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1. Overview 

The GEANN implementation encompasses two main phases, namely, the training and the 

annotation phases. Figure 1 illustrates the overall approach.  
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Figure 1. Steps of the process performed towards automated annotation of genomic entities 

Given a GO concept C, the goal of the training phase is to construct extraction patterns 

characterizing a variety of indicators towards the existence of an annotation by C. In order to 

extract the patterns, we employ supervised learning. Evidence papers of the existing annotations 

by C are used as the training data. The first step in the training phase is the tagging of genomic 

entities that appear in a given training paper. Tagging is further refined by using the synonyms of 

genes to locate additional gene symbols/names that are missed during the initial automated entity 

tagging stage. Synonyms of a gene can be obtained from any gene database, e.g. GenBank [34]. 

Then, we compute significant terms for C. Significant terms are determined through a statistical 

enrichment score which is a ratio between a term t’s frequency among the training papers and t’s 

frequency among the remaining papers in the database. Significant term set for a GO concept C 

also includes those words that appear in C’s name. 

Next, significant phrases for C are created by combining significant terms of C through a 

procedure like the Apriori algorithm [24]. More specifically, we first combine each pair of 

significant terms to obtain two-term phrases (i.e., phrases that contain two terms). Then, we 

compute the enrichment score of a two-term phrase and eliminate the ones whose enrichment 

scores are below a certain threshold. Next, we construct three-term phrases by combining two-

term phrases p1 and p2 where p1 and p2 overlaps except for the first term in p1 and the last term 
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in p2. Similarly, after eliminating three-term phrases with enrichment scores below the threshold, 

we construct four-term phrases by combining three-term phrases and so on until no new phrases 

can be created. Once the identifying elements (i.e., significant terms and phrases) of C are 

extracted, patterns of C are constructed based on (i) the identifying elements, and (ii) the 

surrounding “auxiliary” terms that appear around the identifying elements. Next, the pattern set 

of C is expanded with new patterns which are created by joining existing patterns that share 

overlapping terms. Finally, each pattern is assigned a score showing its reliability as an 

annotation indicator for the particular GO concept it belongs to. 

The GEANN annotation discovery phase takes the extracted patterns as its input, and produces a 

set of GO annotations for genes. For each pattern, GEANN looks for possible matches in 

Pubmed abstracts. The extracted patterns are flexible in that they match a class of phrases with 

close meanings. To this end, GEANN employs WordNet [3] to deduce semantic closeness of the 

words in the pattern matching process. WordNet is an online lexical reference system which 

organizes English nouns, verbs, adjectives and adverbs into synonym sets (synsets), each 

representing an underlying lexical concept. Given a pattern P and an excerpt T from a paper 

abstract, P matches T if (i) T includes the significant phrase S that constitutes the core of P, and 

(ii) there is at least one pair of words W1 and W2 that appears around S (in a certain window size) 

in P and T, respectively, such that W1 and W2 are semantically similar. As for the semantic 

similarity computation between words over WordNet, we employ edge distance-based and 

information content-based methods. More specifically, the edge-distance measure counts the 

number of relationships on the path from W1 to W2 in the WordNet hierarchy, while the 

information content-based measure relies upon the information content of the least common 

ancestor of W1 and W2 in WordNet as the similarity between W1 and W2. 

Once a match for a pattern is detected, GEANN locates the genomic entity (if any) that is most 

likely to be associated by the matching phrase towards an annotation. Hence, similar to the 

training papers, genomic entities in each target paper are also tagged before the matching is 

finalized. Next, GEANN computes a match score which shows the likelihood that the matched 

phrase can be used as a supporting evidence for the new annotation. Finally, GEANN attempts to 

map the genomic entity located in an abstract to a gene or a set of genes in the database. If there 

exists such a mapping, the annotation is stored in the GEANN database to be included in the 

final discovered annotation set. 

2. Methods and Algorithms 

In this section, we present the algorithm sketches for the procedures that are described in the 

main manuscript. 

 

2.1. Computing Significant Terms 

Given (i) a GO concept C, (ii) the set Ann(C) of gene annotations by C, (iii) a database of paper 

abstracts (PubMed in our case), and (iv) a threshold value, the algorithm sketch in figure 2 

computes the set of significant terms for C. For each term t that appears in an evidence paper of 

the input GO concept C, the algorithm simply computes the number of evidence papers (tf) that 

are associated with C, and that contain t, as well as the number of papers (idf) that contain t in 

the whole input paper database. Then, a simple statistical enrichment score is computed as (see 

the main manuscipt). The terms with enrichment scores below the input threshold are excluded 



4 

 

from the significant term list for C. Moreover, the terms that constitute the name of a GO 

concept that is being processed are by default considered to be significant terms. 

Algorithm: ComputeSignificantTermSet 

Input:  C:      Target GO Concept 

  Ann(C): Annotation Set of the target GO concept 

  D:      A genomics paper database (e.g., PubMed) 

  EThr:   Enrichment Score Threshold 

Output: S(C):   The set of significant terms for the target GO concept 

1:  S(C){}; 

2:  EP  All evidence papers in Ann(C); 

3:  Terms  All terms that appear in any paper in EP; 

4:  foreach(Term t in Terms) do 

5:   idf the number of papers in D, which contain t; 

6:   tf the number of papers in EP, which contain t; 

7:   EScrComputeEnrichmentScore(tf, EP, idf, D); 

8:   if(EScr  EThr)then 

9:    S(C)S(C)t; 
10: end foreach 

11: foreach(Term t in name(C)) do 

12:   S(C)S(C)t; 
13: end foreach 

14: return S(C); 

Figure 2. Algorithm Sketch to Compute Significant terms 

 

2.2. Computing Significant Phrases 

Significant phrases are constructed out of significant terms through a procedure similar to the 

Apriori algorithm [24]. Given (i) a GO concept C, (ii) the set Ann(C) of gene annotations by C, 

(iii) a database of paper abstracts (PubMed in our case), (iv) a threshold value, and (v) the 

significant term set S(C) for C, the algorithm sketch in figure 3 computes the set of significant 

phrases for C. In the first phase, each pair of terms in S(C) are combined to create length-2 

candidate phrases where “length” refers to the number of terms in a phrase. Then, the statistical 

enrichment score is computed for each candidate phrase, and those with enrichment scores below 

the input threshold are eliminated. Next, each pair of length-2 significant phrases is combined to 

obtain a length-3 candidate phrase, and similarly those with insufficient enrichment scores are 

eliminated. The procedure goes on in the same manner by creating length-(k+1) candidate 

phrases out of length-k phrases, and eliminating the ones with enrichment scores lower than the 

input threshold. In order for two significant phrases SPi and SPj of length-k to be combinable to 

produce a length-(k+1) candidate phrase, the last k-1 terms in SPi should be the same as the first 

k-1 terms in SPj. The procedure is repeated until no more new phrases can be created.  

