O (9/1), 1 h, rt, 92% in two steps.

Scheme S4. *Reagents and conditions*: (i) 12, DIAD, PPh₃, THF, rt, 1 h, 92%; (ii) TBAF, THF, rt, 2.5 h, 96%; (iii) TFA/H₂O (9/1), 1 h, rt, 79%.

Scheme S5. Reagents and conditions: (i) Dimethoxytrityl chloride, pyridine, rt, 20 h, 87%.

Experimental Section

General Procedure for Deprotection Using TFA/H₂O (9/1) Solution. TFA/H₂O (9/1, 10 mL) solution was added to the protected modified nucleoside. Stirring was continued for 1 h. TFA and water were evaporated under reduced pressure in a hot water bath. The product was washed with chloroform several times to give the corresponding deprotected compound.

1-*O*-(*tert*-Butyldimethylsilyl)-butane-4-ol (12). To a solution of 1,4-butanediol (10.0 g, 111 mmol) and imidazole (5.29 g, 77.7 mmol) in DMF (30 mL) was added *tert*butyldimethylsilyl chloride (4.18 g, 27.7 mmol) and stirred for 2 h. The solution was diluted with H₂O (150 mL) and extracted with EtOAc (3 × 100 mL). The combined organic extracts were washed with H₂O and dried over Na₂SO₄. The solvent was evaporated to yield crude product and purified with column chromatography using ethyl acetate/hexane (15–35%) to give **12** (3.85 g, 68%) as a colorless oil: R_f 0.58 (EtOAc/hexane 1:1); ¹H NMR (500 MHz, CDCl₃) δ 3.64 (m, 4 H), 2.64 (br s, 1 H), 1.63 (m, 4 H), 0.89 (s, 9 H), 0.06 (s, 6 H); ¹³C NMR (500 MHz, CDCl₃) δ 63.6, 62.9, 30.4, 30.0, 18.5, -5.2; ESI-MS (ES⁺) m/z calcd for C₁₀H₂₄O₂Si 204.15, found 205.31 (M+H⁺); HRMS calcd for C₆H₁₅O₂Si (M⁺-C₄H₉) 147.0841, found 147.0841.

1-Methyl-3-[4-O-(tert-butyldimethylsilyl)-butyl]-5'-O-(tert-butyldiphenylsilyl)-2',3'-

O-(isopropylidene)pseudouridine (13). The procedure was the same as for 10 using alcohol 12. The crude product was purified with column chromatography using EtOAc/hexane (15–40%) to give 13 (0.25 g, 77%) as a colorless oil: R_f 0.27 (EtOAc/hexane 3:7); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (m, 4 H), 7.40 (m, 6 H), 7.27 (d, J = 7.5 Hz, 1 H), 4.92 (d, J = 3.0 Hz, 1 H), 4.75 (m, 1 H), 4.65 (dd, J = 6.5, 3.5 Hz, 1 H), 4.14 (m, 1 H), 3.96 (m, 3 H), 3.85 (dd, J = 12.0, 4.0 Hz, 1 H), 3.61 (t, J = 6.5 Hz, 2 H), 3.08 (s, 3 H), 1.66 (m, 2 H), 1.59 (s, 3 H), 1.56 (m, 2 H), 1.36 (s, 3 H), 1.06 (s, 9 H), 0.88 (s, 9 H), 0.04 (s, 6 H); ¹³C NMR (500 MHz, CDCl₃) δ 162.1, 151.6,

140.1, 135.8, 135.6, 133.7, 133.2, 130.2, 130.1, 128.1, 128.0, 114.4, 112.4, 85.7, 85.0, 81.3, 81.2, 64.2, 63.2, 41.4, 36.9, 30.6, 27.8, 27.1, 26.2, 25.8, 24.4, 19.6, 18.6, -5.05; ESI-MS (ES⁺) m/z calcd for C₃₉H₅₈N₂O₇Si₂ 722.28, found 745.19 (M+Na⁺), 761.13 (M+K⁺).

