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Cardiac computed tomography (CT) has been a hot topic for years because of the clinical importance of cardiac diseases and the
rapid evolution of CT systems. In this paper, we propose a novel strategy for controlled cardiac CT that may effectively reduce
image artifacts due to cardiac and respiratory motions. Our approach is radically different from existing ones and is based on
controlling the X-ray source rotation velocity and powering status in reference to the cardiac motion. We theoretically show
that by such a control-based intervention the data acquisition process can be optimized for cardiac CT in the cases of periodic
and quasiperiodic cardiac motions. Specifically, we formulate the corresponding coordination/control schemes for either exact or
approximate matches between the ideal and actual source positions, and report representative simulation results that support our
analytic findings.
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1. INTRODUCTION

Cardiovascular disease is the number one killer in the West-
ern world. It is responsible for 1 of every 2.6 deaths in the
United States. Cardiovascular disease was listed as a primary
or contributing cause on about 1 408 000 death certificates
annually. One in five persons has some form of cardiovas-
cular diseases in the United States, account for 64 400 000
Americans (http://www.americanheart.org/). In 2004, the es-
timated cost of cardiovascular diseases is $368.4 billion.
Needless to say, early detection of diseases is vitally impor-
tant.

Electron-beam CT (EBCT) is a unique mode of medi-
cal X-ray CT, which is for early screening of coronary artery
diseases [1–4]. EBCT is more accurate than relying on some
traditional indicators, for example, high cholesterol levels,
high blood pressure, obesity, diabetes, and so on, for deter-
mining an individual’s risk for heart disease [5–10]. Specifi-
cally, EBCT can quantify calcification in the arteries, which
is a sign of atherosclerosis. An EBCT-based coronary cal-
cium score is, according to the American Heart Association
(http://www.americanheart.org/), of significant predictive
value of heart attacks or need for bypass or angioplasty over
the next year or two. In addition, the American Heart Asso-
ciation has noted that EBCT is also useful in evaluating by-
pass graft potency, intra and congenital cardiac lesions, and

quantifying ventricular muscle mass, chamber volumes, and
systolic and diastolic functions. Hence, it has been recognized
as the gold standard for detecting early heart diseases. In ad-
dition to its remarkable applications for dynamic anatom-
ical imaging of cardiac structures, EBCT is also a powerful
tool for physiological imaging [11]. However, there are three
major limitations with the current EBCT techniques. First,
it is not in cone-beam geometry, and hence it can only ac-
quire a limited number of transverse slices through the heart.
It has become clear that the multislice/cone-beam scanning
is much more advantageous for a good portion or even the
whole volume of the heart to be contained in a cone-beam,
and reconstructed from a rapidly acquired data set for both
high temporal resolution and excellent anatomical consis-
tency. Second, the X-ray spot in EBCT is not sufficiently
intensive to produce the image quality that the mechani-
cal rotation-based scanners can achieve, which compromises
contrast resolution in reconstructed images. Third, the EBCT
scanner is both expensive and monstrous. As such, EBCT is
far less accessible and less cost-effective than the main stream
medical CT scanner that utilizes a mechanically rotated X-ray
source.

Given the limitations of the EBCT, multislice/cone-beam
CT has been growing into a strong competitor of the EBCT.
Research on single-slice cardiac CT was initiated in [12, 13].
Multislice/cone-beam cardiac CT has been actively studied

http://www.americanheart.org/
http://www.americanheart.org/
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since then [14–21]. To obtain usable images of the cardiac or
coronary features, a CT scan must be performed in coordina-
tion with an ECG signal or equivalent. There are two types of
synchronization mechanisms: prospective and retrospective
gating [22]. In the prospective mode, the heart is scanned at
a pre-specified delay relative to a temporal landmark, such as
after the peak of an R wave. Multiple prospectively triggered
acquisitions can reveal different phases of the cardiac motion.
In the retrospective mode, the heart is continuously scanned
while the ECG is simultaneously recorded. Then, images are
reconstructed from a retrospectively selected cardiac phase.
Most of these cardiac imaging methods rely on retrospective
gating to lock into consistent phases of the cardiac motion.
An alternative to the ECG is referred to as the kymogram,
which is based on an analysis on the trajectory of the cen-
ter of the mass of the beating heart [18]. A knowledge-based
cardiac CT algorithm was also developed [21]. Advantages of
the cardiac phase-based approach clearly outperformed the
classic half-scan methods. The manufacturers have now al-
ready switched from half-scan or partial-scan to multisector
reconstruction algorithms for cardiac CT.