Algorithm: ComputeSignificantPhraseSet 

Input:  C: Target GO Concept 

   Ann(C): Annotation Set of the target GO concept 

   D: A genomics paper database (e.g., PubMed) 

     EThr:   Enrichment Score Threshold 

   S(C):   The set of significant terms for the target GO concept 

Output: SP(C):  The set of significant phrases for the target GO concept 

1:  SP(C){}; 

2:  EP  All evidence papers in Ann(C); 

3:  CkS(C); 

4:  Ck+1{}; 

5:  while(Ck is not empty) do 

6:   foreach(Significant Term sti in S(C)) do 
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7:      foreach(Significant Term stj in S(C)) do 

8:  if(sti is_combinable_with stj)then 

     //string concatenation: sti + ” ” + stj 

9:     candidateSPCombine(sti, stj); 

10:     EScrComputePhraseEnrichmentScore(candidateSP, EP, D); 

11:     if(EScr  EThr)then 

12:      Ck+1Ck+1  candidateSP; 
13:     end foreach 

14:  end foreach 

15: SP(C)Ck+1  SP(C); 

16: CkCk+1; 

17: end while 

18: return SP(C); 

Figure 3. Algorithm Sketch to Compute Significant Phrases 

2.3. Constructing Patterns 

Figure 4 below presents an algorithm sketch to construct regular patterns. Given (i) a GO 

concept C for which the patterns will be extracted, (ii) C’s annotation set with corresponding 

evidence papers, (iii) Significant terms and phrases that are computed for C in the previous step, 

and (iv) a window size value, the algorithm returns the set of all regular patterns for C. More 

specifically, for each significant term or phrase TP, first, a pattern template is created, and its 

middle tuple is initialized to TP. Then, for each occurrence of TP in each evidence paper of C, a 

new pattern is created. And, the left and the right tuples of the new pattern are assigned to the 

surrounding words around TP in the currently processed evidence paper. Finally, the constructed 

patterns are returned as the output. 

Algorithm: ConstructRegularPatterns 

Input:  C: Target GO Concept 

  Ann(C): Annotation Set of the target GO concept    

  STP(C): Significant terms and phrases for the target GO concept 

  WindowSize: The number of terms allowed in LEFT/RIGHT tuples 

 

Output: RegPat(C): Regular patterns for the target GO concept 

1:  RegPat(C){}; 

2:  EP  All evidence papers in Ann(C); 

3:  foreach(Significant Term/Phrase tp in STP(C))do 

4: PatternTemplate tempnew PatternTemplate(); 

5: temp.MiddleTupletp; 

6: foreach(Occurrence occ of tp in papers in EP) do   

7:    Pattern newPatterntemp.CreatePatternInstance();     

8:     newPattern.LeftTupleocc.getLeftSurroundingWords(WindowSize); 

9:    newPattern.RightTupleocc.getRightSurroundingWords(WindowSize); 

10:    RegPat(C)RegPat(C)newPattern; 
11:  end foreach 

12: end foreach 

13: return RegPat(C); 

Figure 4. Algorithm Sketch to Compute Regular Patterns 

Transitive Crosswalk 

Figure 5 presents a simple algorithm sketch to construct side-joined patterns. Given a set of 

regular patterns, the algorithm simply checks each pair of regular patterns to see if the right tuple 

of the first pattern is the same as the left pattern of the second pattern. If this is the case, a new 5-
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tuple side-joined pattern is created, and its tuples are initialized. 

Algorithm: ConstructSideJoinedPatterns 

Input: C: Target GO Concept 

 RegPat(C): Regular patterns for the target GO concept 

 

Output: SJPat(C): Side-joined patterns for the target GO concept 

1: SJPat(C){}; 

2: foreach(Pattern pat1 in RegPat(C))do 

3:   foreach(Pattern pat2 in RegPat(C))do 

4:    if(pat1 = pat2)then 

5:  continue; 

6:    if(pat1.RightTuple = pat2.LeftTuple)then 

7:  SideJoinedPattern sjCreateEmptySideJoinedPattern();   

8:    sj.LeftTuple1pat1.LeftTuple;  

9:  sj.MiddleTuple1pat1.MiddleTuple; 

10:   sj.RightTuple1pat1.RightTuple; 

11:  sj.MiddleTuple2pat2.MiddleTuple; 

12:  sj.RightTuple2pat2.RightTuple; 

13:  SJPat(C)SJPat(C)sj; 
14: end foreach 

15: end foreach 

16: return SJPat(C); 

Figure 5. Algorithm Sketch to Construct Side-joined Patterns 

Middle Crosswalk 

Figure 6 depicts an algorithm sketch to construct middle-joined patterns. For each pair (P1, P2) 

of patterns in the input pattern set, the algorithm checks for overlaps either between middle tuple 

of P1 and left tuple of P2, or between right tuple of P1 and middle tuple of P2. If any overlap is 

found, then, according to the cases which are enumerated in the main manuscript, a new 4-tuple 

middle-joined pattern is created. 

