Figure S1. Effect of CYLD deficiency on osteoblastic differentiation and serum osteocalcin. (A) Bone
marrow cells (5 X 107/well in 6-well plates) were cultured in MEMa medium supplemented with 10%
FBS, 1% penicillin/streptomycin, b-glycerophosphate (10mM) and L-ascorbic acid phosphate (50m
g/ml) for 21 days, then fixed with 4% paraformaldehyde, and stained by the von Kossa method to
detect mineralized bone nodule formation. Cells in the upper three wells were from CYLD** mice, and
cells in the bottom three wells were from CYLD~~ mice. (B) Sera were collected from CYLD~~ and
CYLD** mice (4 of each genotype) and subjected to ELISA to measure osteocalcin concentration.
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Figure S2. Inhibition of osteoclast differentiation by overexpressed CYLD. Wildtype bone marrow
derived macrophages were infected with a retroviral vector carrying a GFP marker gene,
pCLXSN(GFP), or the same vector encoding CYLD, pCLXSN(GFP)-CYLD. Infected cells were
cultured for 4 days in DMEM media supplemented with either MCSF or MCSF plus RANKL and
subjected to fluorescence microscopy. CYLD-infected cells form substantially fewer and smaller
osteoclasts (arrowheads).
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Figure S3. Surface expression of RANK and M-CSF receptor (M-CSFR) on osteoclast precursors.
Bone marrow derived macrophages prepared from CYLD**+ and CYLD~~ mice were either unstained
(background) or stained with PE-conjugated anti-mouse RANK or PE-conjugated anti-mouse M-CSFR

and subjected to flow cytometry analysis.
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Figure S4. Inhibition of RANK-induced TRAF6 ubiquitination by transfected CYLD. 293 cells were
transfected with HA-tagged ubiquitin along with the indicated expression vectors. Endogenous
TRAF6 was isolated by IP using anti-TRAF6, and its ubiquitination was detected by IB using HRP-
conjugated anti-HA. Expression of CYLD, a catalytically inactive CYLD mutant (1-932), and RANK
were monitored by IB.
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Figure S5. CYLD interacts with TRAF6. 293 cells were
transfected with (+) or without (=) the indicated expression
vectors. Endogenous CYLD complex was isolated by IP,
and the precipitated CYLD and CYLD-associated TRAF6
was detected by IB using anti-CYLD and anti-FLAG,
respectively (top two panels). Expression of TRAF6 in the
lysates was analyzed by direct IB (bottom panel).
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Figure S6. CYLD does not regulate the p62/TRAF6 association or activation of PKCz. (A) 293 cells
were transfected with the indicated expression vectors. TRAF6 complexes were isolated by IP using
anti-TRAF6, and the associated p62 was detected by IB using anti-FLAG (panel 1). The levels of
precipitated TRAF6 and p62 and CYLD in the lysates were monitored by IB. (B) BMDM derived from
CYLD+/+ or CYLD—/— mice were cultured for 2 days either in the presence (+) or absence () of GST-
RANKL. Phosphorylated and total PKCT were detected by IB using the indicated antibodies.



