SUPPLEMENTAL DATA, FIGURES AND TABLES

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure S1. Transactivation of the cyclin D2 promoter by cmaf in reporter NIH 3T3 cells. Wild type NIH 3T3 cells (black) infected with control vector, or MAF over-expressing NIH 3T3 cells (gray), were transfected with a luciferase reporter gene expressed from the cyclin D2 promoter (pCCND2luc), the cyclin D2 promoter in reverse orientation (pCCND2 reverse-luc), a β-Gal plasmid (b-GAL) or with no plasmid (buffer only control). After transfection, cells were lysed and luciferase activity determined. Endogenous transcription from the CCND2 promoter was detected and was responsive to retroviral MAF; transcription from the reverse-orientation CCND2 promoter was weak and unresponsive to MAF.

Supplemental Figure S2. Two color (CD138 | Annexin V) flow cytometric analysis of primary CD138+ myeloma cell response to Kinetin riboside Examples of the apoptotic response of CD138-selected primary multiple myeloma bone marrow tumor cells to Kinetin riboside 10 µM or DMSO vehicle at 72h, analyzed by 2-color flow cytometry. While some primary tumor cells become Annexin V-positive simply from in vitro culture (and/or from treatment with DMSO vehicle) treatment with Kinetin riboside substantially enhances the apoptosis of primary myeloma cells, which become Annexin V-positive, CD138-negatve.

Supplemental Data

Supplemental Figure S3. Three-color (CD45 | CD38 | Annexin V) flow cytometric analysis of Kinetin riboside-induced apoptotic responses in primary MM patient bone marrow, by CD45 | CD38 compartments

(A) Example of a myeloma patient bone marrow specimen containing 20-30% primary tumor cells treated with Kinetin riboside 5-10 µM or DMSO vehicle for 72h and analyzed by 3-color flow cytometry. Forward scatter (FS) – side scatter (SS) (top, left column) and CD45 | CD38 subpopulations (top, right column) are shown. FS-SS gates for all cells (large gate) or cells with morphological characteristics of viable plasma cells (small gate) are illustrated; with Kinetin riboside treatment plasma cells become small and granular, suggesting cytotoxicity. All bone marrow cells in the large gate are separated by CD45 | CD38 characteristics (top, right column). Plasma cells represent >95% of CD38 positive cells. Gates on CD38-high, CD45-low/CD38-low and CD45-high/CD38 low subpopulations are shown; these subpopulations are further analyzed for Annexin V-positive apoptosis (bottom panels). Substantive apoptosis of the primary myeloma cell compartment occurs at low Kinetin riboside concentrations, alongside comparatively modest non-tumor cell apoptosis (most marked in CD45-high lymphocytes). (B) Compensation controls, showing cells stained with single antibodies, or no antibody, verifying absence of fluorochrome signal crossover between channels.

Supplemental Figure S4. Transcriptional repressor isoforms of the cyclic AMP response element modulator (CREM) are induced by Kinetin riboside.

(A) Ensembl contig map of the human CREM gene, showing its modular structure, variant mRNA transcripts and *CREM*-specific Affymetrix U133 $+2$ probe-sets. (B) Relative expression of Affymetrix *CREM* 3'UTR- and exonspecific probe-sets in H929 or U266 cells 4h after treatment with Kinetin riboside, an unrelated cytotoxic agent, pristimerin, or DMSO vehicle. Three CREM probesets show specific increased expression of in both H929 and U266 cells after kinetin riboside treatment (indicated with *) indicating induction of specific CREM isoform(s). Probe-sets 228093 at and 210171 s at, targeting exons found in CREM activator isoforms, are not up-regulated. (C) Correlation of CREM Affymetrix probe-set expression (normalized per tumor line to DMSO-treated samples) with *CREM* transcript variants curated by the Sanger Institute Vega Havana Group. (D) CREM variants (Vega) able to account for *CREM* probe-set expression profile changes induced by Kinetin riboside; all are repressors of the cAMP response element (CRE).

Supplemental Figure S5. Schematic of CRE and MARE sites in CCND1 – CCND3 promoters and model of repression of CCND2 and CCND1 by Kinetin riboside

Evolutionarily-conserved cyclic AMP response elements (CRE) and MAF recognition elements (MARE) in CCND1, CCND2 and CCND3 5' regulatory regions (1kb) are shown. The site have previously been identified and validated

by functional studies (1-7). The potent CRE repressor CREM / ICER is rapidly induced by Kinetin riboside (< 4 hrs) and is known to block the cAMP-response element (CRE) present in CCND1 or CCND2 (8, 9) located immediately 5' to the transcription initiation site. BACH2 is also induced and is a repressor of MARE and of the IGH enhancer (10-12) and thus is predicted to repress cyclin D gene expression when this is driven by MAF dysregulation or by translocation of a cyclin D gene to the IGH enhancer locus.