3-[(S)-3-N-(tert-Butoxycarbonyl)-amino-3-methyl-carboxypropyl]-5'-O-(tert-

butyldiphenylsilyl)-2',3'-*O***-(isopropylidene)uridine (18).** The procedure was the same as for **10** using compounds **17** and **9**. The crude product was purified by column chromatography using EtOAc/hexane (40–60%) to give **18** (1.79 g, 91%) as a white foam: R_f 0.37 (EtOAc/hexane 1:1); mp 51–54 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (m, 5 H), 7.40 (m, 6 H), 5.92 (s, 1 H), 5.47 (m, 2 H), 4.76 (m, 2 H), 4.37 (dd, J = 14.0, 6.5 Hz, 1 H), 4.30 (m, 1 H), 3.99 (m, 3 H), 3.80 (dd, J = 11.5, 3.5 Hz, 1 H), 3.64 (s, 3H), 2.08 (m, 2 H), 1.57 (s, 3 H), 1.44 (s, 9 H), 1.35 (s, 3 H), 1.05 (s, 9 H); ¹³C NMR (500 MHz, CDCl₃) δ 172.8, 162.7, 155.8, 150.9, 138.6, 135.8, 135.6, 132.9, 132.5, 130.4, 130.3, 128.2, 128.2, 114.4, 101.8, 93.2, 87.0, 85.6, 80.4, 80.1, 64.2, 52.5, 51.6, 37.6, 29.6, 28.6, 27.5, 27.1, 25.6, 22.2, 19.5; ESI-MS (ES⁺) m/z calcd for C₃₈H₅₁N₃O₁₀Si 737.33, found 776.29 (M+K⁺).

3-(3-Amino-3-carboxypropyl)uridine (19, acp^{3}U). The same procedure for compound **11** was employed with compound **18** (430 mg, 0.58 mmol) to give **19** (201 mg, 92%) as a white solid: mp 159–161 °C; ¹H NMR (500 MHz, D₂O) δ 7.73 (d, *J* = 8.0 Hz, 1 H), 5.82 (d, *J* = 8.5 Hz, 1 H), 5.79 (d, *J* = 4.0 Hz, 1 H), 4.22 (m, 1 H), 4.09 (m, 1 H), 3.96 (m, 3 H), 3.79 (dd, *J* = 13.0, 2.5 Hz, 1 H), 3.68 (dd, *J* = 12.5, 4.5 Hz, 1 H), 3.58 (m, 1 H), 2.10 (m, 2 H); ¹³C NMR (500 MHz, D₂O) δ 174.1, 165.4, 152.0, 140.1, 101.8, 90.6, 84.2, 79.9, 69.4, 60.8, 52.6, 37.6, 28.2; ESI-MS (ES⁺) m/z calcd for C₁₃H₁₉N₃O₈ 345.12, found 346.15 (M+H⁺), 368.12 (M+Na⁺); HRMS calcd for C₁₂H₁₅N₃O₇ (M⁺–CH₄O) 313.0910, found 313.0901. 1-*O*-Benzoyl-(*S*)-2-*N*-(*tert*-butoxycarbonyl)-pentan-5-ol (22). To a solution of compound 21 (0.61 g, 1.09 mmol) in dry THF (20 mL) was added tetrabutylammonium fluoride (1.0 M solution in THF, 1.20 mL, 1.20 mmol) and stirred at rt for 3 h. The solvent was evaporated under reduced pressure to give the crude product. The residue was purified by column chromatography using ethyl acetate/hexane (45–70%) to give 22 (0.30 g, 84%) as a white solid: R_f 0.38 (EtOAc/hexane 7:3); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (m, 2 H), 7.56 (m, 1 H), 7.43 (t, *J* = 7.5 Hz, 1 H), 4.73 (br s, 1 H), 4.31 (d, *J* = 4.5 Hz, 1 H), 4.04 (br s, 1 H), 3.69 (m, 2 H), 1.90 (br s, 1 H), 1.63 (m, 4 H), 1.41 (s, 9 H); ¹³C NMR (500 MHz, CDCl₃) δ 166.7, 155.9, 133.4, 130.1, 129.9, 128.6, 79.8, 67.1, 62.6, 49.8, 29.0, 28.8, 28.6; ESI-MS (ES⁺) m/z calcd for C₁₇H₂₅NO₅ 323.17, found 346.28 (M+Na⁺), 362.25 (M+K⁺); HRMS calcd for C₁₃H₁₆NO₄ (M⁺-C₄H₉O) 250.1079, found 250.1084.

