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Redundancy of models 

Supplementary Figure 1A outlines a thought experiment: imagine a homogenous 

population of virions with eight trimers each. At 50% functional Env (p=0.5), the average 

virion would have one of each possible kind of homo-trimer and three of each possible 

kind of hetero-trimer.  We now postulate three distinct combinations of thresholds at the 

level of the trimer and the virion: S=1, L=7; S=2, L=4 and S=3, L=1, i.e. three liminal 

models. But all three widely different models imply exactly the same outcome: the virion 

is one functional trimer short of infectivity. Supplementary Figure 1B shows that pairs of 

functions for different combinations of thresholds at the two levels, when n remains 

constant, are empirically indistinguishable. Supplementary Figure 1C shows that for 

different combinations of n and thresholds at the trimer and virion levels, curves may also 

approximately superimpose. This means that even more precise data for many more x 

values than we currently have would not in practice be able to pick out the correct 

theoretical function.  

  

Bridging incremental and liminal models 

Because of the redundancy among models, data alone cannot evaluate them. But there are 

other criteria for judging them: some assumptions do not make biological sense. The 

hypotheses S=2 and S=3 are biophysically peculiar: they mean, respectively, that the first 

or second non-functional protomer in the trimer has zero effect on trimer function, 

whereas the second or third completely abrogates it, from all to nothing. Thus the S=[2,3] 

hypotheses do not even allow any loss in the probability of docking onto receptors when 
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one or two protomers lack that function. There are more plausible rivals of S=1 than 

S=[2,3].  

One such possibility is shown in Supplementary Figure 2, where protomers 

contribute independently to virion infectivity. Initially, the model still postulates absolute 

thresholds at the virion level. Five different thresholds are illustrated. With n=9 (i.e., 27 

protomers), absolute thresholds are seen to yield curves far too steep to fit empirical data. 

Therefore, a sixth possibility is also explored: each inactivation of a protomer reduces the 

infectivity with the same amount but only down to the level where the virion has 

completely lost its infectivity and further incorporation of inactive protomers adds 

nothing. This model represents a bridge between absolute thresholds and incremental 

effects of each inactive protomer.  

   Supplementary Figure 3 presents other such hybrids between liminal and 

incremental models. There the threshold S=1 at the trimer level is kept constant. Instead, 

mixed liminal-incremental effects of non-functional trimers are explored at the level of 

the virion. Some curves indicate that, as the number of non-functional trimers rises, the 

first few non-functional ones do not affect infectivity. But above a certain number of non-

functional trimers each additional one decreases the infectivity in a proportionally 

incremental manner (L=[5,…,9] and L=[3,…,9]). Other curves illustrate the converse 

possibility, that every non-functional trimer in the virion has a proportionally incremental 

inactivating effect to a limit: the further accumulation of inactive trimers has no effect, 

because the virion has already lost all its infectivity (L=[1,…,5] and L=[1,..,7]). Lastly, 

an intermediate case is shown: a broad middle zone of thresholds with equal, decremental 

effect of each inert trimer, omitting inactivating effects of only the first and last two non-



 4 

functional trimers (L=[3,…,7]).  Such averaging over several but not all thresholds was 

found to fit some data sets excellently as shown in Table 3 in the main article and 

Supplementary Table 2. 

As argued in the main article, viral heterogeneities can soften thresholds. For 

example heterogeneous distributions of trimers over the virion sphere may co-exist with 

real incremental effects, which are mathematically indistinguishable from those that 

merely blur apparent thresholds.  In Supplementary Figure 4, an additional form of 

heterogeneity is illustrated. The total number of functional trimers, n, and the threshold of 

inactivation, L, are varied such that the minimal number of trimers required for 

infectivity, T, is kept constant. Obviously, the value of n greatly affects the curve. Such 

effects are restricted to the liminal component in models. Notably, the slope of the middle 

of the curve is not affected as much as in Supplementary Figure 3. A skew variation of n 

might arise when trimers start getting inactivated in a population of newly budded 

virions. As also shown in Supplementary Figure 4, this would result in a downward 

displacement of most of the curve. 