There are however two major problems with current
gating-based cardiac CT methods [3, 23–25]. First, these ex-
isting methods are passive in their nature, and require that
the cardiac motion and the X-ray source rotation must be
at favorable relative frequencies; otherwise, the data sectors
to be assembled for a complete data set would span a wide
range of the cardiac status leading to a compromised image
quality, or the data acquisition time would be too long to be
practical (in a most unfavorable case, it could be impossible
to acquire a complete data set) [17, 21]. Second, even in the
favorable cases, retrospectively reconstructed cardiac images
still suffer from substantial motion blurring because in prac-
tice each projection sector covers a projection angular range
of a substantial length. Within such an angular range, the
heart will move appreciably, especially when it is not in a rel-
ative stationary phase. As a benchmark, we routinely achieve
0.3 mm spatial resolution in spiral CT of the temporal bone
where the motion magnitude is much less than that of the
heart [21, 26]. On the other hand, the spatial resolution with
cardiac CT is at best in the millimeter domain.

It is also important to comment that to understand etiol-
ogy and pathogenesis of the human cardiovascular diseases
as well as to develop prevention and treatment strategies,
small animals have become common laboratory models. To
use these animal models fully, the extension of cardiovas-
cular imaging from patients to small animals, such as mice
and rats, is imperative [27]. Because of the small size and
high heart rate of a mouse, high spatial and temporal res-
olutions are required. Currently, an X-ray micro-CT scanner
takes at least 20 seconds to acquire a full data set [27, 28].
Hence, cardiac micro-CT represents a daunting challenge.
The recent small animal micro-CT work performed at Duke
University showed the feasibility of respiratory and cardiac-
gated micro-CT [29], but their system runs very slowly (not
well suited for high throughput [29]), and requires that the
mouse is placed vertically and rotated asynchronously, vio-
lating the natural physiological conditions.

All the above problems demonstrate themselves as
motion-induced image artifacts. To this end, we propose a
new approach, which is radically different from any exist-
ing technique. Our primary insight is that cardiac imaging
can be optimally performed by integrating modern control
and imaging techniques, that is, by adaptively controlling the
imaging device according to the real-time analysis and pre-
diction of an individualized respiratory and cardiac motion
functions, little artifacts would be left. It is expected that the
spatial resolution with the proposed controlled cardiac CT
should be significantly better than that with current cardiac
CT, and eventually made to be comparable to that with tem-
poral bone CT.

Two questions come to the mind immediately. Is control-
ling source rotation velocity of a CT a realistic task and how
to coordinate prediction and control? This paper discusses
the prediction and coordination questions, and sets the the-
oretical foundation for controlled cardiac CT/micro-CT. We
only make a comment on the control hardware. Control
technology is a matured area and a number of advanced con-
trol methods, including robust, adaptive, nonlinear, fuzzy,
and intelligent controls, have been proposed, theoretically
justified and practically tested. One can easily find a preci-
sion control including hardware and software everywhere in
every day life from airplanes, electronics to microsurgery. A
CT with controllable source rotation velocity is completely
feasible which will be demonstrated in the paper.

2. PROBLEM STATEMENTS

To describe coordination of prediction and control in a pre-
cise term, we define a few terminologies.

(i) Let v(t) be the volume or phase of the object, for ex-
ample, a heart, to be scanned at time t. It is a function
of time and could be periodic or nonperiodic.

(ii) Let al = (l−1)/p·2π, l = 1, 2, . . . , p, be p evenly spaced
angles. Evenly spaced is for simplicity only. Non-evenly
spaced angles can be considered similarly.

(iii) Let s(t) represent the angle, at time t, of the CT X-ray
source. It is a function of time and its rotational veloc-
ity is assumed to be controllable.

In this paper, we assume that at any given time, only one
projection can be taken. The results can be easily extended to
multiple source/sensor cases.

First consider a simple case of a periodic v(t) with period
P, that is,

v(t) = v(t + P) ∀t. (1)

Define the volume levels of the object

v
(
ti
)
, i = 1, 2, . . . , q, v(ti) �= v(t j),

0 ≤ t1 ≤ t2 ≤ · · · ≤ tq < P,
(2)

and the corresponding two sequences

Li =
{
v
(
ti
)
, v
(
ti + P

)
, . . . , v

(
ti + (p − 1)P

)
, . . .

}
,

Ti =
{
ti, ti + P, ti + 2P, . . . , ti + (p − 1)P, . . .

}
.

(3)
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Figure 1: Angles and levels.

Here, it is recognized that for the same cardiac volume level,
the structure of the heart could be different in the expanding
and contracting phases. Obviously, v(t) = v(ti) if t ∈ Ti.
Volume levels are the levels where the object is required to be
imaged. Figure 1 shows the interaction of v(ti)’s and al’s for
q = 2 and p = 3.