Algorithm: ConstructMiddleJoinedPatterns 

Input: C: Target GO Concept 

      RegPat(C): Regular patterns for the target GO concept 

 

Output: MJPat(C): Middle-joined patterns for the target GO concept 

1: MJPat(C){}; 

2: foreach(Pattern pat1 in RegPat(C))do 

3:  foreach(Pattern pat2 in RegPat(C))do 

4:     if(pat1 = pat2)then 

5:  continue; 

6:    if(pat1.MiddleTuple  pat2.LeftTuple  )then 

7:  MiddleJoinedPattern mjCreateEmptyMiddleJoinedPattern(); 

8:  mj.LeftTuplepat1.LeftTuple; 

9:  mj.RightTuplepat2.RightTuple; 

10:  mj.MiddleTuple1pat1.MiddleTuple  pat2.LeftTuple; 

11:  if(pat1.RightTuple  pat2.MiddleTuple  )then //Case (c) 

12:     mj.MiddleTuple2pat1.RightTuple  pat2.MiddleTuple; 
13:  else //Case (b) 

14:     mj.MiddleTuple2pat2.MiddleTuple 

15:  else if(pat1.RightTuple  pat2.MiddleTuple  )then //Case (a) 

16:     MiddleJoinedPattern mjCreateEmptyMiddleJoinedPattern(); 

17:     mj.LeftTuplepat1.LeftTuple; 

18:     mj.RightTuplepat2.RightTuple; 
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19:     mj.MiddleTuple1pat1.MiddleTuple; 

20:     mj.MiddleTuple2pat1.RightTuple  pat2.MiddleTuple;  

21: end foreach 

22: end foreach 

23: return MJPat(C); 

Figure 6. Algorithm Sketch to Construct Middle-joined Patterns 

Pattern Matching 

Figure 7 presents an overview of the algorithm for locating pattern matches. Given a pattern Pat 

to be searched in a set of papers PaperSet, and the GO concept that Pat belongs to, the algorithm 

returns a set of gene annotation predictions with their confidence scores. For each occurrence of 

Pat’s middle tuple in a paper Pr in PaperSet, the corresponding left and right tuples are extracted 

from the surrounding words around the occurrence in Pr (lines 4-5). Then, Pat’s left and right 

tuples are compared for semantic similarity to the left and right tuples that are just extracted from 

Pr. In the algorithm of figure 7, this comparison procedure is abstracted through the invocation 

of the function ComputeMatchingScr (see the main manuscipt). 

Algorithm: SearchPatternMatching 

Input: Pat: A Regular Pattern  

PaperSet: A set of papers to be searched for Pat 

C: The GO concept to which Pat belongs 

 

Output: Ann: A set of annotations of the form (C, geneName, confidence) 

1: Ann{}; 

2: foreach(Paper pap in PaperSet)do 

3:   foreach(Occurrence occ of pat.MiddleTuple in pap)do 

4: tempLeftTupleocc.getLeftSurroundingWords(pat.LeftTuple.Length); 

5: tempRightTupleocc.getRightSurroundingWords(pat.RightTuple.Length); 

6: leftTupleMatchScrComputeMatchingScr(pat.LeftTuple, tempLeftTuple); 

7: rightTupleMatchScrComputeMatchingScr(pat.RightTuple, tempRightTuple); 

8: matchScore(leftTupleMatchScr + rightTupleMatchScr)/2; 

9: if(matchScore > 0)then 

10:    confidencepat.GetScore() * matchScore; 

11:    geneNameLocateGeneAroundMatch(occ, pap); 

12:    AnnAnn  (C, geneName, confidence);    

13: end foreach 

14: end foreach 

15: return Ann; 

Figure 7. Algorithm Sketch for Pattern Matching 

2.7. Pattern Matching 

In figure 8, we present a sketch of the implementation for ComputeMatchingScr function which 

is called by the main algorithm in figure 7. In order to compute the overall semantic similarity 

between sets of words based on the similarities between individual word pairs, we utilize an open 

source software library [32] which uses the Hungarian method [16] to solve the problem as 

follows. Given two word sets, WS1 and WS2, let n be the number of words in WS1, and m be 

the number of words in WS2 (lines 1-2). First, a semantic similarity matrix, R[n, m], containing 

each pair of words in WS1 and WS2 is built (line 3), where R[i, j] is the semantic similarity 

between the word at position i of WS1 and the word at position j of phrase WS2, which can be 

computed using either of the measures explained above (line 8). Thus, R[i, j] is also the weight 
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of the edge from i to j. The problem of computing the semantic similarity between two sets of 

words WS1 and WS2 is considered as the problem of computing the maximum total matching 

weight of a bipartite graph [16]. This makes sense since WS1 and WS2 are disjoint in the sense 

that the comparisons are always made between word pairs that belong to different sets. Finally, 

the Hungarian method [16] is used to solve problem of computing the maximum total matching 

weight of a bipartite graph.  
 

Algorithm: ComputeMatchingScr 

Input: WordSet1: A set (bag) of words  

 WordSet2: Another set (bag) of words to be compared to WordSet1 

 

Output: SScr: Semantic Similarity Score between WordSet1 and WordSet2 

1:  nWordSet1.Size(); 

2:  mWordSet2.Size(); 

3:  R[n,m]Matrix[n,m]; // Initialize semantic similarity matrix 

4:  for(i0;i<n;i++)do 

5: word1WordSet1[i]; 

6:   for(j0;i<n;i++)do 

7:   word2WordSet2[j]; 

   //Compute semantic similarity between word1 and word2 using either      

//edge distance- or information content-based measure  

8:   R[i,j]ComputeSemanticSimilarity(word1,word2) 

9: end for 

10: end for 

    //Construct bipartite graph where nodes corresponds to the words in 

    //WordSet1 and WordSet2, and the weights are assigned from R 

11: BipartiteGraphConstructBipartiteGraph(WordSet1, WordSet2, R); 

    //Compute the maximum total matching weight using Hungarian Method 

12: maxMatchingWeightHungarianMaxTotalMatchWeight(BipartiteGraph); 

13: return maxMatchingWeight; 

Figure 8. Algorithm Sketch for Semantic Similarity Computation between Sets of Words 

3. Additional Results and Discussion 

3.1. Overall Performance and Named Entity Tagger Errors 

The accuracy of the tagging gene/gene products in the text influences the association of a pattern 

to a genomic entity. However, named entity taggers (NETs) are still not perfect in locating all the 

gene names correctly in textual data. As an example, the NET Abner that is used by GEANN has 

68% precision at 77% recall [33]. Hence, the results given in observation 1 (in the main 

manuscript) also involve erroneous cases resulting from the NET. Therefore, for an accurate 

evaluation of GEANN system alone, one needs to quantify the cases where low recall values are 

due to the imperfections of the tagger, and not due to the deficiencies of GEANN. It may be 

quite hard to exactly quantify those error cases where the tagger prevents GEANN from 

predicting an annotation accurately. Therefore, we take a minimalist approach, and attempt to 

quantify the portion of the errors that is guaranteed to be due to the fact that the NET has missed 

some of the genes. The heuristic that we employ is as follows. 

