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For at least 250 years physicians have recognized that
the loading and movement of musculoskeletal tissues
caused by physical activity alters these tissues and the
structures they form, and may affect healing; yet the
appropriate role of activity in the treatment of injuries has
been a subject of controversy. Some of the most experi-
enced and knowledgeable physicians and students of the
musculoskeletal system taught that early controlled activ-
ity promotes healing and accelerates restoration of func-
tion, while others advanced the opposite view. The oppo-
nents of treatment of injuries with activity argued that
absolute rest allows healing to proceed at the maximum
pace, and that early use of injured musculoskeletal tissues
increases inflammation and disrupts repair tissue, thereby
delaying or preventing healing. A series of investigations
conducted over the last several decades helped resolve
this controversy thereby improving treatment of muscu-
loskeletal injuries and defining an important area for future
research.
The purpose of this paper is to clarify the roles of

activity and rest in the treatment of musculoskeletal
injuries. It reviews the development of the concepts of
activity and rest as treatments of musculoskeletal injuries,
and then compares the effects of activity, that is, loading
and motion of tissues, and active muscle contraction, with
the effects of rest. In particular it summarizes recent
studies of cell and tissue responses to repetitive use, the
specific responses of normal bone, dense fibrous tissues,
cartilage and muscle to increased and decreased use, and
the effects of activity on bone, soft tissue and joint healing.

ACTIVITY VS. REST
Two of the most widely recognized contributors to

orthopaedics, Nicolas Andre and Julius Wolff, were among
those who argued that activity benefited normal tissues. In
his thesis, first presented in 1723, Nicholas Andre (1659-
1742) noted that moderate exercise strengthens and
shapes the musculoskeletal tissues. He advocated "action"
as a more important treatment than "rest." In the latter
part of the 19th century, Julius Wolff (1836-1902) de-
scribed the ability of bone to adapt to changes in repetitive
loading, and stressed that the adaptation of bone to
changes in use occurred "according to mathematical law."
At -approximately the same time, a French Orthopae-
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dist, Just Lucas-Championniere (1843-1913) [Figure 1],
went beyond the concepts of Andre and Wolff to argue that
activity benefited injured tissues. He taught that move-
ment accelerated healing, and that enforced rest injured
cartilage, ligaments and muscles. He also observed that
slight movement at a fracture site promoted healing rather
than retarded it, and advocated massage treatment of
fractures and joint injuries.

Given the observations and recommendations of Lucas-
Championniere it is reasonable to ask why physicians have
not included early controlled activity as a critical part of the
treatment of musculoskeletal injuries for at least 100
years, and why more effort has not been directed towards
investigating the effects of activity on healing of the
musculoskeletal tissues and refining the clinical application
of controlled activity to the treatment of injuries. The
answers to these questions lie to some extent in the
widely accepted teachings of a talented and influential
group of investigators and physicians from Great Britain.
In the 1700sJohn Hunter (1728-1793) prescribed "rest" as
the routine treatment of "disablements" of the human
motor system, a practice that John Hilton (1807-1878)
strongly supported in the 1800s. Hilton considered long
continuous rest the most powerful treatment a surgeon

Figure 1. Just Lucas-Championniere (1843-1913), French Ortho-
paedist who advocated treatment of musculoskeletal injuries with
activity and taught that enforced rest damaged normal tissues.
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could bring to the aid of "disordered tissues," and noted
that he had never seen long-continued rest produce harm.
Despite the fame and influence of Hunter and Hilton, Hugh
Owen Thomas (1834-1878) [Figure 2], during his long and
successful career in Liverpool, became the strongest and
most effective advocate of rest as the optimal treatment of
musculoskeletal injuries. He believed that the only way a
surgeon could promote healing was by giving an injured
part rest, and that an overdose of rest was impossible. He
taught that rest must be "enforced, uninterrupted, and
prolonged," and observed that forced early motion stimu-
lated inflammation that led to adhesions. The contrasting
teachings of Hugh Owen Thomas and Just Lucas-
Championniere show why clinical experience alone cannot
form a sound foundation for a comprehensive approach to
treatment of injuries or diseases. Both individuals were
observant, experienced clinicians, but because they had
limited information concerning the structure, composition
and function of the musculoskeletal tissues and the healing
of these tissues, they could not study the responses of the
tissues to rest or activity, and they had limited ability to

Figure 2. Hugh Owen Thomas (1834-1891), Orthopaedist from
Liverpool who taught that musculoskeletal injuries should be
treated by prolonged enforced rest.

measure the outcomes of treatment and conduct con-
trolled clinical investigations. For these reasons, clarifica-
tion of the role of activity vs. rest in the treatment of
injuries awaited advances in the studies of the musculo-
skeletal tissues.

