
M1: Approach to prediction of putative TF binding sites 
 

A) Predicting sites using statistical models 
 

Summary 

We inherited three main ideas from Tan’s methodology (3): 1) filtering the 

training set in two successive steps, as explained below, to eliminate possible weak 

binding sequences; 2) cutoff selection based on the occurrence of putative sites in and 

outside TUs; and 3) filtering the final set of predictions using orthology information and 

knowledge of clustering of genes into TUs. The latter idea requires a) a reliable 

prediction of the genome organization in TUs for all the organisms under study -we used 

predictions described in (1)-; and b) a reliable methodology for orthology searching 

between genomes. Orthology relationships were searched using the definition by Huynen 

and Bork (2): two genes from different organisms are orthologs if they are the best bi-

directional blast hits (BBHs). For a thorough description of these issues, see (3). We used 

two algorithms to build the models: the CONSENSUS (4), and the Gibbs-SAMPLER (5). 

The different steps of this methodology were implemented using ad hoc PERL scripts, 

and the MySQL relational database. 

 

Also, this methodology implicitly assumes that if TF A of E. coli has an ortholog in 

another organism, the two will recognize roughly the same DNA motif. Although this is 

not necessarily true, the failure of this assumption does not have any major consequences: 

if the DNA binding motif of a TF significantly differs from the DNA binding motif of its 

E. coli ortholog, the original statistical models (see below) that are built (or enriched) 

from E. coli DNA binding sequences will simply fail in recognizing its putative binding 

sites. 

 

1. Building original models with CONSENSUS and preparing the training set  

 Original training sets include sequences extracted from RegulonDB, v.4.0 (6). A 

training set was built for each TF with at least one known binding sequence in E. coli 

(102). For TFs with a training set larger than 25 sequences, only E. coli known binding 

sequences were used to build the original model. In order to populate the training sets of 

those factors with less than 25 known binding sequences, all the sequences upstream TUs 

(strictly non-coding) of all other organisms having at least one ortholog to an E. coli gene 

known to be regulated by the given TF were included in the input for CONSENSUS. We 

built weight matrices only for TF’s with training sets larger than 4 sequences (83). 

 To select the appropriate site length to build each TF’s model, the following was 

done: different matrix lengths were assayed, ranging from 16 to 30 nucleotides and, for 

every length, two matrices were built, one using a symmetric model (by forcing the 

algorithm to include within the model the reverse complement of the sequences in the 

training set) and a second one where only original sequences were included. The 

appropriate length was selected as the one that produced the matrix with the lowest 

expected-frequency (4).  

 The training sets were filtered twice as proposed by Tan et al. (3) to eliminate 

possible weak binding sequences. In the first filtering step only the site that produce the 

best score in each TU when aligned to the site model remained in the training set. The 



model was then rebuilt with only those sequences which were aligned against this second 

model. The second step eliminated all sequences that scored below the mean minus one 

standard deviation in this alignment.  

 As expressed above, we also used Tan’s ideas regarding cutoffs selection, but 

with slight variations. Briefly, according to these ideas cutoff values are defined after 

searching for putative binding sites within a given genome using weight matrices built 

using filtered training sets. Increasing cutoff values are assayed, and putative binding 

sites obtained for each cutoff value inside TUs and within non-coding regions are 

recorded separately and counted. For lower cutoff values, putative binding sites are 

expected to occur much more frequently within TUs (since prokaryotic genomes are 

enriched in coding regions). On the other hand, known binding sites occur almost 

exclusively outside TUs; hence, as cutoff values increased, the number of putative sites 

recorded inside TUs should tend to decrease faster than the number of putative sites 

recorded within non-coding regions, therefore increasing the fraction of putative sites 

within non-coding regions. One can, then define cutoff values with a reasonable 

expectation of the rate of false positives to be obtained in the search for putative binding 

sites. 

Two cutoff values were defined: a strong one corresponding to the score value where 

all predictions occurred outside TUs, and a weak value, that corresponded to the score for 

which at least 50% of all predictions fell outside TUs. We accepted the second value to 

be the weak cutoff, only if it was greater than or equal to the weakest sequence within the 

filtered training set, that is, at least the mean minus one standard deviation of all the 

sequences in the training set after all duplicate sequences for a given TU had been filtered 

out. If this was not the case, the weak cutoff value was set to the score of the weakest 

sequence within the filtered training set. Those TFs for which the training set was 

reduced to less than four sequences at any filtering step were eliminated from the study. 

 

2. Building original models with SAMPLER and preparing the training set  

 Original training sets were built following the same rules described for 

CONSENSUS, but more parameters were assayed to tune model building. There are three 

parameters influencing the stringency of the multiple local alignments (7): the number of 

models that the SAMPLER is set to search for, the minimum length of sites and the 

Expected Number of sites that each sequence contributes to the model.  

