SI Appendix

Master Equations

The corresponding evolution of the probabilities of the states for the MAPK

signal transduction pathway obey the master equations as follows:

X, = KKK

X, = El

X; = KKK - E1
X, = KKK*

X = E2

Xe= KKK - B2
X;= KK

Xy = KK KKK
Xg=KK— P

x19) = KKPase

(

(x11) = KK — P-KKPase
(r19) = KK —P-KKK*
<£L’13> =KK - PP

(r14) = KK — PP - KKP'ase
<£L’15>:K

<ZL‘17>:K—P

(r15) = KP'ase

(r19) = K — P - KP'ase
(x90) = K — P-KK — PP
<l’21> =K - PP

(r92) = KK — PP - KPase



Here X, ... X9 represent 22 different protein enzymes illustrated above.
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X;+ D) (Xo+1)

) P(Xi+1,Xy+1,X5—1,....) = X1 Xo P+
Xy +1)(Xs + DP(ooey Xg + 1, X5 + 1, Xg — 1,....) — Xy X5 P+

)( P(...

)({z10) + 1

[(Xy+ 1)( X7+ 1) X4+1,...X7+1,X8—1,....)—X4X7P]+

[(

:

[(Xg + 1 <.1}10> )P( 7)(9 + 1, <I‘10> + 1, <I‘11> — 1, ) — X9<$10>P]—|—

ab[(Xy + D)(Xg+ D)P(, Xy +1, ., Xg+ 1, ., (x10) — 1,...)) — Xy XoP]+

ab|({z10) + 1)((z13) + 1)P( <1’10> + 1 o <$13> +1,(z1a) — 1,....) = (@10)(@13) Pl+

aT|((z13) + 1)((z15) + 1) P(.., (213) + 1, s (215) + 1, (216) — L, -.0) — (213) (215) P+

a8|((x17) + 1)((z1s) + 1) P(. --><5U17> <1’18> +1 (9519) L,....) = (@17)(@1s) Pl+
CL9[(<LE13> >(< 17> + 1)P( < 3> + 1 ey <QZ17> + 1 ey <.’E20> — 1 ) <.’L‘13><I‘17>P]+
alO[(<l’18> + 1)( .%‘21) + 1) ( < 18) + 1 cany <I21> + 1 <l’22> - 1 ) <I18><I21>P]+

3 X1—1X2—1X3+1 ) ]

d1[X3P(
d2[X6 (- X4 -1, X -1, X6 +1,. ) X6p]+
d3[XsP(., Xy —1,.., Xs — 1, Xg +1,...) — XgP]+

[<5E11>P( 9 L (9510> — 1, (z1) +1,..) = (z11) P+
[<.T12>P( —1 ...,Xg—l ...,<LL’12>+1,...) — <$12> ]
[<[E14>P( <J]10> — ]_ ceey <[E13> - 1 <ZL‘14> + ]_, ) - <J]14>P]
[(Il >P( <l’13> — ]_ ceey <ZE15> — 1 <ZE16> + 1, ) — <£L’16>P]
d8[(z19) P(..., (w17) — ><-T18> 1 <ZU19> +1,..) = (z1o) Pl+
d9[(xao) P(..., (x13) — 1, ..., (m17) — 1, .., (20) + 1, ...) — (@a0) P]+
d10[(za2) P(..., (x18) — 1 e (1) — 1, ooy (T2) + 1, ...) — (wa2) P+
k1[X5P(.. X2—1 X3+1 X,—1,..) — X3P+
k2[X¢P (X1 - 1,X;—1,Xe+1,..) — X¢P|+
E3[XsP(... Xy —1,.., Xg+1,Xo—1,...) — XgP]+
k4[(1:11)P( X7 — 1 oy {T10) — ,(:c11> + 17 ) = {z11) P]+
E5[(x12) P(.., Xq4 — 1, .. (x12) + 1, (@13) — 1, ...) — (x12) P]+
k6[<l’14>P< Xg - 1 <ZE10> — 1 ciey <I14> + 1 ) <LE14>P]+
k?[(lL‘lﬁ)P( <l‘13> - 1 ceny <[E16> + ]_ <l’17> ]_ ) <£L‘16>P]+
k8[<$19>P( <ZE15> , <$18> — 1 <$19> + 1, ) — <ZE19>P]+
k9[(x O)P(.., (r13) — 1,0y (w20) + 1, (@a1) — 1, ...) — (wa0) P]+

k10[{x9) P(.., (x17) — 1 <a:18> Loy (mo0) +1,...) — (wag) P



Self Consistent Mean Field Approximations

This master equation is still very difficult if there are many different types
of particles, since the number of equations of this form will grow as n; x
ng X n3 X .... We will be making a self consistent mean field approximation
(1, 2, 3, 4], that is P(x;,xj,...) = [I; Pi(z;). This reduces the number of

equations to ny +ng + .. ..

