
Supplementary Information for:
Using quality scores and longer reads improves

accuracy of Solexa read mapping

Andrew D Smith Zhenyu Xuan Michael Q Zhang

Supplementary Methods

Counting mismatches between reads and genomic sequence.In the RMAP program the basic
comparison between a read and any genomic region involves counting the number of mismatches
between those two strings. Since all of the reads, as well as the genome, are stored in a binary
format, a few machine operations (mainly involving XORs) can produce a machine word that is
essentially a bit vector having a ’1’ at every position where the two strings differ.

To count the number of ’1’s in such a bit vector, we use a technique that employs bit parallelism.
Here is some C code for the function:

unsigned int count_ones(unsigned int bits) {
// ‘‘bits’’ is a machine word with a ’1’ where the read differs from the
// genomic region it is being compared with
bits = ((bits & 0xAAAAAAAAAAAAAAAA) >> 1) + (bits & 0x5555555555555555);
bits = ((bits & 0xCCCCCCCCCCCCCCCC) >> 2) + (bits & 0x3333333333333333);
bits = ((bits & 0xF0F0F0F0F0F0F0F0) >> 4) + (bits & 0x0F0F0F0F0F0F0F0F);
bits = ((bits & 0xFF00FF00FF00FF00) >> 8) + (bits & 0x00FF00FF00FF00FF);
bits = ((bits & 0xFFFF0000FFFF0000) >> 16) + (bits & 0x0000FFFF0000FFFF);
return ((bits & 0xFFFFFFFF00000000) >> 32) + (bits & 0x00000000FFFFFFFF);

}

In case this doesn’t make sense to you, the constants like “0xAAAAAAAAAAAAAAAA” are
64-bit hexadecimal numbers, the “¿¿” operator is a binary right-shift operator, and “&” is the bit-
wise AND operator. Note that this code would only work on a 64-bit machine, because the mask
constants (they start with “0x”) are too large to fit in a 32-bit word. The technique counts ’1’s by
adding up the number of ’1’s in parallel for different segments of the bit vector. The first line:

bits = ((bits & 0xAAAAAAAAAAAAAAAA) >> 1) + (bits & 0x5555555555555555);

starts with the vector of ’1’s where there are mismatches, and produces a vector with the counts of
’1’s in adjacent pairs of positions. We illustrate an example that assumes an 8-bit word. The code
for 8 bits would look like:

unsigned int count_ones(unsigned int bits) {
bits = ((bits & 0xAA) >> 1) + (bits & 0x55);
bits = ((bits & 0xCC) >> 2) + (bits & 0x33);
return ((bits & 0xF0) >> 4) + (bits & 0x0F);

}

1



Suppose we begin with the following:

11010010

Then the line would produce

((11010010&10101010) >> 1)⇒ 01000001

on the left side of the sum (0xAA is 10101010 in binary), and

(11010010&01010101)⇒ 01010000

on the right side of the sum (Ox55 is 01010101 in binary). Taking the addition gives the following
result, in binary:

01 00 00 01
+ 01 01 00 00

10 01 00 01

Notice that because the part “(bits & 0xAA)” was shifted to the right, the summands have no ’1’
bits in the 1st, 3rd 5th or 7th bits (big endian). The result is that bits 1 and 2 store the number of
’1’s in the first two positions of the original bit vector; bits 3 and 4 store the number of ’1’s in the
3rd and 4th positions of the original bit vector, and similar for the other pairs of adjacent positions.

Now “bits ” has the binary value 10010001, and we will go through the second line of the
code for an 8-bit word. On the left of the sum we obtain

((10010001&11001100) >> 2)⇒ 00100000

(0xCC is 11001100 in binary); on the right of the sum we have

(10010001&00110011)⇒ 00010001

(0x33 is 00110011 in binary). Then these two are added together, which looks like this:

0010 0000
+ 0001 0001

0011 0001

The binary number represented in just the first four bits of the result (i.e. 0011) is exactly the
number of ’1’s in the first four positions of the original bit vector. The binary number represented
in the other four bits of the result (i.e. 0001) is exactly the number of ’1’s in the other four positions
of the original bit vector.

Now we have a value of “00110001” in “bits”, and we will do the final line of code:

return ((bits & 0xF0) >> 4) + (bits & 0x0F);

The left side of the sum gives the following:

((00110001&11110000) >> 4)⇒ 00000011

2



(0xF0 is 1111000 in binary); on the right of the sum we get

(00110001&00001111)⇒ 00000001

The binary addition of these two numbers looks like

00000011
+ 00000001

00000100

and 00000100 is 4 in decimal. This value is returned from our 8-bit function when applied to
11010010, and it is exactly the number of ’1’s.

This technique is well known (computer science “folklore”), and can be found inHacker’s
Delightby Henry S Warren Jr. (Addison-Wesley, 2003).

3