Now, for the prescribed angles al’s and the levels v(ti)’s,
solving the problem of CT imaging without motion interfer-
ence is equivalent to solving the following problem.

Problem 1. (a) Find a source angle profile s(t) as a function
of time t so that for every angle al, l = 1, . . . , p, at every level
i, i = 1, . . . , q, there exists a time t such that

s(t) = al, v(t) ∈ Li. (4)

In other words, the source angle is al when the volume level
is at v(ti) for all i, l. In short, the source covers all the angles
al, l = 1, . . . , p, exactly at all the levels v(ti), i = 1, . . . , q.

(b) Among all the solutions s(t)’s, find one that requires
the minimum time to cover all the angles for all the levels.

In general, a constant source rotation velocity s(t) = αt,
for some constant α, does not solve Problem 1.

3. SOURCE ROTATION CONTROL FOR EXACT MATCH

3.1. Periodic v(t)

To solve Problem 1, we now consider controlled source ro-
tation velocity s(t). Initially, intuition seems to suggest that
a solution of Problem 1 would need a very fast and compli-
cated profile of s(t). This is however not the case. To this end,
we make two observations.

(i) At each level i, p projections at p different angles al, l =
1, . . . , p, have to be taken.

(ii) Only times that projections can be taken exactly at the
level i are

t ∈ Li =
{
ti, ti + P, . . . , ti + (p − 1)P, . . .

}
. (5)

Because of p angles at each level and the assumption that
at any given time, only one projection can be made, the min-
imum time needed for the level i is ti + (p − 1)P. This leads
to the following lemma.

Lemma 1. The minimum time needed to cover all the angles
at all the levels for any solution s(t) is at least

max
i

(
ti + (p − 1)P

) = tq + (p − 1)P. (6)

This is a lower bound on the minimum time. Any so-
lution s(t) of Problem 1(a) achieving the lower bound (6)
solves Problem 1(b). Base on these observations, we have the
following

Theorem 1. Up to a possible permutation on al, a necessary
and sufficient condition for s(t) to be a solution of Problem 1(b)
is

s
(
ti + (l − 1)P

) = al, i = 1, . . . , q, l = 1, . . . , p. (7)

This is an interpolation problem and many solutions, for
example, polynomial or spline interpolations, exist. To com-
pare the results with the gating method for a constant source
rotation velocity s(t), we give a numerical example. First note
the gating method is to specify the X-ray source rotation ve-
locity and data acquisition timing based on the cardiac rate
so that data acquisition timing is at the consistent heart vol-
ume levels while the X-ray source is distributed in an appro-
priate angular range. Now, let the heart volume be

v(t) = r1 + r2 cos(2πt) (8)

for some constants r1, r2. v(t) is periodic with period P =
1 (sec). Suppose the level that we are interested in is at t1 =
5/8 or

v
(
t1
) = r1 + r2 cos

(

2π

(
5
8

+ m

))

. (9)

Since v(t) is periodic, v(t1 + m) = v(t1) for any integer m.
Now, without loss of generality, let the angles be al = 2π(l −
1)/3, l = 1, 2, 3. To have exact angles al = 2π(l − 1)/3 at the
level v(t1), we must have for some m’s,

s
(
t1 + m

)=α
(

5
8

+ m

)

=2π(l − 1)
3

, mod 2π, l=1, 2, 3.

(10)

It can be shown that there does not exist a constant source
rotation velocity s(t) = αt, so the above three equations can
be satisfied simultaneously. Approximate solutions do exist.
To quantify the error, we define the minimum error between
the given angles and all possible X-ray source angles at the
given heart volume level v(t1) as

e = min
α>0

min
m≥0

max
l

{

α

(
5
8

+ m

)

− 2π(l − 1)
3

}

, mod 2π.

(11)

Table 1, converted to degrees, shows e and the corresponding
optimal α∗ and m∗. For instance, if the error is required to
be no larger than 0.631◦, the best α ∈ (0,∞) is 0.316π that
results in the minimum error 0.631◦ at time t = 82+5/8 (sec).
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Table 1: Minimum errors and the corresponding times.

α∗ 0.316π 0.036π 0.042π

e 0.631◦ 0.45◦ 0.045◦

m∗ + 5/8 82 + 5/8 172 + 5/8 433 + 5/8
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Figure 2: Time needed versus max velocity/acceleration.

Clearly, the more accurate the solution is required, the longer
time the scan has to take.