3-[(S)-4-N-(tert-Butoxycarbonyl)-amino-5-O-benzoyl-pentyl]-5'-O-(tert-

butyldiphenylsilyl)-2',3'-*O*-(**isopropylidene**)**uridine** (23). The procedure was the same as for **10** using **17** and alcohol **22**. The crude product was purified with column chromatography using EtOAc/hexane (25–45%) to give **23** (140 mg, 96%) as a white foam: R_f 0.44 (EtOAc/hexane 1:1); mp 58–61 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (m, 2 H), 7.62 (m, 4 H), 7.56 (m, 2 H), 7.41 (m, 8 H), 5.93 (d, J = 2.5 Hz, 1 H), 5.50 (d, J = 8.0 Hz, 1 H), 4.75 (m, 2 H), 4.64 (d, J = 9.0 Hz, 1 H), 4.30 (m, 3 H), 3.94 (m, 4 H), 3.81 (dd, J = 11.5, 4.0 Hz, 1 H), 1.75 (m, 3 H), 1.65 (s, 3 H), 1.53 (m, 1 H), 1.40 (s, 9 H), 1.35 (s, 3 H), 1.06 (s, 9 H); ¹³C NMR (500 MHz, CDCl₃) δ 166.7, 162.8, 155.7, 151.0, 138.4, 135.8, 135.6, 133.3, 132.9, 132.5, 130.4, 130.3, 130.2, 130.0, 128.6, 128.2, 128.2, 114.4, 102.0, 93.1, 86.9, 85.7, 80.5, 79.7, 67.2, 64.2, 49.8, 41.0, 29.5, 28.6, 27.5, 27.2, 25.6, 24.4, 19.5; ESI-MS (ES⁺) m/z calcd for C₄₅H₅₇N₃O₁₀Si 827.4, found 850.2 (M+Na⁺), 866.2 (M+K⁺).

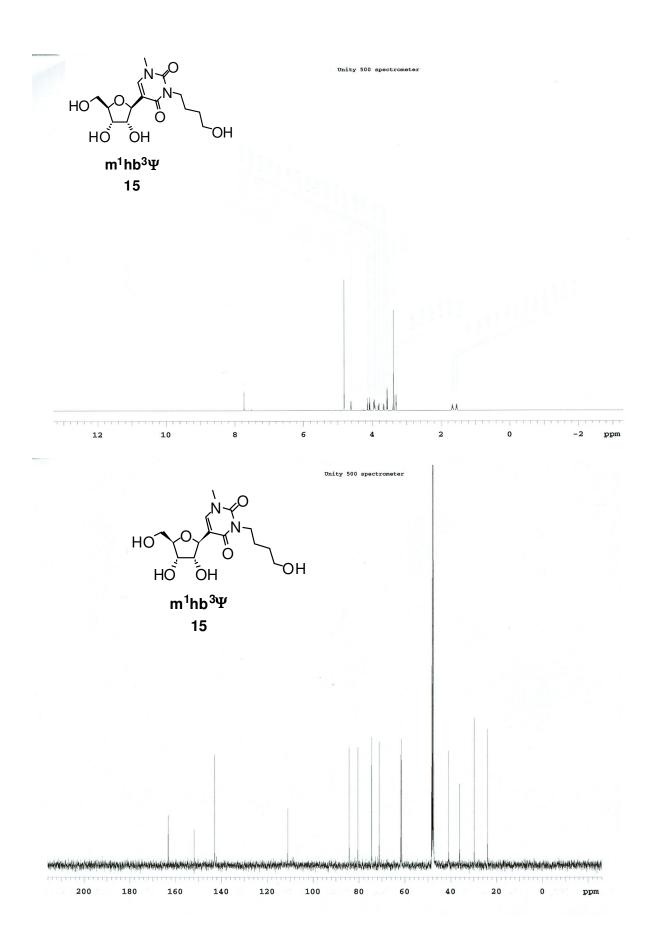
3-(4-Amino-4-carboxybutyl)uridine, TFA Salt (26, acb^{3}U). Compound **25** was reacted with TFA/H₂O to give **26** (160 mg, 94%) as an off-white solid: mp 158–160 °C; ¹H NMR (500 MHz, D₂O) δ 7.72 (d, *J* = 8.0 Hz, 1 H), 5.81 (d, *J* = 8.5 Hz, 1 H), 5.79 (d, *J* = 4.5 Hz, 1 H), 4.20 (t, *J* = 5.0 Hz, 1 H), 4.08 (t, *J* = 5.0 Hz, 1 H), 4.00 (m, 1 H), 3.79 (m, 4 H), 3.67 (dd, *J* = 12.5, 4.5 Hz, 1 H), 1.80 (m, 2 H), 1.62 (m, 2 H); ¹³C NMR (500 MHz, D₂O) δ 173.6, 165.4, 152.0, 140.0, 101.9, 90.4, 84.2, 73.9, 69.5, 60.8, 53.9, 40.8, 27.7, 22.7; ESI-MS (ES⁺) m/z calcd for C₁₄H₂₁N₃O₈ 359.1, found 360.2 (M+H⁺), 398.1 (M+K⁺); Anal. Calcd for C₁₆H₂₂F₃N₃O₁₀: C, 40.60; H, 4.68; N, 8.88; O, 33.80. Found: C, 41.99; H, 5.58; N, 9.59; O, 36.89.