Because the individual probability distributions are now independent, we can
describe each P;(x;) by a series of moments: (z;), (x?),..., (z7),.... Thus we
can convert from a series of differential equations describing the probability
to a series of moment differential equations. For example, we can calculate
the first moment to infer the approximate Poisson distribution, we can cal-
culate the second moment to infer the approximate Gaussian distribution
for individual probability P(X;). The moment equations are listed below up
to second order. We notice these moment equations are themselves closed
(they don’t depend on higher order moments) for MAPK, so they can be

solved exactly. We did so numerically up to second order moment to infer

the underlying distribution.

As mentioned above, the motivation of our self consistent method of split-



ting the variables is to reduce the dimensionality of the real networks from
exponential number of degrees of freedom to polynomial number of degrees
of freedom (from M?™ to M x N, here M is the number of specific proteins
and N is the number of protein types.). We believe our approximation of
splitting the variables is a reasonable one because our method is not a simple
splitting of variables as an independent product but with a mean field type
of approximation. In other words, even though the form of our probability
is a product like P(xy,...,%p,...,xn) = P(z1)...P(z,)...P(xx), each of the
component, for example P(z,) is not entirely independent with the others.
The effect of the interactions of other components is taken into account by
the mean field or average of others on this particular component. So in order
to solve each individual P(z,), a self consistent equation for P(z,) has to be
solved taken into account of the mean field effects from averaging the other
components. In other words, the interactions among different components is
taken into account approximately by the self consistent way of solving the
each component P(z,) in the back ground of the average effects of others.
The self consistent method has been applied to multi-electron atom and multi
atom molecule studies [5]. The results are usually in reasonable agreements

with experiments. We believe that the self consistent method of splitting



may have a wide range of applicability from weak to medium interactions
among the components of the networks. For strongly interacting networks,

some other approximation scheme has to be developed to deal with the issue.

When we compare the interaction strengths of the components among
themselves (diagonal or near diagonal) and with others (off-diagonal) through
the rate coefficients in the correct units, we realize that the diagonal part
(150) is about 50 times higher in rates than the off diagonal ones (3.17) (see
the rate parameter table in this supplementary material). This implies that
the interactions of the components with others are relatively weak compared
with the individual components themselves. This would validate our self
consistent mean field splitting approximations for weak interactions. We
picked up a pair of components of MAPK networks. We solve the problem
exactly for the pair through kinetic Monte Carlo method [6] without any
approximations of splitting the variables and then collect the histograms to
obtain the exact probability. We compare the exact results with our self
consistent splitting method. We reach good agreements of the self consistent
mean field splitting results with the exact results. The relative error is around
0.64%. We show the comparison results of the distribution in terms of the two

components with the self consistent mean field splitting and exact method
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Figure 1: Comparison of the steady state probability distribution in terms
of protein concentrations K — P (variable 17) and K P’ase (variable 18). A:
Self consistent mean field results. B: Exact results.
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Non-Equilibrium Networks, Landscape, Flux and En-
tropy Production

For non-equilibrium system, the behavior is not entirely determined by the
energy landscape alone even in the steady state. In fact the other crucial
quantity not present in the equilibrium is the flux due to the fact that detailed
balance is not guaranteed. We need both the landscape and flux to specify
the behavior. Therefore, the dynamical trajectories in the non-equilibrium
case are determined not only by the landscape as in the equilibrium case
but also in addition by the flux (due to the lack of detailed balance). The
landscape gradient and flux may not share the same direction. Therefore

the trajectories can be very different from the ones guided only by the land-



scape alone. In analogy with the electrons moving in electric and magnetic
field, the actual trajectories of the non-equilibrium systems are like spirals
(instead of directly following the gradient of the potential) descending along

the landscape gradient.