 In our case we restricted the searches to a single model, since we included within 

the training set all the known sequences of each respective TF. We iterated the Gibbs-

Sampler varying the expected number of sites, n for all Factors and set n equal to two 

thirds of the number of sequences in the training set as a general rule, because we found it 

was an acceptable value for all TFs under study. We have also run the program for all 

factors with minimum site length varying from 16 to 24 bp. 

 The Maximum a posteriori Probability (MAP) (5) was used as an indicator: in the 

case of TFs which produced alignments with the best MAPs corresponding to even 

lengths, the minimum site length was set to 20 base pairs; when odd alignments produced 

higher MAP values, 19 base pairs was chosen as the minimum site length. In those cases 

where a clear decision could not be made, the minimum site length was set to 20. 

 A major difference between the two algorithms is that for Gibbs-SAMPLER 

cutoffs were not calculated a priori, before the genome was scanned using the model. 



Instead, the counting of predictions falling in and outside TUs is done while the genome 

is being scanned, with decreasing values of -logE (logarithm of the expected value; see 

below) and the scanning ends when the same number of predictions is counted in and 

outside TUs. 

 

3. Obtaining the sets of putative new binding sites with CONSENSUS 

 After the model for each TF had been built as described before and the two cutoff 

values had been selected, the regions upstream all TUs, ranging from -400 to +50 

nucleotides, the region where almost all known regulatory sites in σ
70

 promoters occur 

(8), of the seventeen genomes included in version 1.0 of the database were searched for 

putative new binding sites (Escherichia coli K12, Haemophilus influenzae, Salmonella 

typhi, Salmonella typhimurium LT2, Shewanella oneidensis, Shigella flexneri 2a, Vibrio 

cholerae, Yersinia pestis KIM, Buchnera aphidicola, Pseudomonas aeruginosa, 

Pseudomonas syringae, Pasteurella multocida, Pseudomonas putida KT2440, Vibrio 

parahaemolyticus, Vibrio vulnificus CMCP6, Xanthomonas axonopodis, Xylella 

fastidiosa). The matrix built using CONSENSUS was aligned against these regions using 

PATSER (4), setting the lower threshold of the program to the weak cutoff value.  

 

4. Obtaining the sets of putative new binding sites with SAMPLER 

 We used the DSCAN software (7) to scan the genome in a database built as 

follows: a set of upstream sequences ranging from at most -400 to +50 bp, keeping the 

negative portion of the sequences strictly extragenic, -i.e., there are no overlaps with 

neighbor coding regions; and a second set containing the sequences of TUs, from position 

+50 of the first gene to the last base of the last gene. We then concatenated these two sets 

which have no overlapping sequences. 

 We did this because of the statistical nature of the calculations performed by 

DSCAN. For each set of sequences DSCAN returns the expectation value (the E-value is 

the expected number of sites of equal or higher score that would be retrieved with the 

same search performed on a randomly constructed database of the same size) and the 

probabilities (p-values) of finding a better scoring segment (better than the higher scoring 

segment in the sequence) in a random sequence of the same length (7). 

 

5. Orthology filtering 

 The sets of putative sites produced by CONSENSUS and Gibbs-SAMPLER were 

merged and subsequently filtered using orthology information. Two sites predicted by 

CONSENSUS and SAMPLER were considered different if they did not overlap more 

than 50%, otherwise they were considered a redundant prediction, and as such, filtered 

out. A prediction was marked as “reliable” if it occurred within the region upstream an E. 

coli TU that had at least a gene with one or more orthologs in the other genomes and the 

region upstream the TUs where those orthologs were located had a prediction for the 

same TF. The hypothesis beneath this idea is that regulation systems tend to be conserved 

during evolution. Alternatively, a putative site in any genome with a score above the 

strong cutoff with no orthology information supporting it was also marked as “reliable”, 

given its high similarity to the model and taking into account the fact that a fraction of an 

organism’s ORFs (at least 30% for E. coli with respect to any of the other 7 organisms) 



has no recognizable orthologs, so these sites may be involved in the regulation of these 

unique genes. 

 

6. Rebuilding models 

 New training sets were built rescuing putative sites predicted for each TF in all 

organisms. For those TFs that produced more than four putative sites in E. coli (after the 

orthology filtering) and in at least another organism, a training set was built for each 

separate organism with more than four putative sites. These sets were then used to build a 

specific model for each organism using CONSENSUS. On the other hand, matrices were 

not rebuilt for those TFs for which less than four sites were found. Instead, the sequences 

found for these TFs in the previous step of the methodology were directly included in the 

set of putative sites produced after rebuilding matrices and were again filtered by 

orthology information as described below. 

 The orthology filtering process is very similar to the one already described. The 

only difference is that filtering is done with respect to each organism. This assures that 

genes that are not present in E. coli but are common to a pair of other organisms can be 

rescued as members of the same regulon in those two organisms. More complete lists of 

regulons’ members can thus be produced and their properties compared across the 

genomes under study.  