H1 (Tagger-missed genes): If none of the synonyms of a gene has been recognized by the tagger 

in any of the papers which are associated with the GO concept G, then label the gene as a tagger-

missed gene, and remove it from the paper set associated with G.  
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Figure 9.  Overall System Performance & Approximate Effect of the Error due to the 

Named Entity Tagger 

Thus, from the middle line of figure 9, we have 

Observation: After eliminating tagger-missed genes, the average recall of GEANN has increased 

to 61% from its previous value 48% at the precision level of 78%. 

Clearly, heuristic 1 underestimates the actual error rate of the named entity tagger. More 

specifically, in contrast to the implicit assumption of the heuristic, recognizing a gene in at least 

one of the papers may not guarantee that the gene is located at the text position it is expected. It 

is crucial to be able to recognize the gene in the papers that contain texts matching at least one 

pattern rather than in an unrelated paper, that is, the heuristic used to model the tagger error rate 

assumes the minimal error rate, but the actual error rate may be much higher. In addition, 

eliminating tagger-missed genes will not improve the precision as the elimination process only 

narrows down the gene set that is missed, and has no effect on the discovered gene set. 

Therefore, precision is plotted only once in figure 9. For the experiments, we consider the 

negative effect due to NET errors. 

3.2. Annotation Accuracy across Different Subontologies in GO  

In this section, evaluate the accuracy of GEANN across the three different subontologies of GO, 

namely, biological process, molecular function, and cellular location. To this end, the GO 

concepts are grouped according to the subontologies they belong to. Then, the same steps 

described in experiment 1 are run once again, but, this time, average values are computed within 

the individual groups rather than out of the whole concept set used for the evaluation. Figure 10 

plots the precision/recall values of the three different subontologies of GO (MF: Molecular 

function, BP: Biological Process and CC: Cellular Component).  

Observation 3: In terms of precision, GEANN provides the best precision for the concepts from 

cellular component (CC) and molecular function subontologies where precision is computed as 

80% while biological process (BP) subontology yields the highest recall (63% at 77% precision).  
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Figure 10. Annotation accuracy across different subontologies in GO 

The fact that MF subontology provides better precision may be due to the fact that functionality 

concepts in GO are more specific in the MF subontology than biological process names. This is 

mainly because biological process concepts refer to biological pathways, and pathways are more 

general biological abstractions in comparison to the specific functionalities of enzyme 

proteins/genes, a number of which is included in each pathway. As for the CC subontology, 

higher precision values may be because, in contrast with other subontologies, the variety of the 

words to describe the cellular location is perhaps much lower, and the fact that the CC ontology 

is the smallest among the three GO subontologies supports our reasoning. 

4. Enhancing Recall 

As illustrated through the experimental results in the main manuscript and the supplementary 

material document, an inherent drawback of pattern-based text mining systems is the fact that 

their recall performance is frequently low. In this section, we describe and evaluate two different 

approaches to obtain annotation predictions with high recall: (i) through a probabilistic 

annotation framework, and (ii) by adjusting statistical enrichment threshold value.  

4.1. A Probabilistic Annotation Framework 

GEANN models the surrounding words around annotated genes in training paper set as patterns. 

In order to take advantage of relatively higher precision due to the use of structural patterns and 

to alleviate the strictness of pattern-based systems, in this section, we model the surrounding text 

around target gene names in terms of multiple ordered pairs of words. Then, based on the 

frequency of each ordered pair in the training data, we compute the likelihood that a given 

ordered pair appears in the neighborhood of a gene which is annotated with a certain GO 

concept. In other words, we model the neighborhood of an annotated gene as a set of ordered 

pairs of words associated with probability scores.  

Definition (k-neighborhood of a gene): Given a textual excerpt T from a paper P where 

stopwords are eliminated from T, and a gene g that appears in T at position i, let T(j) represent 

the word that appears at position j in T. Then, the k-neighborhood k-Nhood(g, T) of g is an 
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ordered list of words which are located at most k-words apart from g in T, that is, k-Nhood(g, T) 

= ( T(n) | i-k  n  i+k and T(i)=g and ni). And, k is called the radius of the neighborhood. 

Example 5: Consider the excerpt T from the abstract of a paper [39] which describes the role of 

gene Kap104 in cell cycle.  

               T  = “ … implies a novel role for Kap104 in cell cycle progression …” 

3-NHood(Kap104, T) = (imply, novel, role, cell, cycle, progress) and 2-Nhood(Kap104, T) = 

(novel, role, cell, cycle) after stopwords are eliminated and the remaining words are represented 

in their base forms. 

Next, in order to represent the structure in the neighborhood of a gene in a flexible manner, we 

construct ordered pairs of words from the k-neighborhood of a gene. We give an example. 

Example 6: For the gene Kap104 in the previous example, assume that the neighborhood radius 

is 3. Then, the ordered term pair representation of 3-NHood(Kap104, T) is as follows. 