MECHANISMS OF TISSUE RESPONSE TO
REPETITIVE LOADING AND MOTION

Most investigations of the effects of repetitive loading
and motion focus on isolated tissues and cells, yet activity
also has transient and persistent systemic effects including
alterations in cardiovascular function, tissue perfusion,
metabolism, and hormonal balance30, 65, 75, 89, 101, 127, 145
Although the influence of these systemic changes on local
tissue responses to repetitive loading has not been exten-
sively studied, they may influence the local response of
tissues to repetitive use, possibly by altering the sensitiv-
ity of the tissues to cyclical loads. For this reason
predicting the effects of activity on tissues in vivo from
studies of the effects of loading and motion on cells and
tissues in vitro must be done with caution. Nonetheless in
vitro investigations provide insight into the mechanisms of
the tissue responses to activity.

Recent studies of local effects of repetitive loading have
identified a variety of cell and tissue responses. They have
shown that repetitive loading of various types and inten-
sities influences cell shape and cell synthetic and prolifer-
ative functions13' 19, 22, 39, 40, 81, 114, 129 Furthermo
they show that loading alters the alignment of the matrix
macromolecules57 99, 12, that the matrix transmits loads to
cells, and that cells can realign the matrix macromolecules
in response to these loads58' . 9. The response of the
tissues to loading varies among tissues and may vary with
age29. 120. 149, that is, tissues from skeletally immature
individuals may be more responsive to increased use than
tissues from older individuals.
The local mechanism of bone, tendon, ligament and

cartilage response to loading consists of cells detecting
tissue strains and responding by modifying the tissue.
Experimental studies show that cells may detect tissue
strain either directly through deformation of the cells, or
indirectly through alterations in the matrix due to defor-
mation of the tissue. Cyclic stretching or compression of
mesenchymal cells can align intracellular microfilaments
along the axis of tension, change cell shape7' 83 and
alter synthesis of DNA, matrix molecules and
prostaglandins19' 56, 60, 61, 90, 103, 110, 122, 129, 161 Deforma-
tion of the matrix can alter matrix macromolecular orga-
nization, fluid flow, streaming currents, pressure gradi-
ents or electrical fields. These matrix alterations can
influence cell function56' 59, 96, 103. By altering matrix
macromolecular organization, matrix deformation may
provide tissues with a mechanism of recording and aver-
aging transient strains thereby giving the cells a more
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sustained and coherent stimulus'28. Loading of a tissue
also can affect local vascular perfusion and diffusion
through the matrix thereby altering the flow of nutrients
and metabolites'5.
The local mechanisms of skeletal muscle response to

changes in activity differ from those of connective tissues:
dense fibrous tissue, bone and cartilage20' 33, 44, 133. The
connective tissues consist primarily of mesenchymal cells
and an extracellular matrix, while skeletal muscle consists
of two components: an elaborate extracellular matrix
synthesized and maintained by connective tissue cells like
those found in fibrous tissues, and innervated muscle cells
or myofibers24. The connective tissue component of skel-
etal muscle has a critical structural role in maintaining the
tissue organization and stability33. In addition it contrib-
utes to the passive mechanical properties of muscle
including resisting excessive elongation of the
myofibersl6. Both myofibers and muscle connective tis-
sue cells respond to changes in muscle activity and injury.
Presumably, the muscle connective tissue cells, like the
cells in dense fibrous tissues, respond to changes in tissue
loading and motion with alterations in cell proliferation and
synthetic activity that change the organization, composi-
tion and mechanical properties of the extracellular matrix.
Unlike the connective tissue cells, myofibers respond to
persistent changes in the activity primarily with changes in
cell structure, volume and function. The mechanisms of
their response to activity remain unclear, but it appears
that they respond to both stretching and repetitive active
contraction.