 

Incremental protomeric contributions to trimer function 

As part of the search for a more realistic alternative to S=1 than either S=2 or S=3 

provides, Supplementary Table 1 further explores different possibilities of gradual 

protomeric contributions to trimer function.  

The special case of totally incremental contributions by each protomer gives the 

linear curve that goes through (x=0, y=0) and (x=1, y=1). Its function is I=p. But one can 

also envisage some deviations in the slope of cumulative protomeric contributions. Then 



 5 

the function to fit is I=kp-m (Eq. 11). As shown in the top part of Supplementary Table 1, 

the coefficient k varies little for the data sets, between 0.9 and 1.1. The parameter m, 

determining the threshold at the lower end of the curve, varies more, from 0.024 to 0.21. 

This threshold indicates that virions with some active protomers are totally devoid of 

infectivity. It is striking that for some data sets this simple model yields excellent fits 

(even though the normalized endpoints (x=0, y=0) and (x=1, y=1) are included in the 

fitting). For example, the simple linear models fit the data better for three out of five 

mutants analyzed by Yang et al. (Yang et al., 2006a) than does the model proposed in 

that study. 

The middle rows of Supplementary Table 1 present a model that makes two 

assumptions. First, infectivity is proportional to trimer function, i.e. there is no threshold 

at the virion level. Second, the loss of one, two or three functional protomers is allowed 

to have gradual effects on trimer function. Thus nonlinear regression gives the thresholds 

S=1, S=2 and S=3 different weights relative to each other. The TCLA neutralization and 

cleavage-defective data fit best to a simple incremental S=1 model. For PI neutralization 

and PI YU2 cleavage-defective data there are small deviations giving some weight to the 

S=2 and S=3 thresholds, respectively. For the PI JR-FL cleavage-defective data, however, 

substantial weight is given to S=2. 

 The data on receptor-binding and fusion-segment mutants all give substantial 

deviations from S=1. But only PI CD4- and PI CCR5- do so more than PI JR-FL 

cleavage-defective mutants.  

 The bottom part of Table 1 gives the R2 for the two different models that have 

been proposed for these kinds of data (Yang et al., 2005a; Yang et al., 2005b; Yang et al., 



 6 

2006a), S=1 or S=2. Although these models were not given in the trimer-incremental 

form, because of the combined conditions n=1 and T=1 they are mathematically identical 

to incremental models. Thus altogether four models are listed, one of which has been 

advocated previously for each kind of mutant Env. But only for two out the ten data sets 

is that previously proposed model the best-fitting one of these four models. Still, as 

Figure 3 (main article) shows, to ignore thresholds at the level of the virion for n>1, as 

these four models do, is to over-simplify.  

 

Compensatory effects at the two levels of liminal-incremental modeling  

Supplementary Table 2 shows that well-fitting liminal-incremental models with both high 

(L=8) and intermediate (L=5) thresholds can fit the data in (Yang et al., 2006a). However, 

when L is high, h is low and vice versa. This is another illustration of the redundancy of 

models: a correct model cannot unambiguously be identified. However, if one assumes 

that the number of active trimers required should be the similar to what best fits the other 

kinds of mutations, i.e. around L=5 rather than L=8, this would strengthen the support for 

the hypothesis that the receptor-binding and fusion-segment mutants do have less 

dominant effects on trimer function than the cleavage-defective mutants. 