3-[4-O-(tert-Butyldimethylsilyl)butyl]-5'-O-(tert-butyldiphenylsilyl)-2',3'-O-

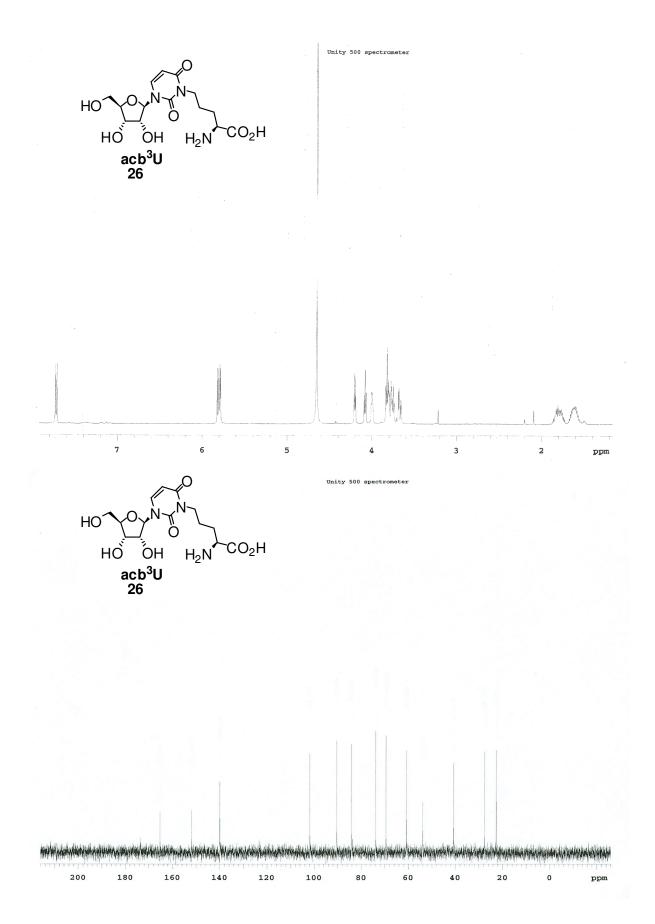
(isopropylidene)uridine (27). The procedure was the same as for 10 using 17 and alcohol 12. The crude product was purified with column chromatography using EtOAc/hexane (15–35%) to give 27 (1.09 g, 92%) as a colorless oil: R_f 0.26 (EtOAc/hexane 1:4); ¹H NMR (500 MHz, CDCl₃) δ 7.62 (m, 4 H), 7.55 (d, J = 8.0 Hz, 1 H), 7.41 (m, 6 H), 5.93 (d, J = 2.5 Hz, 1 H), 5.51 (d, J = 8.5 Hz, 1 H), 4.75 (m, 2 H), 4.31 (dd, J = 7.0, 3.0 Hz, 1 H), 3.97 (dd, J = 11.5, 3.0 Hz, 1 H), 3.90 (m, 2 H), 3.81 (dd, J = 11.5, 4.0 Hz, 1 H), 3.61 (t, J = 6.5 Hz, 2 H), 1.65 (m, 2 H), 1.58 (s, 3 H), 1.54 (m, 2 H), 1.35 (s, 3 H), 1.06 (s, 9 H), 0.88 (s, 9 H), 0.38 (s, 6 H); ¹³C NMR (500 MHz, CDCl₃) δ 162.8, 151.0, 138.3, 135.8, 135.6, 132.9, 132.6, 130.4, 130.3, 128.2, 128.2, 114.4, 102.1, 93.2, 86.9, 85.7, 80.6, 64.2, 63.1, 41.2, 30.5, 27.5, 27.1, 26.2, 25.6, 24.3, 19.5, 18.6, -5.1; ESI-MS (ES⁺) m/z calcd for C₃₈H₅₆N₂O₇Si₂ 708.36, found 709.24 (M+H⁺); HRMS calcd for C₃₈H₅₆N₂O₇Si₂ 708.36, found 709.24 (M+H⁺); HRMS calcd