RESPONSES OF SPECIFIC TISSUES
Studies of individual tissues show that maintenance of

normal bone, dense fibrous tissue, cartilage and muscle
require a minimal level of repetitive use. This minimal
level varies among tissues and individuals, but activity
below this level adversely alters the tissues and can
eventually cause irreversible changes. The intensity and
frequency of activity above the minimal level necessary to
cause an adaptive tissue response also varies among
tissues and individuals. In general the tissues of younger
individuals appear to be more responsive. Bone and
skeletal muscle have more dramatic and obvious re-
sponses to increased and decreased use, but the dense
fibrous tissues and cartilage can also respond to changes in
level of activity. Activity also influences healing of these
tissues, but the effects vary considerably and in general
remain less well understood than the effects of activity on
normal tissues.

Bone
Decreased Use of Normal Bone
Immobilizing a limb in a cast or placing a patient in

skeletal traction for a prolonged period of time causes

bone resorption to exceed bone formation'39. Osteoclasts
resorb trabecular and cortical bone, and osteoblasts fail to
replace enough bone to maintain the mass and strength of
the tissue. Decreased activity may not produce readily
detectable changes in bone volume, shape and strength,
but prolonged immobilization of a limb will cause radio-
graphic changes including decreased density of cancellous
bone, loss of trabeculae, thinning and increased porosity of
cortical bone. Regular contraction of the muscles of an
immobilized limb may decrease the loss of bone3'; but
without weight bearing, bone mass declines to less than
half the normal value after 12 weeks82"139. These alter-
ations decrease bone strength and increase the probability
of fracture. Regaining bone density after prolonged de-
creased use, even with vigorous activity, can require
many months, even in children. In some individuals,
especially older people, bone density may never return to
its previous level.
Increased Use of Normal Bone
Persistent increases in cyclic loading of bone cause bone

formation to exceed bone removal and can result in
dramatic increases in bone density, volume and strength.
In 1864, Sedillot found that removing the tibial diaphysis in
dogs caused the fibula to increase in size sufficiently to
compensate for the loss of the tibia'00. A more recent
study of pigs provided an equally dramatic example of the
ability of bone to adapt to increased loads55. Resection of
the ulnar diaphysis increased the compressive strain on
the radius by two to two and one-half times its normal
value. This led to a rapid increase in the diameter of the
radius such that within three months the cross sectional
bone area of the radius approached the value for the radius
and ulna combined, and the compressive strain in the
radius had decreased to nearly the normal value. Repeti-
tive loading in vigorous physical activities can produce
similar, although less impressive, effects34 36 37, 88 102
For example, professional tennis players develop in-
creased bone density, cross sectional area and diaphyseal
diameter in the humerus of their dominant arm36' 71.
Use of Injured Bone
Although fractures heal in rigidly immobilized unloaded

limbs, optimal fracture healing appears to require at least
some cyclical loading of the repair tissue. Loading a
fracture site stimulates bone formation while decreased
loading slows fracture healing'06' 126. Limb denervation
also can retard fracture healing, possibly by diminishing
loading of the fracture or by inhibiting the effect of growth
factors that require activation by neurotransmitters"7. In
contrast, exercise can increase the rate of repair64,
possibly through loading of the fracture. Experimental
work, in particular the investigations of Kenwright, Good-
ship and colleagues, shows that early or almost immediate
loading and movement, including induced micromotion at
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long bone fracture sites, may promote fracture healinge4
76-79, observations that support Lucas-Championniere's
teachings. Clinical studies also show that early or even
immediate controlled loading of long bone fractures does
not impair, and may promote, fracture healinge 97 125.

Dense Fibrous Tissues (Tendon, Ligament and
Joint Capsule)
Decreased Use of Normal Dense Fibrous Tissue
Decreased loading of dense fibrous tissues that normally

resist tension (tendon, ligament and joint capsule) alters
matrix turnover so that with time, matrix degradation
exceeds formation, the newly synthesized matrix is less
well organized, and tissue stiffness and strength decline.
Specifically prolonged limb immobilization decreases the
glycosaminoglycan and water content and the degree of
orientation of the matrix collagen fibrils, and may increase
collagen cross linking and decrease collagen mass of the