 

 

3-NHood(Kap104, T)  = 

(imply, novel) 

(imply, role) 

(imply, cell) 

(imply, cycle) 

(imply, progress) 

(novel, role) 

(novel, cell) 

(novel, cycle) 

(novel, progress) 

(role, cell) 

(role, cycle) 

(role, progress) 

(cell, cycle) 

(cell, progress) 

(cycle, progress) 

Figure 11. Ordered Term Pair Representation for Kap104 

Definition (Ordered-pair representation of a gene’s k-neighborhood): Given a textual excerpt T 

from a paper P, a gene g, and a k-Nhood(g, T) of g in T, let wi denote the word at position i in k-

NHood(g, T). Ordered pair representation for k-NHood(g, T) is k-OPR(g, T) = {( wi, wj) | i < j}. 

Remark: The number of ordered pairs in k-OPR(g, T) of a gene g is 
( -1)( - 2)

2

k k
. 

After creating ordered pair representation for each appearance of genes in the training paper set, 

we compute a probability score for each ordered-word-pair (wi, wj) based on the frequency of 

(wi, wj) in all possible neighborhoods.  

Definition (Probability of an ordered-word-pair): Given a set S of k-OPR(g, Ti)s where g is a 

gene in the training data set, and an ordered-word-pair (wi, wj), let S’ be subset of S such that  

k-OPR(g, Ti)  S’, (wi, wj) k-OPR(g, Ti). Then, the occurrence probability P((wi, wj)) of (wi, wj) 

is P((wi, wj)) =|S’| / |S|. Note that P((wi, wj)) ≠ P((wi, wj)) 

Example 7:  Consider the textual excerpts T1 [39] and T2 [40], which contain neighborhoods 

(with radius 3) for genes Kap104 and Cdc6, respectively, as shown in figures 11 and 12. 

T1  = “ … implies a novel role for Kap104 in cell cycle progression …” 

T2 = “… cells degrade ubiquitinated Cdc6 every cell cycle at the beginning …” 

Then, the set S of all neighborhood sets S = {3-NHood(Kap104, T1), 3-NHood(Cdc6, T2)}, and 

occurrence probability of ordered-pair (cell, cycle) is P((cell, cycle)) = 1 as it appears in all 3-

neighborhoods in S, while P((cycle, progress)) = 0.5 since it appears only in 3-NHood(Kap104, 

T1). 
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3-NHood(Cdc6, T2)  = 

(cell, degrade) 

(cell, ubiquitin) 

(cell, cell)  

(cell, cycle) 

(cell, begin) 

(degrade, ubiquitin)  

(degrade, cell) 

(degrade, cycle) 

(degrade, begin) 

(ubiquitin, cell) 

(ubiquitin, cycle) 

(ubiquitin, begin) 

(cell, cycle) 

(cell, begin) 

(cycle,begin) 

Figure 12. Ordered Term Pair Representation for Cdc6 

Note that since the word “cell” appears two times in the neighborhood, the duplicate ordered 

pairs (shown with a strikethrough line) are eliminated. 

The probability of an ordered-pair is dependent upon the size of the reference gene neighborhood 

set S according to which it is defined. When S equals the set of all gene neighborhoods in 

evidence papers of a GO concept G, the probability of an ordered-pair (wi, wj) is denoted as 

PG((wi, wj), G). Moreover, when S equals the set of all gene neighborhoods in evidence papers 

that are associated with any GO concept in a set D of GO concepts, the probability of an ordered-

pair (wi, wj) is denoted as PD((wi, wj), D).  

Next, based on the probability of an ordered-pair both in the context of a GO concept and in the 

context of a database D of GO concepts, we define the enrichment ratio of an ordered pair as a 

measure of how related an ordered pair is to a GO term. 

Definition (Enrichment Ratio of an Ordered-Pair): Given an ordered pair (wi, wj), a database D 

of GO annotations, and a set D’ of annotations for a particular GO concept G such that D’ D, 

the enrichment ratio of (wi, wj) with respect to G and D is E((wi, wj), G, D) = PG((wi, wj), G)/ 

PD((wi, wj), D).  

Finally, we compute the score of candidate annotation of a gene g with a GO concept G by 

summing the enrichment ratio of each ordered pair in its g’s neighborhood.  

Definition (Score of a candidate annotation): Given a GO concept G, a database D of GO 

concepts, a neighborhood radius k, a textual excerpt T from a paper, and the ordered-pair 

representation k-OPR(g, T) for a k-neighborhood k-NHood(g, T) of a gene g in T, the score S(g, 

G, D) of candidate annotation of g by G in k-NHood(g, T) is  

( wi, wj)  k-OPR(g, T) E((wi, wj), G, D) 

If a gene has multiple neighborhoods (i.e., multiple occurrences/mentions), then the score of a 

candidate annotation for a gene is the sum of all its neighborhoods as each neighborhood is 

considered as a distinct evidence for the annotation.  

 

Precision/Recall Analysis: 

In order to measure the accuracy of the approach described in this section, we perform k-fold 

cross validation, and we employ the same assumptions which are also presented in the results 

section of the main manuscript. Figure 13 presents the precision and recall values at different 

top-k values where the neighborhood radius is set to 10. Since the results set sizes for GEANN 

and the probabilistic approach are different, in this section, we do not show their performance 

results on the same graph. For GEANN’s performance results, please see section 5.  
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Figure 13. Performance of the Probabilistic Approach 

Observation 13: The probabilistic approach provides the maximum F-value of 0.56 when 

precision is 51% and recall is 62%, while pattern-based GEANN provides the maximum F-value 

of 0.68. 

Observation 14: At recall of 61% which is the maximum recall that GEANN can achieve at its 

maximum precision level, the probabilistic approach has a precision of 51% while GEANN has 

precision of 78%.  

Observation 15: The probabilistic approach can reach to higher recall values (77% at the 

maximum) which is significantly higher than what GEANN provides (61% at the maximum).  

Since pattern-based GEANN algorithm is much more stricter than the probabilistic approach, 

GEANN achieves higher precision at the cost of missing some of the annotations which leads to 

low recall values. The bottom-line lesson that one can derive from the above observations is that, 

for application settings that require high precision, the pattern-based GEANN is the option to be 

employed, while, for some other application settings that put more value on completeness (hence 

high recalls), the probabilistic approach can be preferred over GEANN. One such setting that 

may emphasize high recalls is when there exist a large number of curators available, who can 

further filter the false positives returned by the probabilistic approach, and have a more complete 

set of annotations. On the other hand, for settings with minimal or no curation facility (e.g., an 

unsupervised web-based annotation tool), GEANN may be more useful with lower number of 

false positives. 