  A case of exact model redundancy arises from a corresponding compensatory 

effect at the two levels of modeling: The n=1, T=1, L=1 model in its S=1 form, is 

obviously mathematically identical to another liminal model, viz. n=3, L=1, T=3 and h=1 

(⇔ q=p), as well as to the pure incremental model with S=1. But these three differ 

sharply in their virological interpretations and test implications.  
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Legends for Supplementary Figures 

Supplementary Figure 1 

A. The cartoon illustrates the potential redundancy of models that arises from the 

compensatory effects of opposing changes in the premises set for the two levels of the 

model: i.e., at the level of the trimer and the level of the virion. Active subunits of the 

trimers are shown in red, inert ones in blue. A homogenous population of virions with the 

binomially determined distribution of 8 trimers is represented, with the proportion of 

functional Env subunits set at p=0.5. Three combinations of threshold conditions at the 

trimer level, S, and at the virion level, L, are presented. The condition S=1, L=7 means 

that only two active trimers are required for infectivity, but the depicted virion falls one 

trimer short. For S=2, L=4, five active trimers are required for infectivity but this virion 

again falls one trimer short. For S=3, L=1, all eight trimers are required for infectivity 

but again the depicted virion falls one trimer below the requisite level. In summary, in 

none of the three cases would the virion be infectious: in each one the virion falls below 

the requirement for infectivity by the same margin of one trimer, despite the drastic 

differences among the three models. 

 

B. The pairs of curves represent theoretically distinct models that would be difficult to 

distinguish empirically because of their proximity. This situation can arise with 

combinations of different intra-trimer compositions and thresholds for virions that have 

the same number of trimers: [n=5, L=1, S=3] (red squares) and [n=5, L=5, S=1] (blue 
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squares); [n=9, L=6, S=1] (red triangles) and [n=9, L=2, S=2] (blue triangles); [n=9, L=8, 

S=2] (red circles) and [n=9, L=4, S=3] (blue circles). 

 

C. Approximate redundancy can occur for distinct values of n: [n=4, L=2, S=2] (red 

squares) and [n=9, L=1, S=3] (blue squares); [n=4, L=3, S=2] (red circles) and [n=9, L=9, 

S=1] (blue circles) (C).  

 

Supplementary Figure 2 

With nine trimers per virion, n=9, i.e., 27 protomers, and absolute thresholds at the virion 

level but none at the trimer level (i.e., each subunit functions independently of its 

neighbors), steep sigmoid curves result. The situation is principally similar to when n is 

high in Figure 2B (main article). Different values of protomeric thresholds at the level of 

the virion are illustrated: 1 (red circles), 8 (blue circles), 14 (green circles), 20 (red 

squares) and 27 (blue squares). In addition, the average for only the 14 lowest threshold 

values, [1,…,14], (magenta triangles) is shown. In this model, every inactivation of a 

protomer would decrease the infectivity of the virion in equally small steps unto a limit 

(specifically, when 14 protomers are non-functional). When this occurs, the virion would 

be completely inert. Hence any further inactivation of protomers has no additional effect.   
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Supplementary Figure 3 

The figure shows hybrids of models with liminal and incremental effects at the virion 

level, but with a constant protomeric threshold at the trimer level (set to S=1). The total 

number of trimers per virion is also constant, n=9. In the first case, the first five inert 

trimers each cause an equal degree of infectivity impairment, but increasing the number 

of inert trimers beyond five has no further effect (L=[1,…,5]), green circles. In the second 

case, the first seven inert trimers have equal adverse effects on infectivity, but adding 

more inert trimers is without any consequence (L=[1,…,7]), yellow circles. In the third 

case, the virion is sensitive to inactivation in a broad, intermediate zone of inert trimer 

accumulation (L=[3,…,7]), blue circles. In the fourth case, the addition of the first two 

inert trimers has no effect, but from then on, each additional non-functional trimer 

decreases infectivity to an equal extent (L=[3,…,9]), black circles. Finally, the first four 

inert trimers added do not impair infectivity, but from five onwards, each additional non-

functional trimer causes an equal decrease in infectivity (L=[5,…,9]), red circles.  