1-4, 6, 9-11, 148, 154, 156, 160 The duradense fibrous tissues .Tedr
tion of decreased loading necessary to produce significant
changes probably varies among tissues and individuals, but
most studies show marked alterations of the tissues after
six weeks of immobilization. However, in one study of
rabbit patellar tendons, only three weeks of stress shield-
ing decreased tendon tensile strength to nine percent of
the control value160.
The degree of decreased loading and motion necessary

to cause these changes also remains uncertain, but one
study indicates that dense fibrous tissues may be less
sensitive to decreased activity than bone. Allowing active
joint motion in dogs while preventing weight bearing for
eight weeks decreased bone density, but did not cause
resorption or weakening of the knee ligaments82. These
results suggest that maintenance of bone structure and
mechanical properties requires weight bearing, but loading
due to active joint motion may be sufficient to maintain the
composition and mechanical properties of the periarticular
dense fibrous tissues at least for two months.

Decreased loading also alters ligament, and presumably
tendon and capsular insertions into bone26' 105, 152, 154. The
extent and severity of the alterations depend to some
extent on the type of insertion. In some tendon, ligament,
or joint capsule insertions (called direct insertions) most
collagen fibrils pass directly into the bone matrix through a
series of well defined zones that include the substance of
the tendon, ligament or joint capsule, a zone of fibrocar-
tilage, a zone of calcified cartilage and the bone152. In other
insertions (called indirect or periosteal insertions), many
of the collagen fibrils join the periosteum and relatively few
fibrils pass obliquely into the bone matrix152. The cruciate
ligament tibial and femoral insertions provide examples of
direct insertions, and the tibial insertion of the medial
collateral ligament provides an example of a periosteal
insertion. Decreased ligament loading due to immobiliza-

tion usually produces more extensive change in the peri-
osteal type of insertion. In these types of insertions,
subperiosteal osteoclasts resorb much of the bony inser-
tion of ligaments subjected to prolonged immobilization.
This leaves the ligament attached primarily to periosteum.
In the direct type of insertion, resorption occurs around
the insertion but relatively little resorptive activity occurs
within the insertion.
The cruciate and medial collateral ligaments of the knee

provide examples of the difference in the response of
direct and indirect insertions to immobilization. Prolonged
immobilization causes bone resorption around the periph-
ery of the cruciate ligament insertions, but only limited
resorptive activity beneath the insertion site and in the
zone of mineralized fibrocartilage'04 105. In contXast,
prolonged immobilization causes significant diffuse resorp-
tion of the bony part of tibial insertion of the medial
collateral ligament85' 152, 154, These changes, particularly
those in the periosteal type insertions, weaken the bone
ligament junction significantly within six to eight weeks.

Following resumption of normal joint use, cells in the
insertion site begin to form new bone and restore the
structure and mechanical properties of the insertions
toward normal, but complete restoration of the insertion
site structure and strength following six to eight weeks
of immobilization requires a longer period of active
loading9' 159. Six to eight weeks of activity following
immobilization-of dog knees left ligament insertions signif-
icantly weaker than normal insertions, and the available
evidence suggests that complete restoration of normal
ligament insertion structure and mechanical properties
requires up to one year of activity85, 105, 154 Muscle
contractions alone probably will not prevent the changes
due to decreased ligament loading since in one experiment
isotonic exercises during immobilization did not prevent

105weakening of ligament insertions
Increased Use of Normal Dense Fibrous Tissues
Experimental studies show that repetitive exercise can

increase the strength, size, matrix organization and pos-
sibly collagen content of tendons, ligaments and their
insertions into bone1' 9, 25, 26, 96, 99, 135-137, 141-144, 153, 157,
159, 162, 163. Application of tension to cultured tendons
increased protein and DNA synthesis129, and an in vivo
study showed that increased loading alone can cause
adaptation of dense fibrous tissue'59. Insertion of a pin
underneath rabbit medial collateral ligaments increased the
load on the ligaments by 200 to 350%, and over 12 weeks
significantly increased the strength of the bone ligament
complex.