The entropy production rate we have calculated are the ones from the
whole chemical reaction network. As mentioned we take into account the
fact that the dynamic flow is determined by both the landscape and the
flux. This will lead to the chemical potential and the current flux for the
system in analogy to the electric circuit of electric voltages and currents. An
electric circuit will dissipate energy, and the dissipation can be calculated
when knowing the currents and voltages. The same thing applies here for
the network. Once the chemical potential and current are known, we can

calculate the dissipation via entropy production rate of the whole system.

From our calculations involving a pair of components, we have shown that
the probability using our self consistent mean field splitting is close to the
exact solution. The entropy production rate for the system is a sum of the

various combinations of the probabilities and underlying chemical reaction

rates (S = i) ﬂ,ﬂln(%jg)) Therefore, the entropy is a function of prob-

ability and underlying rates. Since the probabilities from the self consistent
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mean field splitting method are close to the ones from exact method, the
entropy production rate from the mean field splitting method are also quite
close to the exact method.

For macro systems, the entropy production rate is only minimum for lin-
ear case. When we study here the MAPK network, we look at the probabilis-
tic description taking into account the intrinsic fluctuations due to the finite
number of molecules. In other words, even though the macroscopic MAPK
system is nonlinear (in concentrations) in the form of the normal chemical
rate equations of the average concentrations, the corresponding probabilis-
tic descriptions following the Makovian master equations are linear (in the
probability). The entropy production rate for this linear description of the
probability is global and can be shown to be never decreasing [7, 8, 9]. We
believe this is the reason why the entropy production is minimum and the

definite of the entropy production is useful here.

Rate Parameters

The values used for the unperturbed rates, as determined by the Ferrel Lab,
are in table 1. The values for the traditional reaction rate equations are in
the first column. These has to be modified to work in the Master’s equations

by multiplying the a’s by AV, where A is Avagadro’s number and V is the



Table 1: Unperturbed reaction rates.

Variable | Reaction Rate Equations || Master’s Equation
a; 1000 3.171

d; 150 150

k; 150 150

volume of interest. A = 6.022 x 10?®> and V can be taken for example as

V =4/3 x 7 x (5x1075)% m3.

Moment Equations

The first moment equations are:



dfl(;ﬂ = a1 (1) (w2) — di(x3) — k1 (73)
Uo2) — —ay (1) (o) + di (w3) + ki (3)
B) — g () (ws) — do(ws) — ko (we)
= —ai(21)(r) + di(w3) + ka(ze)
U5 — gy (wa){ws) + dawe) + ko ()
s — g (a) () — ds (s) — ks(s)
1) — ay(wo) (w10) — dafrn) — ka(z11)
) — —ag () (wr) + da(ws) + ka(w01)
dien) — CL5<I4><J}9> - d5<1}12> - k5<$12>
H210) — k) (w3) — ag(wa)(ws) + da(we) — aslwa)(wr) + ds(xs) + ks(xs) — a5 (xa) (o)
+ds(z12) + ks{12)
b = ag(z10) (1) — do{1a) — ki (z14)

He2) — Jog(ws) — a5 (wa) (o) — aa(zo)(w10) + da(w11) + ds(w12) + ko(w1a)
U3 — —ay(zo)(w10) + da{1r) + kalwn) — ag(w0)(w13) + de(T1a) + ke (w14)
d<fli4> = ar(213)(T15) — d7(w16) — K7 (T16)
Ua15) = ag(17) (215) — ds{10) — ks (a10)
d<;;6> = —ar(w13)(T15) + d7(T16) + ks(T19)

a ag(w13) (T17) — do(w20) — ko(T20)
d<fl;8> = ks(212) — ag{x10) (v13) + d6(214) — a7{13) (¥15) + d7(216) + K7 {T16) — A9(W13)(T17)

+dg(T20) + ko (T20)

d<fli9> = k9<$20> - a10<$18><1’21> + d1()<ZU22>

K20 — ay9(18) (Ta1) — dio(Ta2) — kio(T22)

d<flfl> = kr(x16) — ag(x13)(T17) — as(x17)(T18) + ds(@19) + do(T20) + k10(Z22)
d<fz§2> = —ag(v17)(T18) + ds(T19) + ks{®19) — a10(T18) (T21) + dro(T22) + k10(wa2)