Now, let the X-ray source velocity be controllable as de-
fined by

s(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

at + bt2 + ct3, 0 ≤ t ≤ 5
8

+ 3k,

2π
3k

(
t − 5

8
− 3k

)
, t ≥ 5

8
+ 3k.

(12)

with

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 6
(

5
8

+ 3k
)

1 2
(

5
8

+ 3k
)

3
(

5
8

+ 3k
)2

(
5
8

+ 3k
) (

5
8

+ 3k
)2 (

5
8

+ 3k
)3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝
a
b
c

⎞

⎟
⎠=

⎛

⎜
⎜
⎜
⎜
⎝

0
2π
3k
2π

⎞

⎟
⎟
⎟
⎟
⎠
.

(13)

It is easily verified that this X-ray source s(t) covers three an-
gles exactly at the required volume level v(5/8 + m) for any
integer k > 0, that is, s(5/8 + 3k) = 0(+2π), s(5/8 + 4k) =
2 ∗ pi/3(+2π), and s(5/8 + 5k) = 4 ∗ π/3(+2π). k balances
the time required and the maximum velocity and accelera-
tion. A small k gives rise to a small maximum velocity and
acceleration but at the same time a longer time to cover three
angles. A large k results in a short time with a price of a large

a1,1

a1,2 a1,3

a2,1

a2,2

a2,3

At v(t1) At v(t2)

Figure 3: Angles and levels for Problem 2.

maximum velocity and acceleration. Figure 2 shows the rela-
tionship between the time needed to cover three angles ex-
actly and the corresponding maximum velocity and acceler-
ation as a function of k. It is important to note that for a
variable source rotation velocity s(t) to work, the maximum
velocity and acceleration do not have to be large. Whether or
not there is control of the source rotation velocity of s(t) is
vital.

If the angle accuracy is within 0.05◦, the time required
as shown in Table 1 is (433 + 5/8) (sec) for the best con-
stant source rotation velocity s(t). By using a variable source
rotation velocity s(t) as defined above, say k = 5, it takes
(25+5/8) (sec) with the maximum velocity 0.42 (rad/sec) and
the maximum acceleration 0.0064 (rad/sec2). This kind of ve-
locity and acceleration imposes no problem to hardware at all
for most commercially available servo systems. For instance,
suppose the X-ray source and sensor weigh 100 kg and the
gantry diameter is 1m, an acceleration of 0.0064 (rad/sec2)
results in a torque 0.16 Nm. The Panasonic servo motor se-
ries A, E, and S and other commercially available products
can easily meet this kind of requirements.

Clearly, a constant source rotation velocity s(t) is not a
solution and this adds complexity to the control of s(t). Thus,
it is interesting to note that the following modified Problem 2
allows an constant but not prefixed velocity solution.

Problem 2. (a) Find a source angle profile s(t) as a function
of time t so that for every i at every l, there exists a corre-
sponding time t such that

s(t) = ai,l = al + θi, v(t) ∈ Li, (14)

where θi is independent of l. The interpretation is that at any
level i, projections have to be taken at p evenly spaced angles
ai,l = al + θi = ((l − 1)/p)2π + θi, l = 1, . . . , p, with the same
offset angle θi. However, the offset angle θi at level i may not
be the same as the offset angle θj at level j.

(b) Among all the solutions s(t)’s, find one that requires
the minimum time.

The difference between Problems 1 and 2 is that Problem
1 requires that at any level v(ti), samples are taken exactly
at p evenly spaced angles al’s while Problem 2 does not re-
quire that p evenly spaced angles at level i are the same as
that at level j, as illustrated in Figure 3. This makes sense for
practical applications where an accurate image of level v(ti)
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is reconstructed as long as p is large enough independent of
whether the same angles are used for level j �= i. Surprisingly,
the seeming complicated Problem 2 is solved by a constant
source rotation velocity s(t).

Theorem 2. (1) Let m ≥ 0 and k > 0 be any integers and
consider

s(t) =
(

2π
p

+ 2mπ
)

t

Pk
= 2π

(p/(1 + mp))Pk
t = 2π

Pc
t,

(15)

where Pc = (p/(1 + mp))Pk is the period of s(t). Then,

t = ti + (l − 1)Pk =⇒ s(t) = ai,l = al + θi. (16)

(2) The X-ray source s(t) defined above with k = 1 solves
Problem 2. In other words, s(t) covers the angles ai,l’s exactly at
precise volume levels v(ti) with the minimum time.

