SUPPLEMENTAL TABLES

Genotype ^a	<i>PRO_{INO}:^b</i> Transgene	P-value ^c	Adjusted Alpha Value ^d	Significantly Different
NO sup-5		4.40x10 ⁻¹⁸	8.33x10 ⁻⁰⁴	Yes
no-1 SUP		9.19x10 ⁻¹³	9.09x10 ⁻⁰⁴	Yes
Wild type	333	1.91x10 ⁻¹¹	1.00×10^{-03}	Yes
	333i	1.67x10 ⁻⁰⁹	1.11×10^{-03}	Yes
	331	4.44x10 ⁻⁰⁹	1.25×10^{-03}	Yes
	I33	9.59x10 ⁻⁰⁸	1.43×10^{-03}	Yes
	313	1.72×10^{-06}	1.67×10^{-03}	Yes
	131	2.51x10 ⁻⁰⁴	2.00×10^{-03}	Yes
		2.69x10 ⁻⁰³	2.50x10 ⁻⁰³	No
	311	5.09×10^{-02}	3.33×10^{-03}	No
	II3	5.20×10^{-02}	5.00×10^{-03}	No
	III3	3.67×10^{-01}	1.00×10^{-02}	No

 Table S1. Pairwise comparison of PRO_{INO}: INO/YAB3 with PRO_{INO}: III

Genotype ^a	<i>PRO_{INO}:^b</i> Transgene	P-value ^c	Adjusted Alpha Value ^d	Significantly Different
Wild type		7.10x10 ⁻¹³	8.33x10 ⁻⁰⁴	Yes
ino-1 SUP		7.10x10 ⁻¹³	8.33x10 ⁻⁰⁴	Yes
INO sup-5		2.24×10^{-12}	1.00×10^{-03}	Yes
	III	1.91x10 ⁻¹¹	1.11×10^{-03}	Yes
	III3	6.14x10 ⁻¹⁰	1.25×10^{-03}	Yes
	311	2.01x10 ⁻⁰⁹	1.43×10^{-03}	Yes
	313	2.54×10^{-07}	1.67×10^{-03}	Yes
	II3	2.75×10^{-07}	2.00×10^{-03}	Yes
	I33	$6.02 ext{x} 10^{-04}$	2.50x10 ⁻⁰³	Yes
	331	3.00×10^{-03}	3.33×10^{-03}	Yes
	131	5.20x10 ⁻⁰³	5.00×10^{-03}	Yes ^e
	333i	5.89x10 ⁻⁰²	1.00×10^{-02}	No

 Table S2. Pairwise comparison of PRO_{INO}: INO/YAB3 with PRO_{INO}: 333

^aOvules were examined in wild-type, *ino-1*, or *sup-5* mutant plants. ^bTransgenes were constructed as transcriptional fusions of the listed coding sequence with *PRO*_{INO} and examined in an *ino-1* mutant background. ^cThe phenotypic class distribution of each set was calculated using Fisher's Exact Test to determine the p-value. ^dAlpha values were adjusted by applying the modified Bonferroni adjustment to the alpha value ($\alpha = 0.01$). ^eFor *PRO*_{INO}:*I3I* versus *PRO*_{INO}:*333*, although the p-value>alpha value, the difference observed is considered significant due to the closeness of these values and the presence of ten wild-type individuals containing *PRO*_{INO}:*I3I* while *PRO*_{INO}:*333* individuals never appeared wild-type.

Genotype ^a	<i>PRO_{INO}</i> : ^b Transgene	P-value ^c	Adjusted Alpha Value ^d	Significantly Different
INO sup-5		4.40x10 ⁻¹⁸	1.00×10^{-03}	Yes
ino-1 SUP		9.19x10 ⁻¹³	1.11×10^{-03}	Yes
	555	2.55x10 ⁻⁰⁹	1.25×10^{-03}	Yes
	515	2.05x10 ⁻⁰⁸	1.43×10^{-03}	Yes
	151	6.66x10 ⁻⁰⁷	1.67×10^{-03}	Yes
	155	1.50x10 ⁻⁰⁶	2.00×10^{-03}	Yes
	5II	1.90x10 ⁻⁰⁶	2.50×10^{-03}	Yes
	55I	1.30×10^{-03}	3.33×10^{-03}	Yes
Wild type		2.69x10 ⁻⁰³	5.00×10^{-03}	Yes
	115	1.59x10 ⁻⁰²	1.00×10^{-02}	No

Table S3. Pairwise comparison of PRO_{INO}: INO/YAB5 with PRO_{INO}: III

Genotype ^a	<i>PRO_{INO}</i> : ^b Transgene	P-value ^c	Adjusted Alpha Value ^d	Significantly Different
Wild type		1.44×10^{-13}	1.00×10^{-03}	Yes
INO sup-5		4.97x10 ⁻¹³	1.11×10^{-03}	Yes
	III	2.55x10 ⁻⁰⁹	1.25×10^{-03}	Yes
	151	1.76x10 ⁻⁰⁷	1.43×10^{-03}	Yes
	5II	8.31x10 ⁻⁰⁷	1.67×10^{-03}	Yes
	115	3.83x10 ⁻⁰⁶	2.00×10^{-03}	Yes
	515	8.19x10 ⁻⁰⁶	2.50×10^{-03}	Yes
	551	6.47×10^{-05}	3.33×10^{-03}	Yes
	155	1.74x10 ⁻⁰⁴	5.00x10 ⁻⁰³	Yes
ino-1 SUP		8.76x10 ⁻⁰²	1.00×10^{-02}	No

Table S4. Pairwise comparison of PRO_{INO} : INO/YAB5 with PRO_{INO} : 555

Genotype ^a	<i>PRO_{INO}:^b</i> Transgene	P-value ^c	Adjusted Alpha Value ^d	Significantly Different
INO sup-5		4.40x10 ⁻¹⁸	1.67×10^{-03}	Yes
	CCC	4.30×10^{-14}	2.00×10^{-03}	Yes
ino-1 SUP		9.19×10^{-13}	2.50×10^{-03}	Yes
	CCCi	1.36x10 ⁻⁰⁸	3.33×10^{-03}	Yes
	IIIc	1.94×10^{-05}	5.00×10^{-03}	Yes
Wild type		2.69×10^{-03}	1.00×10^{-02}	Yes

Table S5. Pairwise comparison of PRO_{INO}: INO/CCC with PRO_{INO}: III

Genotype ^a	<i>PRO_{INO}:^b</i> Transgene	P-value ^c	Adjusted Alpha Value ^d	Significantly Different
Wild type		1.58x10 ⁻¹⁴	1.67×10^{-03}	Yes
	III	4.30x10 ⁻¹⁴	2.00x10 ⁻⁰³	Yes
ino-1 SUP		4.11×10^{-13}	2.50x10 ⁻⁰³	Yes
INO sup-5		8.95x10 ⁻⁰⁸	3.33×10^{-03}	Yes
	IIIc	$1.87 \mathrm{x10}^{-04}$	5.00×10^{-03}	Yes
	CCCi	4.61x10 ⁻⁰⁴	1.00×10^{-02}	Yes

Table S6.	Pairwise comparisor	of PRO _{INO} : INO/CCC with	th PRO _{INO} :CCC
Table So.	Pairwise comparison	OJ PROINO TINO/CCC WI	n PRO _{INO} :CC