Aging decreases ligament stiffness and strength and
may decrease the adaptive response to repetitive
loading29. In one experiment a life long training program
did not improve the mechanical properties of canine medial
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collateral ligaments or flexor tendons or prevent age
related deterioration of the dense fibrous tissue mechani-
cal properties149. From this work it appears that age
related changes in ligaments may eventually negate the
potential benefits of training.
Dense fibrous tissues respond not only to changes in

intensity and frequency of loading but to changes in the
type of loading. Tendon regions regularly subjected to
tension during normal activities differ from regions regu-
larly subjected to compression in terms of tissue struc-
ture, matrix composition and cell synthetic activity8 51, 95
Tendon regions subjected primarily to tension consist of
linearly arranged dense collagen fibrils and elongated cells
and have a lower proteoglycan content, different propor-
tions of proteoglycan types and a higher rate of collagen
synthesis than regions subjected to compression as well as
tension51, 84, 95, 146, 147 Tendon regions subjected primar-
ily to compression consist of a network of collagen fibrils
separated by a proteoglycan containing matrix and more
rounded cells than those found in tension bearing regions;
and the cells of these regions synthesize larger proteogly-
cans than the cells of the regions subjected primarily to
tension95. These differences may be caused, at least in
part, by differences in the type of loading52. Subjecting
tendons to compression increased the hyaluronic acid and
chondroitin sulfate content while applying tension to the
same tendon decreased the glycosaminoglycan content5l.
Like tendons, ligaments vary in thickness, matrix compo-
sition and water content among different ligaments and
among regions of the same ligament47. Presumably, some
of these variations result from adaptation to differences in
loading.
Use of Injured Dense Fibrous Tissue
Experimental work shows that controlled loading ap-

plied at the optimal time during repair of dense fibrous
tissue injuries can promote healing11 25, 26, 32, 46, 49, 50, 67,
115, 135-137, 140, 155, 158. Tensile loading of tendon repair
tissue appears to cause the repair cells and matrix collagen
fibrils to line up parallel to the axis of tension13' 16. Lack of
tension leaves the repair tissue cells and fibers disori-
ented. Loading may also alter the rate of tendon repair49.
Three weeks following injury, surgically repaired tendons
treated with early mobilization had twice the strength of
repaired tendons treated with immobilization50. Twelve
weeks following injury, repaired tendons treated with
early mobilization had greater strength than repaired
tendons treated with an initial period of immobilization.
Controlled loading and motion soon after injury can accel-
erate ligament repair by increasing the wet and dry weight
of injured ligaments, improving matrix organization and
inducing more rapid return of normal tissue DNA content,
collagen synthesis and strength11' 48, 92, 140

Excessive or uncontrolled loading of injured tissues
disrupts repair tissue, causes further damage and may
delay or prevent repair. In a study of medial collateral
ligament healing in rats, forced exercise increased the
strength of ligament repair tissue in stable knees32. In
unstable knees, forced exercise did not increase the
stiffness and strength of the repair tissue but increased
joint instability. Another study of the effects of anterior
cruciate ligament transection showed that temporary im-
mobilization of the knee prevented the development of
osteophytes suggesting that early motion following injury
may have increased the joint instability'11. For this reason
loading and motion treatment of dense fibrous tissue
injuries must be carefully controlled. Furthermore, the
optimal motion and loading treatment probably differs
among the types of dense fibrous tissues, the types of
injuries and among patients. For example, the optimal
timing and intensity of loading and motion treatment of a
clean laceration of a digital extensor tendon in a child may
differ from the optimal loading and motion treatment of a
crushing muscle-tendon avulsion of the Achilles tendon in
an adult.

Articular Cartilage
Decreased Use of Normal Articular Cartilage
Persistent decreases in loading and motion of a synovial

joint cause articular cartilage changes that parallel the
changes in the periarticular dense fibrous tissues: chon-
drocytes change their synthetic activity, cartilage proteo-
glycan concentration decreases, matrix organization may
decrease and the mechanical properties deteriorate'7' 18,
28, 42, 43, 45, 53, 62, 63, 66, 72, 74, 80, 108, 109, 113, 118, 119, 121, 130,

131, 134 138. Although loading of an immobilized joint by
repetitive muscle contraction may help preserve the
cartilage31, the maintenance of normal synovial joint struc-
ture, composition and function requires both loading and
motion"2.