Proof. Let i ∈ [1, . . . , q] and l ∈ [1, . . . , p]. At time t = ti +
(l − 1)Pk,

s(t) =
(

2π
p

+ 2mπ

)(
ti

(Pk)
+ (l − 1)

)

= l − 1
p

2π +

(
2π
p

+ 2mπ

)
ti

(Pk)
︸ ︷︷ ︸

θi

+2πm(l − 1)

= ai,l = al + θi

(17)

because 2πm(l − 1) is an integer multiple of 2π. Thus, s(t)
covers all the angles ai,l at all the levels i. Moreover, with k =
1, it covers all the angles at all the levels with the minimum
time tq + (p − 1)P. This completes the proof.

Remark 1. (1) The reasons why the X-ray source rotation s(t)
of (15) can cover all the angles for all the levels are the follow-
ing. (a) It is constant but selected by the user depending on
the period of the heart volume v(t) and not refixed. (b) Dif-
ferent offset angles θi’s are allowed for different levels. This
is key difference between s(t) of (15) and methods currently
available in the literature.

(2) Clearly, the minimum time is achieved with the min-
imum k. On the other hand, the small values of k imply
high velocities of s(t). There is a tradeoff between the min-
imum time and the maximum velocity. The balance can be
achieved by adjusting k. Note that the velocity of s(t) is
2π/(p/(1 + mp))Pk and moreover the acceleration of s(t) =
(2π/Pc)t is always zero for any m, k.

(3) If the imaging device has multiple sources/detectors,
say n sources/detectors, the minimum time could be reduced
by a factor of n.

(4) The optimal s(t) does not have to be fast. For instance,
let m = 0 and p = 360, that is, there are 360 evenly spaced
angles. Then,

Pc = 360 kP. (18)

The CT rotates 360 k times slower than the motion of the
object. In general, Pc = p kP if m = 0. For instance, a heart
rate is 60 cycles per minute and the CT could rotate as slow as
1 cycle in every 6 minutes when k = 1 and even slower when
k > 1.

(5) Though s(t) does not have to be fast, it has to be ac-
curate. For instance, let k = 1 and write a constant source
rotation velocity s(t) as, for some d,

s(t) =
(
d

2π
p

+ 2mπ
)

t

Pk
. (19)

At k = 1 and t = ti + (l − 1)P,

s(t) =
(
d

2π
p

+ 2mπ
)(

ti
P

+ (l − 1)

)

= d · l − 1
p

2π + 2mπti/P︸ ︷︷ ︸
θi

+2mπ(l − 1)

= d · l − 1
p

2π + θi,

(20)

d determines the increment. If s(t) is not exactly a constant

d = d̄ + Δd(t), (21)

where Δd(t) indicates variation of the velocity in s(t), then,
at time t = ti + (l − 1)P,

s(t) =
(
d

2π
p

+ 2mπ
)(

ti
P

+ (l − 1)

)

= d̄ · l − 1
p

2π + θi + Δd
(
ti + (l − 1)P

) · l − 1
p

2π
︸ ︷︷ ︸

error caused by Δd

.

(22)

Obviously, the last term controls the accuracy.
(6) The maximum difference between θi and θj for any k

and m is

max
i, j

∣
∣θi − θj

∣
∣ ≤ 360

2p
. (23)

Now, consider the example (8) again. Suppose three heart
volume leaves v(t1) = v(0), v(t2) = v(1/2), and v(t3) =
v(5/8) are interested and at each level, three angles al =
(l − 1)2π/3, l = 1, 2, 3, are required. We can simply set
s(t) = (2π/Pc)t. Since P = 1 and p = 3, with m = 0 and
k = 1, we have s(t) = (2π/3)t and

θ1 = 0, θ2 = 1.0472, θ3 = 1.3090 (24)
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(d)

v(t2), a2,2, t = 1.5 ==>

(e)

v(t3), a3,2, t = 1.625 ==>

(f)

v(t1), a1,3, t = 2 ==>

(g)

v(t2), a2,3, t = 2.5 ==>

(h)

v(t3), a3,3, t = 2.625 ==>

(i)

Figure 4: The sequence that s(t) covers ai,l .

that result in

a1,l = (l − 1)2π
3

+ θ1,

a2,l = (l − 1)2π
3

+ θ2,

a3,l = (l − 1)2π
3

+ θ3.

(25)

This s(t) covers three angles exactly at precise levels as shown
in Figure 4. Also, note that the heart volume period is 1 (sec)
and the X-ray source rotation period is 3 (sec), three times
slower than the heart rate but still able to cover everything
exactly with the minimum time.

Theorems 1 and 2 show that artifacts can be completely
eliminated if the motion is periodic and the source rotation
velocity of s(t) is controllable. For a periodic motion, deter-
mination of the period is trivial. It can be estimated and pre-
dicted based on the analysis of the first a few cycles of ECG
signals.