 

Assessing Different Choices on Neighborhood Radius 

The probabilistic approach constructs gene neighborhoods (hence ordered-pair sets) based on the 

radius of the neighborhood variable. In this section, we evaluate the effect of different radius 

choices on the overall performance of the probabilistic approach. We compare the results based 

on (a) the average precision and recall that are computed over different top-k values by varying 

k, and (b) the maximum precision/recall that can be obtained. The table below summarizes the 

results for different values of the neighborhood radius. 

Radius Average 

Precision 

Average 

Recall 

Precision at Max 

Recall 

Max 

Recall 

1 0.61 0.39 0.59 0.40 

2 0.50 0.62 0.46 0.68 

3 0.44 0.68 0.41 0.74 
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7 0.42 0.71 0.38 0.77 

10 0.42 0.71 0.38 0.77 

14 0.42 0.71 0.38 0.77 

Table 6.1 The performance of the probabilistic approach at different neighborhood radius values 

Observation 16:  Smaller neighborhood radius values provide higher precision but lower 

recall values, while larger neighborhood radius values lead to higher recall, but lower precision 

values. 

As the neighborhood size gets larger, the ordered-pair sets that are taken into consideration 

during the enrichment score analysis are constructed out of the words that are far from the 

candidate gene that ocurs in the text. Since, words that are far from a gene occurrence most of 

the time are not directly related to or refer to the candidate gene, the reliability of such words as a 

basis for a possible annotation decreases. Hence, the overall precision decreases as the 

neighborhood sizes get larger. As for low recall values at smaller neighborhood radius values, 

the only way a candidate gene can get a non-zero score so that it could be considered for the final 

result set is that it should have at least one ordered-pair (Wi, Wj) in its neighborhood such that 

(Wi, Wj) also appears in one of genes’ neighborhoods in the training data. As we presented 

through a remark above, the number of ordered pairs in k-neighborhoods of a gene G is O(k
2
)) 

where k is the neighborhood radius. As the size of the ordered-pair representation of a gene’s k-

neighborhood decreases due to the smaller radius selection, the probability that its neighborhood 

would have a common ordered pair with any of the genes in the training data decreases. Hence, 

the number of candidate genes which are not considered in the final result set increases, which 

leads to missing larger number of genes compared to the cases where the neighborhood radius is 

set to larger values. 

 

Incorporating Constraints for Ordered-Pairs 

Presently, the probabilistic approach utilizes all ordered pairs for the candidate gene set 

generation, regardless of the enrichment values of the ordered-pairs that are extracted from the 

training data. In this section, we study enforcing a threshold constraint on the enrichment scores 

of ordered-pairs so that only those ordered-pairs with enrichment scores over a given threshold 

are utilized to locate and score candidate test genes. To this end, similar to the evaluation scheme 

of section 6.1.2, we present tabular results for average and max values of precision and recall at 

different enrichment ratio thresholds. Table 6.2 presents the results of this experiment where the 

neighborhood radius is set as 7. 

Enrichment Ratio 

Threshold 

Average 

Precision 

Average 

Recall 

Precision at Max 

Recall 

Max Recall 

0 0.42 0.71 0.38 0.77 

0.1 0.59 0.39 0.57 0.43 

0.2 0.62 0.36 0.58 0.42 

0.3 0.69 0.41 0.66 0.48 

Table 6.2 The performance of the probabilistic approach at different enrichment ratio thresholds 

Observation 17: Incorporation of the enrichment ratio threshold increases the precision as much 

as 60% while the recall decreases at almost the same rate. 
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Since ordered-pairs with high enrichment ratios are expected to be more related to a particular 

GO term, it is expected that the precision will increase. Due to the same reasoning that is 

presented in section 5.2 to explain the low recall values for smaller neighborhood radius sizes, 

depending on the decrease in the total number of ordered data sets, the number of candidate 

genes with no overlapping ordered-pairs with the training set of genes increases, which leads to 

lower recall values at high enrichment thresholds. 

Once again, depending on the application type, one may choose to apply lower or higher 

enrichment ratio thresholds to adjust the accuracy of the probabilistic approach. 

 

4.2. Adjusting Statistical Enrichment Threshold 

In this experiment, our goal is to study how the accuracy, particularly recall, of GEANN changes 

at different statistical enrichment (SE) thresholds, which is used to eliminate words that are not 

useful for the GO concept being annotated. Figure 14 shows the precision and the recall at 

different SE threshold values. 

Observation 18: The maximum recall of 87% is obtained when the enrichment threshold is 2 

where F-value also reaches to its maximum value of 0.76. 

Observation 19: Adjusting enrichment threshold to lower values results in higher recall than the 

maximum recall value provided by the probabilistic approach of section 6.1. 

Observation 20: As the enrichment threshold increases, GEANN’s precision increases while the 

recall and F-values decrease. The fact that F-value also decreases by increasing the enrichment 

threshold indicates that recall decreases more than the increase in precision. 
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Figure 14.  Precision/Recall at Different Enrichment Thresholds 

It is expected that, with increasing enrichment threshold values, the precision should increase 

since, as the enrichment threshold increases, more significant terms are eliminated from the 

initially selected set of terms.  Although the F-value is the highest at low enrichment thresholds, 

it does not directly imply that lower enrichment thresholds should be preferred because, at lower 

thresholds, the generated significant term list may contain irrelevant terms, which are not 

intuitively descriptive for the corresponding GO concept. Moreover, since the targeted databases 

are quite large (PubMed with 15 million papers, for instance), increasing the precision is more 

crucial than getting higher recalls in the context of our problem. Hence, the enrichment filter 

provides a controlled mechanism to achieve higher precision in large text databases. Therefore, 
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at the expense of losing some F-value, throughout the above experiments presented in previous 

sections, we set the enrichment threshold at a moderate value of 6. However, for the comparative 

study in section 5.4, the enrichment threshold is set to 2 since only F-values are known for the 

other studies, and GEANN provides the highest F-values at lower enrichment thresholds. 