Bone marrow compartments (FSC|SSC, CD38|CD45)

supplemental 7

A

Supplemental Figure S4 cont.

B

Affymetrix probes

Supplemental Figure S4 cont.

Correlation of CREM gene transcripts and Affymetrix CREM probe-sets induced by Kinetin riboside C

*Expression of probe-set target mRNA sequences was quantified by gene expression profiling 4hrs after treatment and is shown as the ratio of expression in Kinetin riboside-treated cells to DMSO vehicle-treated cells

[†]Vega transcript nomenclature from Sanger Institute Havana Group (curated). Transcript variants in italics are potential targets of the indicated probe-set but are also targets of probe-sets that show no induced expression, excluding them as the induced transcript

D

CREM variants induced by Kinetin riboside are repressors of the cAMP response element (CRE)

010, 011, 012 Non-coding / no isoform * Transcript nomenclature from Sanger Institute's Havana Group, Vega database.

SUPPLEMENTAL TABLE S1. Lentivirus clones and shRNA used in

functional studies

SUPPLEMENTARY TABLE S2. Genes up- or down-regulated >3 fold in

H929 and U266 myeloma tumor lines in response to Kinetin riboside (KR)

REFERENCES FOR SUPPLEMENTAL ANALYSIS

- 1. Boulon, S., Dantonel, J.C., Binet, V., Vie, A., Blanchard, J.M., Hipskind, R.A., and Philips, A. 2002. Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism. *Mol. Cell Biol.* **22**:7769-7779.
- 2. Brooks, A.R., Shiffman, D., Chan, C.S., Brooks, E.E., and Milner, P.G. 1996. Functional analysis of the human cyclin D2 and cyclin D3 promoters. *J. Biol. Chem.* **271**:9090-9099.
- 3. Herber, B., Truss, M., Beato, M., and Muller, R. 1994. Inducible regulatory elements in the human cyclin D1 promoter. *Oncogene.* **9**:1295-1304.
- 4. Hurt, E.M., Wiestner, A., Rosenwald, A., Shaffer, A.L., Campo, E., Grogan, T., Bergsagel, P.L., Kuehl, W.M., and Staudt, L.M. 2004. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. *Cancer Cell.* **5**:191-199.
- 5. Krieger, S., Grunau, C., Sabbah, M., and Sola, B. 2005. Cyclin D1 gene activation in human myeloma cells is independent of DNA hypomethylation or histone hyperacetylation. *Exp. Hematol.* **33**:652-659.
- 6. Moriuchi, A., Ido, A., Nagata, Y., Nagata, K., Uto, H., Hasuike, S., Hori, T., Hirono, S., Hayashi, K., and Tsubouchi, H. 2003. A CRE and the region occupied by a protein induced by growth factors contribute to up-regulation of cyclin D1 expression in hepatocytes. *Biochem. Biophys. Res. Commun.* **300**:415-421.
- 7. White, P.C., Shore, A.M., Clement, M., McLaren, J., Soeiro, I., Lam, E.W., and Brennan, P. 2006. Regulation of cyclin D2 and the cyclin D2 promoter by protein kinase A and CREB in lymphocytes. *Oncogene* **25**:2170-2180.
- 8. Steigedal, T.S., Bruland, T., Misund, K., Thommesen, L., and Laegreid, A. 2007. Inducible cAMP early repressor suppresses gastrin-mediated activation of cyclin D1 and c-fos gene expression. *Am. J. Physiol. Gastrointest. Liver Physiol.* **292**:1062-1069.
- 9. Muniz, L.C., Yehia, G., Memin, E., Ratnakar, P.V., and Molina, C.A. 2006. Transcriptional Regulation of Cyclin D2 by the PKA Pathway and Inducible cAMP Early Repressor (ICER) in Granulosa Cells. *Biol. Reprod*.**75**:279-288
- 10. Muto, A., Hoshino, H., Madisen, L., Yanai, N., Obinata, M., Karasuyama, H., Hayashi, N., Nakauchi, H., Yamamoto, M., Groudine, M., et al. 1998. Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3' enhancer. *Embo J.* **17**:5734-5743.
- 11. Muto, A., Tashiro, S., Tsuchiya, H., Kume, A., Kanno, M., Ito, E., Yamamoto, M., and Igarashi, K. 2002. Activation of Maf/AP-1 repressor Bach2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. *J. Biol. Chem.* **277**:20724-20733.
- 12. Muto, A., Tashiro, S., Nakajima, O., Hoshino, H., Takahashi, S., Sakoda, E., Ikebe, D., Yamamoto, M., and Igarashi, K. 2004. The transcriptional programme of antibody class switching involves the repressor Bach2. *Nature.* **429**:566-571.