3-(4-Hydroxybutyl)-2',3'-O-(isopropylidene)uridine (28). The crude product was purified by column chromatography using methanol/ethyl acetate/hexane (0.02/1/1 to 0.30/1/1) to give **28** (0.15 g, 96%) as a colorless oil: R_f 0.14 (MeOH/EtOAc/hexane 0.2:1:1); ¹H NMR

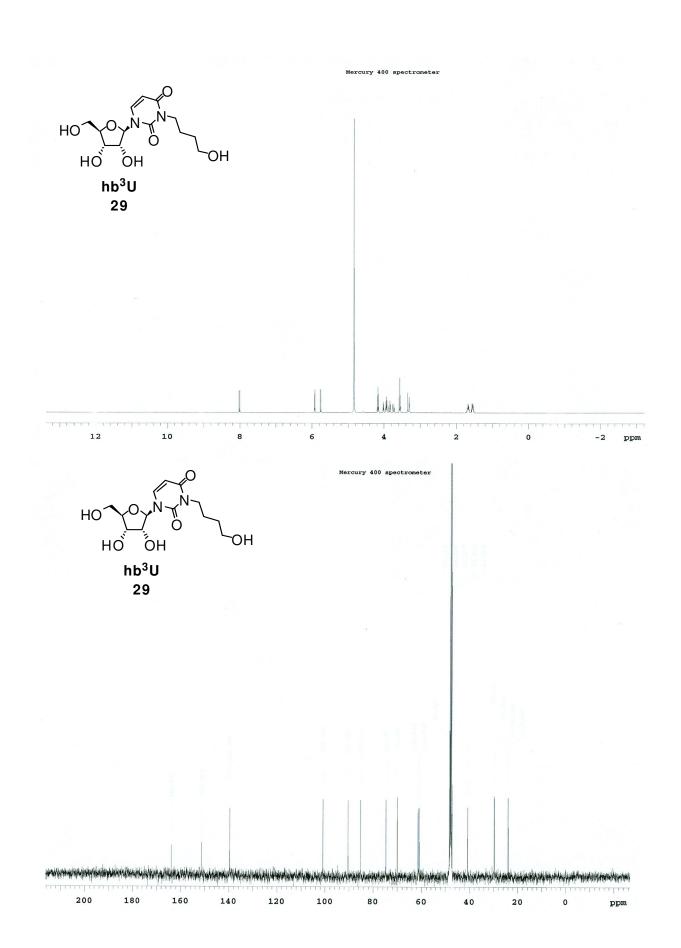
(500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 1 H), 5.75 (d, *J* = 7.5 Hz, 1 H), 5.56 (d, *J* = 2.5 Hz, 1 H), 5.02 (dd, *J* = 6.5, 3.0 Hz, 1 H), 4.96 (dd, *J* = 6.5, 3.0 Hz, 1 H), 4.30 (dd, *J* = 6.5, 3.5 Hz, 1 H), 3.93 (m, 3 H), 3.80 (dd, *J* = 12.0, 3.5 Hz, 1 H), 3.66 (t, *J* = 6.5 Hz, 2 H), 1.70 (m, 2 H), 1.59 (m, 5 H), 1.36 (s, 3 H); ¹³C NMR (500 MHz, CDCl₃) δ 162.8, 151.2, 140.8, 114.5, 102.3, 97.1, 87.2, 84.2, 80.6, 62.9, 62.5, 41.0, 29.9, 27.5, 25.5, 24.1; ESI-MS (ES⁺) m/z calcd for C₁₆H₂₄N₂O₇ (M⁺) 356.1584, found 379.23 (M+Na⁺), 395.20 (M+K⁺), HRMS calcd for C₁₆H₂₄N₂O₇ (M⁺) 356.1584, found 356.1595.