3.2. Quasiperiodic v(t)

To deal with a nonperiodic v(t), let us recall the properties of
a periodic function. A function v(t) is periodic with period
P if and only if it is completely determined by the first period
t ∈ [0,P) and v(t), t ∈ [(l − 1)P, lP), is a translated version

of v(t), t ∈ [0,P). Mathematically, for t ∈ [(l − 1)P, lP),
l = 1, 2, . . . ,

v(t)
∣
∣
t∈[(l−1)P,lP)

.= v(t − (l − 1)P)
∣
∣
t−(l−1)P∈[0,P). (26)

In CT imaging, we assume that the dominant motion is car-
diac and respiratory movement. Then, we observe that such
motion can be nonperiodic, that is, the time that takes to fin-
ish one cycle may be different from the time to finish another
cycle. Independent of time, the cycle however always starts at
the minimum volume level extending to the maximum vol-
ume level, and then ends at the minimum volume level. Such
a motion can be characterized by a class of functions that we
call quasiperiodic. Let

0 = P0 < P1 < P2 < · · ·Pl < · · · (27)

be a monotone increasing sequence. The interval Pl+1 − Pl is
the lth “period” of v(t), that is, the time v(t) finishes a cy-
cle from the minimum volume to the maximum volume and
then back to the minimum volume level. In general,

Pl+1 − Pl �= Pl − Pl−1, (28)

v(t) may be completely determined by its first “period”
v(t) = v1(t), t ∈ [0,P1). More precisely, let

αl = Pl − Pl−1

P1 − P0
. (29)
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Figure 5: A quasiperiodic function.

Then, for t ∈ [(l − 1)P, lP),

v(t)
∣
∣
t∈[(l−1)P,lP)

.= v1

(
P1 − P0

Pl − Pl−1

(
t − Pl−1

))

= v1

(
1
αl

(
t − Pl−1

))
∣
∣
∣∣

(1/αl)(t−Pl−1)∈[0,P1)
.

(30)

The intuition is that v(t) is periodic. However, in each “pe-
riod” [Pl−1,Pl), v(t) is an expanded or compressed version
of the first “period” v1(t), t ∈ [0,P1). We give an example as
shown in Figure 5:

v(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(t), 0 ≤ t < 2π,

sin
(
0.6(t − 2π)

)
, 2π ≤ t < 2π +

2π
0.6

,

sin

(

0.8

(

t − 2π − 2π
0.6

))

, 2π +
2π
0.6

≤ t < 2π,

+
2π
0.6

+
2π
0.9

...
...

(31)

Because v(t) is no longer periodic, the definition of the
volume level has to be modified. For the first period v(t) =
v1(t), t ∈ [0,P1), the levels are well defined:

v1
(
ti
)
, i = 1, . . . , q, 0≤ t1 < t2 <· · ·< tq <P1,

v1
(
ti
) �= v1

(
t j
)
.

(32)

For the lth “period,” we note Pl−1 ≤ αlti + Pl−1 < Pl and at
t = αlti + Pl−1,

v(t) = v1

(
1
αl

(
t − Pl−1

)) = v1
(
ti
)
, i = 1, . . . , q. (33)

Thus, the ith volume level can be defined as

Li =
{
v
(
α1ti + P0

)
, v
(
α2ti + P1

)
, . . . , v

(
αpti + Pp−1

) · · · }

= {v(ti
)
, v
(
α2ti + P1

)
, . . . , v

(
αpti + Pp−1

) · · · }
(34)

or in time domain

Ti =
{
α1ti + P0,α2ti + P1, . . . ,αpti + Pp−1 · · ·

}

= {ti,α2ti + P1, . . . ,αpti + Pp−1 · · ·
}
.

(35)

Problem 3 (for quasiperiodic v(t)’s). (a) Find a source angle
profile s(t) as a function of time t that

s(αlti + Pl−1) = ai,l, i = 1, . . . , q, l = 1, . . . , p, (36)

where ai,l was defined before.
(b) Among all the solutions s(t)’s, find one that requires

the minimum time.

Theorem 3. For each [Pl−1,Pl), let

s(t) = β0l + β1l

[
1
αl

(
t − Pl−1

)]
+ β2l

[
1
αl

(
t − Pl−1

)]2

+ · · · + βql

[
1
αl

(
t − Pl−1

)]q
, t ∈ [Pl−1,Pl),

(37)

where

β0l + β1lti + · · · + βqlt
q
i = ai,l, l = 1, . . . , p, i = 1, . . . , q,

(38)

or equivalently

⎛

⎜
⎜
⎜
⎝

1 t1 · · · t
q
1

...
...