Cartilage alterations occur soon after a persistent de-
crease in joint use. Forty days following experimental tibia
fractures in dogs the articular cartilage of the operated
limb had a significantly lower glycosaminoglycan
concentration'08. Presumably the decrease in glycosami-
noglycan concentration resulted from decreased loading
and motion of the joints due to the fracture. Cast
immobilization of a dog limb also damaged articular
cartilage74 80, 109, 113 Six weeks or more of cast immobi-
lization decreased cartilage thickness, uronic acid content
and proteoglycan synthesis and diminished the ability of
proteoglycans to form aggregates. Cessation of immobili-
zation followed by ambulation in a pen for three weeks
reversed the changes. Treadmill exercise after cessation
of immobilization prevented the reversal indicating that
intense and frequent loading of the damaged cartilage
impeded repair'09.
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A study comparing the effects of six weeks of immobi-
lization of dog knees using external fixators with the
effects of six weeks of immobilization in long leg casts
suggests that the rigidity of joint immobilization influences
the severity of the joint damage'8. External fixators rigidly
immobilized the knees, but long leg cast immobilization
allowed eight to 15 degrees of motion. Cartilage water
content increased 7% in both groups of knees, but hex-
ouronate concentration decreased 23% in the joints
treated with casts and 28% in the joints immobilized by
rigid external fixators. The rigid fixators also produced
more severe depression of proteoglycan synthesis and
proteoglycan loss, and impaired cartilage recovery. Within
a week after remobilization, joints treated with long leg
casts had recovered near normal hexouronate content, but
rigidly immobilized joints showed little or no evidence of
recovery of hexouronate content.

Continued immobilization of joints eventually causes
irreversible damage including contracture of periarticular
dense fibrous tissues and muscles that act across the joint,
loss of articular cartilage and obliteration of the joint cavity

42,45 th
by fibrofatty tissue '5. Once the fibrofatty tissue fills the
joint, attempts to forcefully restore motion tear the intra-
articular tissue, often in a different plane than that of the
original joint cavity, and avulse fragments of remaining
articular cartilage42' 43
The time of immobilization necessary to irreversibly

damage a synovial joint probably varies among joints and
species. Most animal studies suggest that controlled
remobilization can reverse the damage caused by a month
or more of immobilization. In rat joints, remobilization
reversed changes due to 30 days of immobilization, but 60
days of immobilization caused irreversible changes43. Two
weeks of immobilization of rabbit knees did not cause any
detectable permanent changes, but after six weeks some
joints had developed contractures45. In dog knees, six
days of immobilization decreased proteoglycan synthesis
41% and three weeks of immobilization caused loss of
proteoglycan aggregation. Two weeks of active motion
restored proteoglycan aggregation to normal"13. Another
study of dog joints showed that 15 weeks of remobilization
improved but did not completely restore the mechanical
properties of dog articular cartilage subjected to 11 weeks
of cast immobilization74.
Increased Use of Normal Articular Cartilage
Increased loading and motion of articular cartilage, up to

a certain level, may increase matrix synthesis relative to
matrix degradation, at least in skeletally immature ani-
mals. In one series of investigations the effects of regular
running in dogs depended on the distance the animals ran.
Moderate running (four kilometers/day five days a week
for 40 weeks) increased cartilage thickness, proteoglycan
content and indentation stiffness50' 1119 144, 162, 163. A

period of more strenuous running (20 kilometers/day five
days a week for 15 weeks) decreased cartilage thickness
and proteoglycan content91' 111, 149* Longer term low-
impact strenuous running (40 kilometers/day for up to one
year) decreased cartilage proteoglycan concentration and
indentation stiffness and stimulated remodeling of sub-
chondral bone, but these animals did not develop degen-
erative joint disease'4 107. These studies suggest that a
limited period of increased use may alter articular cartilage
composition and mechanical properties, but it does not
accelerate joint degeneration. They also suggest that
synovial joint tissues, especially in skeletally immature
individuals, may be able to adapt to increased use.
Use of Injured Articular Cartilage
The effects of early loading and motion on injured

cartilage vary with the type of cartilage injury23' 25, 28.
Differences in the type of tissue damage and the repair
response separate acute cartilage injuries into three
types : 1) loss or abnormalities of the matrix macro-
molecules without disruption of the tissue; 2) disruption of
cartilage without injury to subchondral bone; 3) disruption
of cartilage and subchondral bone. Chondrocytes can
restore lost proteoglycans if the collagen matrix of artic-
ular cartilage remains intact and if enough chondrocytes
remain viable. Chondrocytes cannot repair disruptions of
the tissue like chondral fractures or cartilage lacerations.
Following cartilage injury they briefly increase their syn-
thetic and proliferative activity, but they do not migrate to
the site of injury or produce new cells and matrix that fill
the tissue defect. Disruption of subchondral bone along
with cartilage causes hemorrhage and initiates inflamma-
tion and repair by cells from the bone and the bone blood
vessels. A fibrin clot forms in the tissue defect. Mesen-
cyhmal cells migrate into the clot and produce repair tissue
that usually fills the bone defect and most of the chondral
defect. The cells in the chondral portion of the defect then
produce repair tissue that usually has a matrix with a
composition intermediate between fibrocartilage and artic-
ular cartilage23 25, 28
The available evidence indicates that controlled early