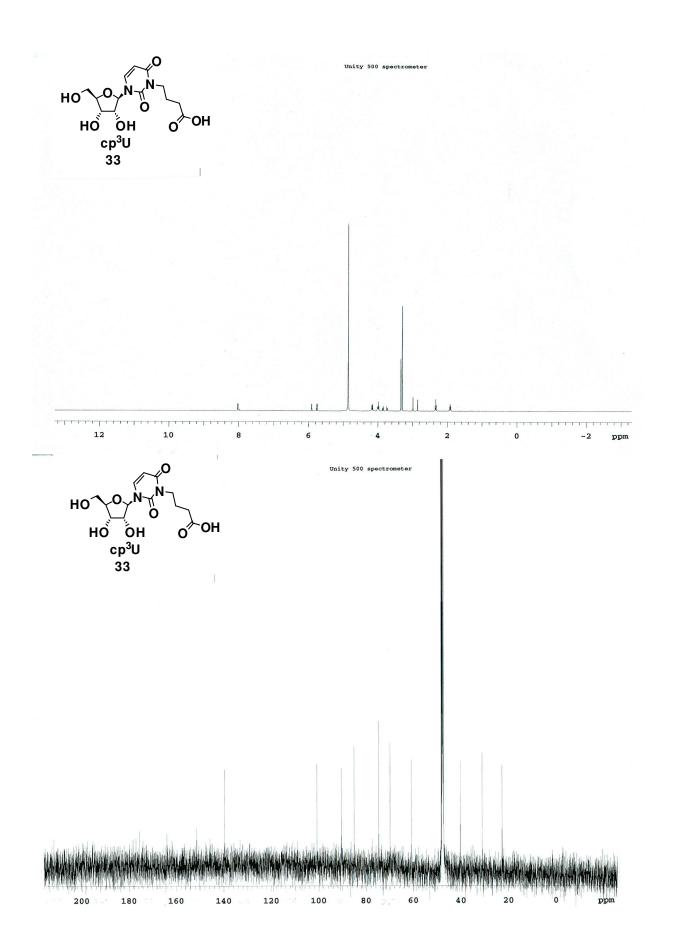

3-(4-Hydroxybutyl)uridine (29, hb³U). The crude product was purified by column chromatography using MeOH/methylene chloride (10–30%) to give **29** (85 mg, 79%) as a white foam: R_f 0.36 (MeOH/CH₂Cl₂ 1:4); mp 55–58 °C; ¹H NMR (400 MHz, CD₃OD) δ 8.01 (d, J = 8.0 Hz, 1 H), 5.92 (d, J = 4.0 Hz, 1 H), 5.76 (d, J = 8.4 Hz, 1 H), 4.17 (m, 2 H), 4.02 (m, 1 H), 3.93 (m, 2 H), 3.84 (dd, J = 12.4, 2.4 Hz, 1 H), 3.73 (dd, J = 12.0, 2.4 Hz, 1 H), 3.57 (t, J = 6.4 Hz, 2 H), 1.67 (m, 2 H), 1.55 (m, 2 H); ¹³C NMR (400 MHz, CD₃OD) δ 163.8, 151.4, 139.6, 100.9, 90.4, 85.1, 74.7, 70.0, 61.4, 61.0, 40.8, 29.7, 24.0; ESI-MS (ES⁺) m/z calcd for C₁₃H₂₀N₂O₇ 316.1, found 339.3 (M+Na⁺); HRMS calcd for C₁₃H₂₀N₂O₇ (M⁺) 316.1271, found 316.1276.