The second order moment equations are as follows:
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= —2a; x%)(%g) + a1 <x1><x2> + d <x3> + 2d; <$1><l‘3> + k2<l‘6> + 2ko CC1>< )

i, ( (
A = 21 (a3) (@1) + a1 (@1)(w2) + di(ws) + ki (w3) + 21 (w2) ws) + 2k {22) (@)
G = =21 (a3) — 2 (a3) + ar () (e2) + da (ws) + b ws) + 2a1{a) (w2) (@)
S = () + 2h () (w4) — 202(a3) (w5) + a2 () (25) + da(w6) + 2da{na) )
—2a3(z){x7)
+a3<934;1(967) + ds(ag) + ka(zs) + 2ds () (xs) + 2k () (xs) — 2a5(xF) (o) + as(4)(wy)
+d5<$12>
+k25 <$12> + 2d5<.7}4> <.7}12> + 2ks <3§‘4><$12>
el = —2as(a2)(24) + azles){zs) + dalee) + k(@) + 2da{as) (ws) + 2kaes) o)
AL — —2dy(a?) — 2halad) + azlwa) (@s) + da(as) + k(@) + 2az(wa) (w5) (o)
He8) — —2a3(o2)(wa) + asloa)(or) + dalos) + 2ds(wr) (@) + ha(onr) + 2ha (o) o)
d%;z) = —2d3(x§) — 2k3(x3) + as(wa)(x7) + d3(ws) + k3(ws) + 2az(ws) (27)(28)
W) — —2a5(a3)(xa) + kalws) + as(wa)(we) + 2ks(zs) (we) — 2a4 () (210) + aa(zy) (z10)
+da(x11)

+2dy(wo) (x11) + d5(x12) + 2d5(w9)(T12) + k6(T14) + 2k6(T9){T14)

i) — _9ay(a%y) (we) + as(we) (w10) + dafwnr) + ka(w11) + 2da(wi0) (11) + 2ka(w10) (@11
—2a6<$%0><x13> + ag <x10)(x13> + d6<$14> + kg <I14> + 2d6<$10><l‘14> + 2k6<$10><x14>
2

ﬂzizﬁ = —2dy(x1;) — 2ka(x;) + aa(zo)(z10) + da(w1r) + ka(w11) + 2a4(z9) (10) (T11)
Wei2) — _9ds(a3,) — 2ks(a%y) + as(za) (we) + ds(@12) + ks(w12) + 2a5(xa) (o) (212)
d<fh},3> = —2ag(x33) (w10) + ks (w12) + ag(x10)(x13) + 2k5(x12)(213) + d6(T14) + 2d6(213)(T14)

—2a7(x33)(w15) + ar{z13)(T15) + d7{m16) + k7(T16) + 2d7(213) (216) + 2K7(T13) (T 16)
—2ag(215)(z17)
+ag(x13)(w17) + do(220) + k9 (T20) + 2dg(213)(220) + 2k9(213)(Z20)

<ff4> = —2dg(x1,) — 2ke(x14) + ae(x10)(213) + d6(w14) + K6 (214) + 2a6(x10) (T 13) (T14)
<3§5> —2a7(x2:)(w13) + a7 (z13) (215) + dr(w16) + 2d7 (215) (@16) + ks (210) + 2ks(T15) (210)
Moo — _2d7(236) — 2hkr(ag) + ar(w13) (w15) + dr{z16) + kr(216) + 2ar(z13) (215) (216)
‘“3;” = —2ag(23;)(w13) + kr(z16) + ag(w13) (@17) + 2kr{z16) (217) — 2as{dy) (215)

)
+ag(x17)(w18) + 25;(96‘19) + 2dg(x17)(w19) + do{w20) + 2dg(217){(T20) + k10(w22) + 2k10(217)(T22)
8)

12
Weis) — _9ag(22) (217) + ag(w17) (w18) + ds(10) + ks(w19) + 2ds(w18) (T19) + 2k (x15) (210)

—2a10(x%g) (x21) + a10(@18)(T21) + dio(w22) + k1o(w22) + 2d10(T18) (T22) + 2k10(218) (T22)

d(z%) = —2d8<x1 > 2k8<I19> + CL8<I17> <:C18> + d8<l‘19> + k8<$19> + 2a8<x17> <3318><$19>
Woond — _odg(w3y) — 2ko(x30) + ag(@13) (m17) + do(w20) + ko(@a) + 2a9(x13) (x17) (@)

272
d<d§1> —2a10(x3,)(z18) + ko(20) + ar0(z18) (T21) + 2kg(20) (21) + dio(w22)
+22dlo<$21><$22>
% = —2d10(23,) — 2k10(23) + ar0(z18)(®21) + dio(z22) + kio(za2) + 2a10(z18) (T21)(T22)
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