. . .
...

1 tq · · · t
q
q

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

β0l

...

βql

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

a1,l

...

aq,l

⎞

⎟
⎟
⎟
⎠

, l = 1, . . . , p. (39)

Then, s(t) of (37) solves Problem 3(b).

Proof. Again, at t = αlti + Pl−1,

v(t) = v1

(
1
αl

(
t − Pl−1

)) = v1
(
ti
)
, i = 1, . . . , q,

s(t) = β0l + β1lti + · · · + · · · + βqlt
q
i

= ai,l, i = 1, . . . , q, l = 1, . . . , p.

(40)

Therefore, s(t) of (37) covers all the angles ai,l at all the levels
v(αlti + Pl−1). The proof of the minimum time is similar as
before.

Remark 2. (1) Unlike the periodic case, any constant s(t) fails
to cover all angles ai,l’s at all levels with the minimum time,
even with slack variables θi’s added.
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(2) The idea of s(t) in (37) is again to interpolate ai,l at
t = αlti + Pl−1. Thus, the solution of s(t) is not unique and
any other form of s(t) that interpolates ai,l at t = αlti +Pl−1 is
also a solution.

(3) The source rotation velocity of s(t) in t ∈ [Pl,Pl−1) is

max
∣
∣s′(t)

∣
∣ =

∣
∣∣
∣
∣
β1l

αl
+ 2

β2l

αl

((
Pl − Pl−1

)

αl

)

+ · · ·+

+ q
βql
αl

((
Pl − Pl−1

)

αl

)q−1∣∣∣
∣
∣

≤
∣∣
∣
∣
β1l

αl

∣∣
∣
∣ + 2

∣∣
∣
∣
β2l

αl

∣∣
∣
∣(P1 − P0) + · · ·+

+ q
∣
∣∣
∣
βql
αl

∣
∣∣
∣
(
P1 − P0

)q−1
.

(41)

In general if the “frequency” of v(t) is high, that is, the “pe-
riod” Pl+1 − Pl is small. This implies that the velocity s′(t)
is small, provided that |β1l/αl| is not large. In the case that
the maximum velocity |s′(t)| is of concern, interpolation
can be done for both s(αlti + Pl−1) and the constraints on
|s′(αlti + Pl−1)|. There exists a large volume of works in the
literature in this direction, referred to as Hermite- or Fejer-
type interpolations.

(4) s(t) of Problem 3 may have discontinuities at Pl’s. If
these discontinuities are of concern, spline interpolations can
be used. The result is a smooth piecewise polynomial at a
price of increased computational complexity.

Control Problem 3 is solved in Theorem 3 for quasiperi-
odic v(t)’s provided the period Pl − Pl−1 is available. Esti-
mation of the period Pl − Pl−1 is rather straightforward for
quasiperiodic functions. v(t) is quasiperiodic, so the form
of v(t) can be determined from its first a few cycles. Then,
in theory, the period can be calculated by observing some
points of v(t). To be precise, take v(t) of (31) as an exam-
ple. Suppose the form of v(t) has been determined from
its first cycle and we want to find the period P2 − P1. Note
v(t) = sin(c(t − 2π)), t ∈ (P1,P2) for some unknown con-
stant c. If c is determined, the period P2 − P1 = 2π/c. To es-
timate c, what we need is one observation v(t̄), t̄ ∈ (P1,P2),
which leads to

v(t̄) = sin
(
c(t̄ − 2π)

) =⇒ c = 1
t̄ − 2π

arg sin
(
v(t̄)

)
. (42)

In implementation, because of noises, it is preferred to have
several observations and the estimate c takes the form of the
average of individual estimates.

To illustrate the idea, we consider an example:

v(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1− 0.5 cos(2∗ π ∗ t), t ∈ [0, 1),

1− 0.5 cos
(

2∗ π ∗ t

0.8

)
, t ∈ [1, 1.8),

1− 0.5 cos
(

2∗ π ∗ t

0.5

)
, t ∈ [1.8, 2.3).

(43)
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Figure 6: Controlled X-ray source for a quasiperiodic function.

This is no longer periodic but quasiperiodic. Suppose three
volume levels v(t) = 0.64, 1, 1.5 and three angles al = (l −
1) ∗ 2 ∗ π/3, l = 1, 2, 3, are interested. Figure 6 shows the
computer simulation results based on the polynomial inter-
polation and the estimates of the unknown periods. Clearly,
three angles at precise three volume levels are imaged.

The advantage of the approach is that no other signal is
needed. If other signals, for example, ECG signals, are avail-
able, the period can also be calculated from the gating of ECG
signals.