Observation 21: At higher enrichment thresholds, no significant terms satisfying the enrichment 

threshold could be found for several GO concepts. At the enrichment threshold of 10, two GO 

concepts, and at the enrichment threshold of 12, five GO concepts were removed from the 

experimental set as no significant terms (hence no patterns) could be generated for these GO 

concepts.   

Observation 22: All GO concepts for which no significant term could be found at higher 

enrichment thresholds reside at GO levels 5 or lower.  

The above observation indicates that high enrichment thresholds mostly hurt general GO 

concepts at lower levels (5 or less) of GO (where the root resides at level 1), which makes sense 

since the concepts at higher levels are quite diverse in that they span a number of distinct 

genomic or biological titles in a single context. Therefore, it is less likely or more difficult to find 

terms that can only be attributed to such concepts, but not to the others. 

5. Related Work 

Raychaudhuri et al. [5] and Izumitani et al. [6] employ machine learning techniques for gene 

annotation via classification of articles that are associated with each gene into GO concepts. As 

discussed in the previous section, although GEANN is more flexible in terms of its assumptions 

and granularity of the resulting annotations, its performance is still comparable to these systems. 

Asako et al. [12] employs actor-object relationships by analyzing the sentences syntactically 

from the NLP (Natural Language Processing) perspective. This system is optimized for the 

biological process subontology, and the actor-object relationship may not always apply to other 

ontolologies, e.g., cellular location. Finally, the system is semi-automatic, i.e., it requires human 

input, and manually created patterns and regular expressions. The system is reported to achieve 

36% precision at 51% recall.  

Ravichandran and Hovy [14] studied surface text patterns for open-domain question answering 

systems. For a birthday question (e.g., “When was X born?”), for instance, among the patterns 

extracted by the system are “<NAME> was born on <ANSWER>”, “born in <ANSWER>, 

NAME”. One of the shortcomings of this approach is that some of the extracted patterns are very 

general (e.g., <ANSWER>, <NAME> extracted for “what is x?” type of question). Hence, such 

patterns match to many false positives. Besides, the extracted patterns cannot locate long 

distance dependencies which involve a set of words between the answer and the question term in 

a sentence. 

Mann [15] explores techniques to automatically construct a fine-grained proper noun ontology 

using textual co-occurrence patterns. To this end, the patterns are sequences of part-of-speech 

tags. The presented approach in this work only considers the syntactical structure of phrases in 

terms of their part-of-speech tags. Hence, Mann ignores semantic features conveyed in individual 

terms of a pattern. Another limitation of this technique is that the user has to provide part-of-

speech tag sequences to the system. 

Fleischman et al. [41] proposes extensions to Mann’s work. The extension involves the usage of 
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appositions as well as noun/proper noun constructions, and the incorporation of filtering 

mechanisms through the employment of classifiers (e.g., Naive Bayes, SVM) in order to 

eliminate incorrect pattern matches. Although this methodology works for the extraction of 

concept instance relationships, it does not eliminate the inherited limitations of the framework 

[15] that it extends. In addition, during the filtering stage, in order to train the classifiers, 

Fleischman et al. creates a hand-tagged set of 5,000 pattern output labeled as legitimate or 

illegitimate. In the case of Pubmed, preparing a hand- tagged set from 15 million Pubmed 

abstracts would not be a practical approach.  

In another study, Fleischman and Hovy [17] present a supervised learning method to 

automatically classify person instances in eight fine-grained subcategories. This work is very 

similar to our flexible pattern approach in that it uses WordNet to deduce semantic closeness of 

words/phrases, and takes into consideration word frequency (topic signatures [17]) similar to 

what we call the significant word model. However, the proposed method relies on a large 

training set which is not available for our case as the number of referred Pubmed evidence 

articles for each GO concept is not large. Besides, we use significant terms to construct 

additional patterns so that we can locate additional semantic structures as indicators of 

annotation evidence while this article only considers the target instance as the base of its 

patterns. Last, but not the least, the framework proposed in this article only considers semantic 

closeness of frequent words, whereas we also take into account the semantic closeness of the 

surrounding terms of a pattern (i.e., terms in left and right tuples of a pattern).  

Riloff [7] proposes a technique to extract the patterns from a large text corpus. His technique 

relies on some pre-defined 15 heuristic rules. The technique is also completely mechanical, and 

ignores the semantic side of the patterns. In addition, patterns are strict in that they require word-

by-word exact matching.  

Brin’s DIPRE [8] is one of the pioneering systems in the information extraction field in recent 

decades. This work is motivated by extracting instances of a given relation (e.g., relation of 

books (author, title)) from web documents. DIPRE needs an initial set of seed elements as input, 

and uses the seed set to extract the patterns by analyzing the occurrences of seed instances in 

web documents. The algorithm in its next step uses newly discovered instances to generate new 

patterns.  

SNOWBALL [9] extends DIPRE’s pattern extraction system by introducing the use of named-

entity tags, and pattern reliability evaluation techniques. Rather than assigning a fixed set of 

terms as the prefix and the suffix of the patterns, SNOWBALL employs a probabilistical 

approach. In this context, it attempts to accommodate all of the possible terms that have been 

seen in the previous occurrences of the pattern under varying scores according to their 

appearance frequencies. Later, the occurrence frequencies are used during the evaluation of 

matches to the patterns to omit false matches. Although SNOWBALL introduces a frequency-

based pattern evaluation model, both SNOWBALL and DIPRE impose strict pattern structures 

that require exact keyword matches. Hence, if a prefix or a suffix has not been seen before, it has 

no chance of matching patterns ignoring the fact that it may well have a close semantic distance 

to the pattern prefix/suffix under consideration. In addition, these studies differentiate from our 

approach in that they only consider the relation instances to construct their patterns, and do not 

deal with other possible significant terms that may indicate a relationship being sought.  