 

B) Predicting sites using regular expressions 
 

1. Building regular expressions 

We transformed each E. coli known binding site into a regular expression 

following these rules: if the site length was even and shorter than 14 nucleotides, the site 

sequence was expanded at both ends to reach 14 nucleotides (with the center between the 

two central base pairs); if the site was odd and shorter than 13 nucleotides, the site 

sequence was expanded at both ends to reach 13 nucleotides (with the center at the 

central base pair); on the other hand, the site length reported at RegulonDB was respected 

if the site was longer than 13 (odd) or 14 (even) nucleotides. The reason to take 13 or 14 

nucleotides as the minimum length for odd and even sites respectively is that the length 

of most prokaryotic TF binding sites rages from 14 to 26 nucleotides. After this step, site 

lengths ranged from 13 nucleotides (DnaA, IHF, IciA, XapR, and CspA) to 61 

nucleotides (ArcA). 

 

To perform the pattern matching, we extracted the r-orthologous regions (from -400 to 

+50 with respect to the first base of the TU, the region where most TF binding sites are 

known to occur). We searched the occurrences of the E. coli regular expressions of each 

TF in all orthologous regulatory regions and allowed in the process of pattern matching 

the lowest number of mismatches that recovered a number of matches of the same order 

that the number of E. coli known sites of the TF, a cutoff selected to reduce the number 

of spurious matches. No gaps were allowed in the pattern matching, taking into account 

the high sequence identity between orthologous regulators in these organisms (3, 9). We 

allowed no more than 8 mismatches for any TF. 

 

2. Assessing the statistical significance of predicted sites 



Using the CONSENSUS program (4) we built weight matrices for each TF 

aligning the sequences of original E. coli sites and their putative orthologous sites 

identified by pattern matching. These sequences were extended five nucleotides at each 

side before introducing them into the program. The idea is that pattern matching may 

locate a true orthologous site displaced several bases at the left or right: the 

CONSENSUS algorithm is able to correctly locate the sites by maximizing the log-

likelihood of the alignment. The program was run including the reverse-complement 

sequences into the matrices in the case of dimeric binding TFs. 

 

To asses the statistical significance of putative orthologous sites we used the idea 

developed by Brown and Callan (9) for CRP. Briefly, each predicted orthologous 

sequence is aligned against the weight matrix that represents the TF binding site and the 

score of this alignment is termed “real”. On the other hand an “expected” score of the 

predicted sequence is calculated as a result of its alignment against the matrix provided 

that it mutated following a rate similar to the rest of the non-coding region where it is 

located. (Mutation rates are calculated from the alignment of the r-orthologous regions.) 

The idea here is that in an interspecies comparison, true orthologous regulatory sites 

should be more conserved than the rest of the non-coding regions. (For a thorough 

description of the statistics carried out in these calculations see 9.) To calculate the real 

score of putative orthologous sites we aligned them to the corresponding weight matrix 

using the PATSER program (4), and to estimate the score of the site had it mutated with 

the same rate that the surrounding non-coding region (expected score) we used the 

package of programs provided by Brown and Callan in their already cited work, located 

at www.princenton.edu/ccallan/binding. 

 

C) Expanding the database to 30 organisms 
 

This work reproduces the methodology described for predicting putative binding sites 

using weight matrices. Briefly, this expansion started by building positional weight 

matrices from training sets constituted by each TF’s known binding sites in E. coli and 

orthologous regulatory regions in other seven organisms (those phylogenetically closer to 

E. coli, excluding E. coli O157H7 and Shigella flexneri 2a 2457T strains to avoid biasing 

the matrix), out of the 30 included in the database (see Table 1 for the complete list). 

Then, after filtering such training sets to eliminate possible weak binding sequences and 

calculating two cutoff values for each TF, the regulatory regions of all genomes were 

scanned for putative binding sites using each TF’s matrix. The sites thus obtained were 

filtered using orthology information (all E. coli sites without at least one ortholog in at 

least one of the other 29 genomes are discarded). Finally, a separate matrix was built for 

each organism from the putative binding sequences retrieved by the first matrix –for all 

cases with more that four sequences rescued from the filtering process—and the scanning 

and filtering steps were repeated, with the difference that all possible inter-genome 

orthology relationships were included in the analysis, and not only those centred at E. 

coli. 

 

The expansion to 30 organisms using the statistical models approach was complemented 

with the pattern matching (regular expressions) approach as explained above for the 



original 17 genomes. We should point out that the filtering process of non-statistically 

significant orthologous sites (see above) discards an important number of putative 

orthologous sites in E. coli O157 strain, due to the similarity of non-coding regions 

between its genome and the genome of the K12 strain. 
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