movement prevents cartilage degeneration following joint
injury and may facilitate healing. The observations that
prolonged joint immobilization and unloading injure articu-
lar cartilage, that cyclic loading increases chondrocyte
synthetic activity and that resumption of use following joint
immobilization improves articular cartilage composition
and mechanical properties suggest that controlled loading
and motion may stimulate repair of cartilage damage
limited to loss of matrix proteoglycans. Furthermore, in
one study active and passive motion following experimen-
tal depletion of proteoglycans stimulated restoration of
matrix proteoglycans151, but there is no evidence that joint
use promotes repair of injuries that disrupt the cartilage
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without damaging subchondral bone. Early motion during
the repair and remodeling phases of healing following
osteochondral injuries can decrease or prevent adhesions
and immobilization-induced deterioration of uninjured car-
tilage, and studies of the effects of early passive motion
treatment on experimental osteochondral injuries indicate
that passive motion improves the initial quality of cartilage
repair tissue'23' 124

Despite the necessity of loading and motion for mainte-
nance of articular cartilage, premature or excessive load-
ing and motion may delay healing or disrupt cartilage repair
tissue5 25, 28, 109, 150* Following injuries associated with
depletion of matrix proteoglycans, repetitive intense load-
ing of cartilage, especially impact loading, before the
chondrocytes restore the matrix proteoglycan content,
may cause further damage25' 27. Guinea pig knees sub-
jected to chemical injury developed cartilage fibrillation and
osteophytes after three weeks of unrestrained active joint
use; immobilization for three weeks prevented fibrillation
and osteophyte formation'50. Running on a treadmill for
three weeks following prolonged immobilization of dog
knees prevented reversal of the immobilization induced
changes in cartilage proteoglycans'09. Early loading and
motion may also damage the repair tissue that forms
following osteochondral injury. Examination of the effect of
abrading the femoral heads of dogs showed that protection
of an abraded surface from loading allowed formation of
cartilage repair tissue5. Areas subjected to heavy loading
formed little or no repair tissue.

Skeletal Muscle
Decreased Use of Normal Skeletal Muscle
Decreased use of skeletal muscle rapidly causes easily

detectable changes in muscle volume, structure and
function . Within weeks of a reduction in fre-
quency or intensity of activity, myofiber and myofibril
volumes and oxidative capacity decrease causing de-
creases in muscle mass and strength. A decrease in
intramuscular capillary density and an increase in intra-
muscular connective tissue volume relative to myofiber
volume accompany these changes in the myofibers73.
Rigid immobilization produces more rapid and severe loss
of muscle structure, volume and function than a decrease
in the frequency or intensity of activity. Muscle protein
synthesis decreases within six hours of cast immobilization
of a limb21. Two weeks of cast immobilization decreases
muscle fiber size and causes loss of myofibrils and with
increasing length of immobilization, mitochondria enlarge,
lose their cristae and disintegrate35. Eventually the muscle
cells contain only amorphous protein, vesicles and frag-
ments of membranes. As the myofibers degenerate,
fibrous tissue and fat become a progressively larger
proportion of the tissue.

Changes in muscle volume and function accompany

these structural alterations. Six weeks of cast immobiliza-
tion decreased the weight of cat muscles nearly 25%, and
22 weeks of cast immobilization decreased muscle weight
nearly 70%35. The ability of these muscles to generate
tension decreased as muscle weight decreased. In humans
six weeks of cast immobilization for treatment of foreann
fractures had a similar effect on muscle strength: adductor
pollicis muscle maximal voluntary contraction decreased
55% and maximal electrically evoked contraction de-
creased 33%41.
Increased Use of Normal Skeletal Muscle
Persistent increases in use also change the structure,

functional capacity and often the volume of skeletal
20, 94, 132, 133

muscle . The specific adaptive changes in muscle
depend on the pattern of increased use. Patterns that
produce different muscle responses include33: low-tension
high-repetition use that primarily increases muscle endur-
ance; high-tension low-repetition use that primarily in-
creases muscle strength; and, stretching that primarily
increases muscle strength. Initially muscle may respond to
a training program with rapid changes in structure and
function, but as adaptation occurs, the rate of change
decreases and eventually the muscle reaches a stable
state.