Etzioni et al. [10] developed a web information extraction system called KnowItAll. KnowItAll 
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intends to automate the discovery of large collection of facts in web pages. Since its working 

domain is www, the framework assumes information redundancy. Hence, it is developed with 

the postulation that creating patterns that match only simple phrases containing facts would be 

enough to achieve high precision and recall in the result set. To this end, they propose generic 

patterns which are instantiated by concepts and relationships of a given ontology. Provided with 

such an ontology and pattern instances, the system poses queries to different search engines with 

some keywords representing a pattern, and extracts the instances of a concept or relationship in 

the ontology. Despite the fact that the proposed framework scales well for web documents, this 

approach does not seem applicable to the mining of Pubmed abstracts for GO annotation 

evidences. This is because (i) the assumption of information redundancy does not hold for 

PubMed abstracts as each article is a peer-reviewed study, and contains original knowledge 

which is not repeated most of the time, (ii) dealing with only simple phrases and ignoring 

complicated sentences may decrease the precision and recall of our mining system as most of the 

sentences in scientific abstracts are not as simple as those accommodated on the web, and (iii) 

KnowItAll assumes that pattern templates are given by the user; however, our approach is to 

learn these templates from the existing annotations so that we can make use of the effort that has 

already been spent to manually curate the annotations.     

Recently, in order to evaluate the existing annotation systems, the BioCreative contest [13] has 

been held. The second task of this contest is extracting the annotation phrases when given an 

article and a protein. The results [11] submitted by each participant were evaluated manually by 

the experts, and most of the evaluated systems had low precision (46% best performing system) 

with no recall calculation. 

6. Future Work 

GEANN can be extended in the future by addressing the following issues.  

Data Reconciliation: In this study, reconciliation of the genomic entity set extracted from the 

text with genes and proteins of a well-known data source (e.g., GenBank), missing in other 

related work, is one of the significant steps within the annotation procedure. GEANN utilizes the 

synonym information stored in GenBank to identify the discovered entities within the gene and 

protein set of GenBank. Genomic entities may have several synonyms for historical purposes, 

and as their functionality is better characterized through wet-lab experiments, new names are 

assigned to describe their newly discovered functions. Usually, the old names are also kept for 

back-compatibility purposes. Obviously, synonym information may not be enough to uniquely 

characterize a gene in a large biological data source. As a future extension to GEANN, 

definitions and synonyms from variety of other data sources can be merged into a single 

extended genomic entity definition by taking advantage of external links pointing to the same 

entity in different data sources. Then, the extended definition can be attempted to match the 

surrounding words around the tagged gene/protein in the text, and the best match can be chosen.  

Utilizing Concept Hierarchies: GEANN can be improved by exploiting the hierarchical structure 

that the GO concepts are organized. Currently, GEANN utilizes GO mostly as a data source, and 

does not take advantage of the internal organization among the concepts. The only structural 

property it exploits is during the accuracy analysis of predicted annotations, where an annotation 

to the parent of concept T is considered to be correct if the genomic entity is already annotated 

with concept T. This is also known as true-path rule. This rule can also be utilized during the 



19 

 

creation of extraction patterns, and pattern matching stages. For instance, the pattern set for the 

concept T can be enriched by including the patterns created for the descendants of concept T in 

the GO hierarchy. In addition, extraction patterns may be shared among the concepts which are 

not on the path. Through shared patterns, one can actually walk across the concepts in GO and 

utilize the additional patterns that would be obtained from the destination concept’s prediction 

list. In this way, concepts that do not have many extraction patterns may have better recall 

values. This may lead to many false positives; hence, one needs to find measures to evaluate the 

strength of the predictions obtained through the GO concept walk.     

Evidence Type Inference: Each annotation is given an evidence code specifying the way 

annotation has been established. GEANN currently ignores evidence codes and considers them 

of single type without any differentiation. As a GEANN extension, after the prediction stage, one 

more step can be applied to infer an evidence code for the newly discovered annotation. To this 

end, new extraction patterns can be constructed based on the existing annotation information. 

However, the evidence type is usually fairly implicit within the text; so extracting such 

information may require different pattern extraction techniques. One direction to proceed in this 

context is to consider the whole abstract as a single entity, and create model(s) of evidence code 

that will fit to the whole abstract, not just a single expression or sentence. For this purpose, 

sequence of indicator terms can be computed with their relative position information in account 

so that an evidence code skeleton for the whole abstract can be created. During the matching 

process, the existence of identifying terms and their relative positions will define the degree of 

conformity for the evidence code under consideration. 

 Entity Tagging: As GEANN depends on an external named entity tagger to recognize the 

gene/protein names in the text, it inherits the errors caused by the employed tagger. In this study, 

we developed a simple heuristic to approximate the effects of the error in named entity detection 

on GEANN’s performance. The assumption that if a gene/protein is recognized in at least one 

sentence of an abstract, then it must have been recognized in all of the other articles does not 

completely characterize the error rate due to the named entity tagger. This is mainly because 

named entity taggers are more than syntactical keyword recognizers as they also take into 

account the surrounding contextual terms to disambiguate between real genomic entity names 

and  homonym words used with different meanings. Hence, the assumption does not cover all the 

erroneous cases of the tagger, and, in practice, the contribution of the tagger error to performance 

decrease may be much larger. Exploring a better way of characterizing the tagger errors would 

be useful in order to have a better idea of the overall system performance. Obviously, the 

approach we took is a bottom-line approach which guarantees a lower bound for the tagger error 

rate.  

Annotation Time: In this paper, our primary focus is on the accuracy of the algorithm. Hence, we 

have not made a special effort on the time efficiency of the system. Nevertheless, we have 

measured the annotation time for 1,000 abstracts, which is about 378.3 seconds for a GO 

concept. This can be further improved with additional indexing and in-memory processing of 

some of the statistical calculations if the database is small enough. As an example, the similarity 

between the words in WordNet can be pre-computed and stored in a database or in main memory 

to avoid similarity computations during the annotation. 
 

 

 