 

Supplementary Figure 4 

If n varies within the virion population but the number of trimers necessary for infection 

by each virion is constant (i.e., L varies correspondingly so that n-L and thus T are kept 

constant), the effect is again to soften the apparent average threshold. The curves for the 

two extreme cases and the median one of pure populations of virions are shown: n=9, 

L=7, red circles, n=6, L=4, blue squares and n=3, L=1, green triangles. Interspersed 

among these curves are others illustrating the modulating effects of different virion 

heterogeneities. Functions for all the seven different values of n are given different 
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weights by the parameter b, in order to represent their proportions in the population of 

virions: An equal mix of these seven forms of virions (b=1) is shown as orange triangles. 

A symmetrical distribution around the median virion, n-L=2, n=[3,…,9], 

I=(In=3;L=1+bIn=4;L=2 +b3In=5;L=3+b9In=6;L=4+b3In=7;L=5+bIn=8;L=6+In=9;L=7/(2+2b+2b3+b9), 

b=1.3 is shown (pink circles). Other values for b in this function are not represented since 

the curves for b=1 (orange triangles), b=1.3 (pink circles) and homogenous n=6, L=4 

(blue squares, which high b values approach) are only marginally separated, and then 

only in the upper part of the curve. The curve for a skew heterogeneity, which could arise 

in a newly budded population of virions that is losing functional trimers, is also shown 

(black squares): n-L=2, n=[3,…,9], 

I=(In=3;L=1+bIn=4;L=2+b2In=5;L=3+b4In=6;L=4+b6In=7;L=5+b8In=8;L=6+b10In=9;L=7/ 

(1+b+b2+b4+b6+b8+b10), b=1.3.  
 
 



Supplementary Table 1  
Comparison of protomer and trimer incremental models 
  Neutralization (I) Cleavage defective(I) Receptor-fusion defective(I) 
  TCLA PI TCLA PI YU2 PI JRFL TCLA 

CD4- 
TCLA 
CXCR4- 

PI CD4- PI 
CCR5- 

PI 
fusion- 

k 0.90 0.94 0.94 1.0 1.1 1.0 1.0 1.1 1.1 1.0 
m 0.13 0.12 0.21 0.18 0.12 0.091 0.092 0.024 0.064 0.070 

Linear(II) 

(Protomer 
incre-
mental) 

R2 0.80 0.85 0.81 0.89 0.94 0.97 0.97 0.95 0.98 0.98 

S=1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0(III) 1.0 1.0 
u, S=2  0 0 0 0.28 2.0 1.6 1.1 1.0 16 1.1 
v, S=3  0 0.015 0 0 0 0.032 0.1 0.21 0 0.28 

Trimer 
incre-
mental(III) 

R2 0.99 0.9983 0.99 1.0 0.97 1.0 1.0 0.98 0.999 0.99 
S=1 0.99 0.998 0.99 0.97 0.84 0.78 0.80 0.30 0.56 0.73 Previous 

models(IV) S=2 0.34 0.50 0.51 0.67 0.93 0.92 0.90 0.97 0.997 0.93 
Number 
superior(V)  

 0 1 0 1 3 2 2 1 1 2 

 

(I) The neutralization data are from (Yang et al., 2005a): the mean I for the TCLA HXBc2 neutralized by 8 NAbs was calculated; the 

data for the PIs YU2, ADA and KB9 were pooled (mean of I for 2-3 NAbs). The data on cleavage defective TCLA and PI YU2 

were derived from (Yang et al., 2005b); those PI JRFL are given in (Herrera et al., 2006). The mean I values for receptor-binding- 

and fusion-defective mutants are to be found in (Yang et al., 2006): the TCLA CD4- is HxB2 with the Env mutation D368R; 

TCLA CXCR4- is the HxB2 Env V3 mutant R308L; PI CD4- is YU2 D368R; PI CCR5- is the double V3 mutant R315G/L317S; 

PI fusion- is the  TM mutant L520E. Results have been rounded off to two significant digits except where it would obscure a 

small difference in R2 between the models. 