Repetitive low-tension high-repetition exercise, like
walking, running, cycling or swimming, performed for 30
to 60 minutes at a time, increases the capacity of muscle
cells for sustained effort. This type of endurance training
increases the number and size of muscle cell mitochondria,
muscle glycogen concentration and the proportion of
muscle cells identified as having high oxidative capacity33'
98. These changes can double the muscle oxidative
capacity3' . Strength training programs usually consist of
repetitive high-tension low-repetition muscle use. These
programs increase muscle strength and usually volume,
primarily by causing cell hypertrophy - that is, increasing
the number of myofibrils. Strength training programs
generally do not increase muscle oxidative capacity.
Stretching accelerates muscle protein turnover and can
cause hypertrophy and increase strength33.
Use of Injured Muscle
The effects of activity on muscle healing depend to

some extent on when activity begins following injury.
Immediate mobilization of injured muscles may increase
scar formation and interfere with orderly regeneration of
myofibers70, but mobilization following a short period of
immobilization produces more rapid disappearance of the
hematoma and inflammatory cells, more extensive, rapid
and organized myofiber regeneration, and more rapid
increase in tensile strength and stiffness68-70' 86, 87. In
contrast, prolonged immobilization following injury pro-
duces muscle atrophy and poor organization of the regen-
erating myofibers70' 86, 87. These results suggest that after
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a brief period of rest, controlled use of an injured muscle
will produce the optimal healing.

SUMMARY AND CONCLUSIONS
One of the most important advances in the treatment of

musculoskeletal injuries has come from understanding that
controlled early resumption of activity can promote resto-
ration of function, and that treatment of injuries with
prolonged rest may delay recovery and adversely affect
normal tissues. In the last decade of the nineteenth
century two widely respected orthopaedists with exten-
sive clinical experience strongly advocated opposing treat-
ments of musculoskeletal injuries. Hugh Owen Thomas in
Liverpool believed that enforced, uninterrupted prolonged
rest produced the best results. He noted that movement
of injured tissues increased inflamration, and that, "It
would indeed be as reasonable to attempt to cure a fever
patient by kicking him out of bed, as to benefit joint disease
by a wriggling at the articulation." Just Lucas-
Championnier in Paris took the opposite position. He
argued that early controlled active motion accelerated
restoration of function, although he noted that mobility had
to be given in limited doses. In general, Thomas' views
met with greater acceptance in the early part of this
century, but experimental studies of the last several
decades generally support Lucas-Championneir. They
confirm and help explain the deleterious effects of pro-
longed rest and the beneficial effects of activity on the
musculoskeletal tissues. They have shown that mainte-
nance of normal bone, tendon and ligament, articular
cartilage and muscle structure and composition require
repetitive use, and that changes in the patterns of tissue
loading can strengthen or weaken normal tissues. Al-
though all the musculoskeletal tissues can respond to
repetitive loading, they vary in the magnitude and type of
response to specific patterns of activity. Furthermore,
their responsiveness may decline with increasing age.
Skeletal muscle and bone demonstrate the most apparent
response to changes in activity in individuals of any age.
Cartilage and dense fibrous tissues also can respond to
loading, but the responses are more difficult to measure.
The effects of loading on injured tissues have been less
extensively studied, but the available evidence indicates
that repair tissues respond to loading and, like immature
normal tissues, may be more sensitive to cyclic loading
and motion than mature normal tissues. However, early
motion and loading of injured tissues is not without risks.
Premature or excessive loading and motion of repair tissue
can inhibit or stop repair. Unfortunately, the optimal
methods of facilitating healing by early application of
loading and motion have not been defined. Nonetheless,
experimental studies and newer clinical investigations
document the benefits of early controlled loading and
motion in the treatment of musculoskeletal injuries, and

orthopaedists should consider controlled activity as part of
the optimal treatment of musculoskeletal injuries.
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