4. SOURCE ROTATION CONTROL FOR
NONEXACT MATCH

In practice, the minimum time to cover all the angles at all
the levels can be important. In the previous discussions, the
exact level v(ti) and exact angle al have to be matched to take
images. This is referred to as the exact match and in this sit-
uation, the minimum time needed for any solution s(t) to
cover all the angles at all the levels is αptq+Pp−1. From a prac-
tical point of view, the exact match is not necessary as long as
errors are small enough. We discuss the nonexact match in
both angle and level. By nonexact matches, we mean that,
at each level i, images do not have to be taken exactly at
v(αlti + Pl−1) but in a small neighborhood of v(αlti + Pl−1).
Similarly, angle al does not have to be exact but within a small
neighborhood.

To this end, let, at level i, the error bound δ > 0 and the
corresponding times ti,l ≤ ti ≤ t̄i,l be given that satisfy

max
t∈[αlti,l+Pl−1,αl t̄i,l+Pl−1]

∣
∣v(t)− v

(
αlti + Pl−1

)∣∣ ≤ δ. (44)

Further define

Δi,l =
[

min
t∈[αlti,l+Pl−1,αl t̄i,l+Pl−1]

v(t), max
t∈[αlti,l+Pl−1,αl t̄i,l+Pl−1]

v(t)
]

,

τi,l =
[
αlti,l + Pl−1,αlt̄i,l + Pl−1

]
.

(45)
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The neighborhood of v(αlti+Pl−1) is then defined as Δi,l with
the corresponding time interval τi,l. Clearly,

v
(
αlti + Pl−1

) ∈ Δi,l, max
t∈τi,l

∣
∣v(t)− v

(
αlti + Pl−1

)∣∣ ≤ δ,

(46)
and τi,l is the time interval in which the images for any angle
al, l = 1, . . . , p, can be taken at the level i. By the same token,
the volume level i in a nonexact match case can be defined as

Li =
{
Δi,1,Δi,2, . . . ,Δi,p, . . .

}
(47)

or in time domain

Ti =
{
τi,1, τi,2, . . . , τi,p, . . .

}
. (48)

In the nonexact match case, elements of Li and Ti and inter-
vals not points. For simplicity, we assume τi,l and τj,k do not
overlap for i �= j and/or l �= k.

Now, the problem can be modified as to find a source
angle profile s(t) with the minimum time satisfying

∣∣s(t)− al
∣∣ ≤ ε, l = 1, . . . , p,

t ∈ τi,k, for some k,
(49)

where ε > 0 is the given angle error bound. If the veloc-
ity and acceleration of s(t) are of concern, the constraints
|s′(t)| ≤ M1, |s′′(t)| ≤ M2 can be added in optimization,
where M1 and M2 reflect the constraints of the physically
achievable velocity and acceleration of the source angle s(t).

5. CONCLUDING REMARKS

Our primary insight is that cardiac imaging can be optimally
performed by integrating modern control and imaging tech-
niques, that is, by adaptively controlling the imaging device
according to the real-time analysis and prediction of an in-
dividualized respiratory and cardiac motion functions. The
work intends to synchronize the X-ray source rotation and
cardiac CT for unprecedented performance. Clinically, our
work may induce significant advancement of the field of car-
diology.

Although the studies have been focused on the cardiac
motion, our methodology can be in principles applied to
compensate for either the respiratory motion effect or the
combined effect due to both cardiac and respiratory mo-
tions. Also, with the controlled data acquisition process the
X-ray source positions will be distributed quite randomly
along the scanning circle. Therefore, new CT image recon-
struction methods should be developed for optimal image
quality in this context. Some Feldkamp-type/Katsevich-type
algorithms can be developed for that purpose, similarly to
what reported in the literature [30–34]. Further efforts are
needed to formulate such integrated control strategies and

associated image reconstruction methods, and evaluate their
performance systematically.

It should be underlined that there is no difficulty in im-
plementation of the proposed control schemes in terms of
hardware limitations. The hardware requirements can be eas-
ily met by commercially available products, for instance, the
Panasonic servo motor and driver series. The fact is that the
control theory and techniques have been well developed over
the past decades, but the problem or the opportunity is that
control and imaging techniques have never been combined
before for cardiac CT.

In conclusion, we have proposed an innovative idea and
specific schemes to eliminate CT image artifacts due to car-
diac and respiratory motions, and demonstrated the feasibil-
ity and importance of controlled cardiac CT. We feel that the
idea reported here may open a new frontier of biomedical
imaging. We will continue to work along this direction.
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