(II) The equation of the linear model is I=kp-m (Eq.11). 

(III) This model assumes proportionally incremental effects of trimers on the infectivity of the virion I=(p3+u(3p2-2p3)+v(3p-

3p2+p3))/(1+u+v) (Eq.12). At the level of the trimer it allows for differential relative effects of the loss of the functionality of 

one, two or three hetero-dimeric subunits. With the PI-CD4- data, the first round of nonlinear regression gave such large values of 

u and v for the PI CD4- data that the constant coefficient 1 for the S=1 threshold became negligible. Therefore the coefficient for 

the S=2 threshold was instead set to 1 and the relative weights given in the table were obtained.  

(IV) The two incremental models with S=1 and S=2 are mathematically identical to the two special-case threshold models that have 

been advocated: One of those, postulating n=1, and estimating L=1, T=1 and S=1, has been proposed for neutralization data 

(Yang et al., 2005a) and the mixed cleavage-defective mutants (Yang et al., 2005b). In contrast, for data obtained with a different 

set of mutants affecting receptor interactions and the fusion-segment integrity of Env, the parameter values T=1 and S=2 were 

proposed (Yang et al., 2006). Unlike in the main article Table 3, the form of these models tested here allowed no flexibility: I=q. 

Therefore the R2  values for these previous models are somewhat lower than for the corresponding flexible versions in main article 

Table 3. The R2  values of these rigid previous models are given in underlined italics when they are higher than the other options 

in the table. The R2 values of superior alternative models are given in bold. 



(V) The last row of the table gives the number of times out of three possible that alternative models had higher R2 values than those of 

the n=1 T=1 S=1 and n=1 T=1 S=2 models, respectively. 

 
 
Supplementary Table 2 
Illustration of compensatory effects at the trimer and virion levels of mixed liminal-incremental models  
 
 
  Receptor-fusion defective mutants(I) 

  TCLA 
CD4- 

TCLA 
CXCR4- 

PI CD4- PI CCR5- PI fusion- 

High-virion-
threshold 
model 

R2 1.0 
 (II,III) 

1.0 
 (II,III) 

1.0 
 (II,III) 

1.0 
 (II,III) 

1.0 
(II,III) 

Threshold L 8 8 8 8 8 
Weight b 2.3 2.0 8.8 4.1 2.0 
Protomer 
spectrum 

h 0.21 0.24 0.28 0.22 0.31 

Intermediate-
virion-threshold 
model 

R2 1.0 
 (II,IV) 

1.0 
  (II,IV) 

0.97  

(II,IV) 
1.0 
  (II,IV) 

0.99 
(II,IV) 

Threshold L 5 5 5 5 5 
Weight b 1.4 1.3 2.6 2.0 1.2 
Protomer 
spectrum 

h 0.70 0.65 1.0 0.94 0.73 

 

(I) The modeled data are from (Yang et al., 2006). 

(II) The trimer function is described by the spectrum q=hp+(1-h)p3 (Eq.5) in all equations. The infectivity equation has the general form 

I=(c1IL=1+c2IL=2+c3IL=3+c4IL=4+c5IL=5+c6IL=6+c7IL=7+c8IL=8+c9IL=9)/(c1+ c2+ c3+ c4+ c5+ c6+ c7+ c8+ c9) (Eq.4), where IL=Σ9
r=(9-L+1)

 9Crqr(1-q)9-r (Eq.1 

with n=9). The coefficients cL give different weights to the nine possible thresholds. 

(III) c1=b0, c2=b0, c3=b0 c4=b0, c5= b0, c6= b0, c7= b1, c8= b2, c9= b1  

(IV) c1=b0, c2=b0, c3=b1 c4=b2, c5= b3, c6= b2, c7= b1, c8= b0, c9= b0 
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