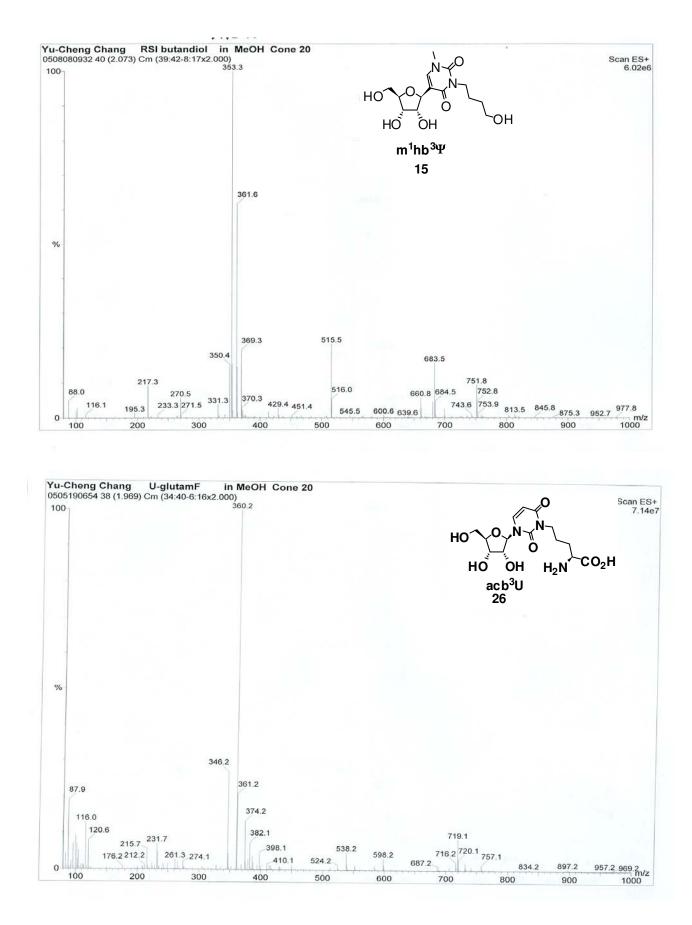
1-*O*-(Dimethoxytrityl)-butane-4-ol (30). To a solution of 1,4-butanediol (5.0 g, 55.5 mmol) in pyridine (10 mL) was added dimethoxytrityl chloride (1.87 g, 5.55 mmol) and stirred for 20 h. The solvent was evaporated to yield crude product, which was purified by column chromatography using ethyl acetate/hexane (30–50%) to give **30** (1.89 g, 87%) as a colorless oil: R_f 0.36 (EtOAc/hexane 1:1); ¹H NMR (400 MHz, CD₃OD) δ 7.35 (m, 2 H), 7.19 (m, 6 H), 7.09 (m, 1 H), 6.73 (m, 4 H), 3.66 (s, 6 H), 3.45 (t, *J* = 6.8 Hz, 2 H), 3.00 (t, *J* = 6.4 Hz, 2 H), 1.56 (m, 4 H); ¹³C NMR (400 MHz, CD₃OD) δ 158.8, 145.7, 136.6, 130.0, 128.1, 127.5, 126.5, 112.8,

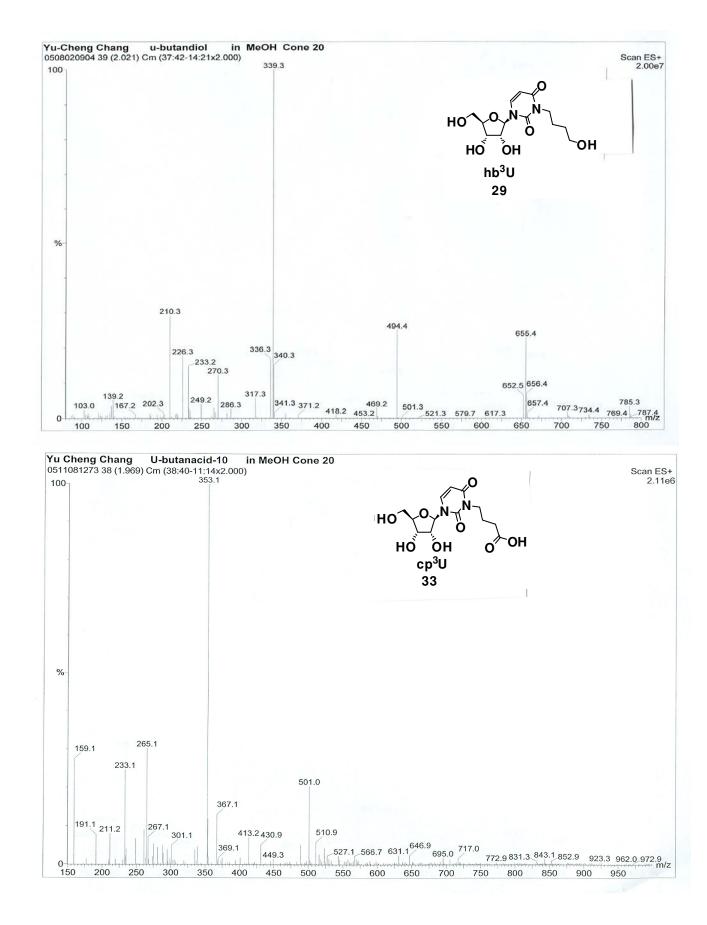

86.0, 63.1, 61.7, 54.5, 29.5, 26.4; ESI-MS (ES⁺) m/z calcd for $C_{25}H_{28}O_4$ 392.2, found 431.3 (M+K⁺); HRMS calcd for $C_{25}H_{28}O_4$ (M⁺) 392.1988, found 392.2003.

3-(3-Carboxypropyl)-5'-*O*-(*tert*-butyldiphenylsilyl)-2',3'-*O*-(isopropylidene)uridine (32). The procedure is the same as for compound 25. The crude product was purified by column chromatography using MeOH/ CH₂Cl₂ (10–20%) to give **32** (350 mg, 80%) as a colorless oil: R_f 0.09 (MeOH/ CH₂Cl₂ 1:9); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (m, 4 H), 7.58 (d, J = 8.4 Hz, 1 H), 7.41 (m, 6 H), 5.93 (d, J = 1.6 Hz, 1 H), 5.51 (d, J = 8.0 Hz, 1 H), 4.75 (m, 2 H), 4.31 (dd, J= 6.0, 2.8 Hz, 1 H), 3.97 (m, 3 H), 3.81 (dd, J = 12.0, 4.0 Hz, 1 H), 2.39 (t, J = 7.2 Hz, 2 H), 1.96 (m, 2 H), 1.58 (s, 3 H), 1.35 (s, 3 H), 1.06 (s, 9 H); ¹³C NMR (400 MHz, CDCl₃) δ 176.9, 163.0, 151.0, 138.6, 135.8, 135.6, 132.9, 132.5, 130.4, 130.3, 128.2, 128.2, 114.4, 102.0, 93.2, 86.9, 85.6, 80.6, 64.2, 40.4, 31.5, 27.5, 27.2, 25.6, 23.0, 19.5; ESI-MS (ES⁺) m/z calcd for C₃₂H₄₀N₂O₈Si 608.3, found 631.1 (M+Na⁺); HRMS calcd for C₃₁H₃₇N₂O₈Si (M⁺-CH₃) 593.2319, found 593.2328.


3-(3-Carboxypropyl)uridine (33, cp³U). Compound **32** was treated with TFA/H₂O solution to give compound **33** as a yellow oil. The residue was purified by column chromatography using MeOH/CH₂Cl₂ (15–30%) to give **33** (96 mg, 90%) as a colorless oil: R_f 0.08 (MeOH/ CH₂Cl₂ 1:4); ¹H NMR (500 MHz, CD₃OD) δ 8.03 (d, *J* = 8.0 Hz, 1 H), 5.91 (d, *J* = 4.0 Hz, 1 H), 5.76 (d, *J* = 8.0 Hz, 1 H), 4.16 (m, 2 H), 4.00 (m, 3 H), 3.85 (dd, *J* = 12.5, 2.5 Hz, 1 H), 3.74 (dd, *J* = 12.0, 3.0 Hz, 1 H), 2.34 (t, *J* = 7.0 Hz, 2 H), 1.92 (m, 2 H); ¹³C NMR (500 MHz, CD₃OD) δ 175.5, 163.9, 151.4, 139.7, 100.8, 90.5, 85.1, 74.7, 69.9, 60.9, 40.3, 31.1, 22.8; ESI-MS (ES⁺) m/z calcd for C₁₃H₁₈N₂O₈ 330.1, found 353.1 (M+Na⁺).


S10




S11

S12

