Supplemental Data

Rearrangement of Mouse Immunoglobulin Kappa

Deleting Element Recombining Sequence Promotes

Immune Tolerance and Lambda B Cell Production

José Luis Vela, Djemel Aït-Azzouzene, Bao Hoa Duong, Takayuki Ota, David Nemazee

Figure S1. Targeted Mutation of RS Recombination Signal

(A) Germline *Igk* locus showing relative positions of RS, its recombination signal sequence (rss) and other features of the *Igk* locus, including positions of oligonucleotide primers for PCR detection of modified and germline RS locus (primers A, B), Southern blotting probes A and B, and SpeI restriction sites.

Immunity, Volume 28

(B) Schematic of targeting construct, including loxP sites, neomycin resistance gene (neo^r), herpes simplex virus thymidine kinase gene (*HSV-tk*) and residual bacterial plasmid backbone (pBS).

(C and D) Predicted structure of targeted RS locus before and after cre-mediated deletion of neo^r insertion.

(E) Southern blot analysis of SpeI-digested mouse tail DNA. Lanes 1, 3: (RS targeted x *ZP3-cre* Tg)F2. Lane 1: mouse received wild type allele from its father. Lane 2: homozygous targeted (but not neo deleted) RS^{neo/neo} mouse. Lane 3: mouse received targeted alleles from both parents, but only the maternal allele underwent cre deletion (RS^{Δ}).

(F) PCR analysis of tail DNA using primers A and B, which are indicated in part A.

(G) RS mutated sequence after cre/loxP recombination (RS^{Δ}), as determined by cloning and sequencing PCR product generated as in F (lane 2). Primer sites used are underlined, loxP site is in bold.

A

Figure S2. Reduced Frequency of $\lambda_{1.3}^+$ Cells in Various Lymphoid Tissues of $RS^{\Delta/\Delta}$ Mice Compared to $RS^{WT/WT}$ Controls

(A) Example of flow cytometry analysis of lymphocyte cell preparations from spleen (Spl), lymph nodes (LN), peritoneal cavity (PC) and blood (PBL).

(B) Statistical analysis of data obtained from 4 mice/group. Shown are means with error bars indicating standard deviations from the mean. Methods were as indicated in Experimental Procedures.

Figure S3. Analysis of the Effect of RS Mutation on B Cell Tolerance and Cell Surface Phenotype in Apoptosis-Resistant *Bcl2* Tg B Cells

BM chimeras were generated using donor BM from RS-sufficient or RS-mutant mice that also carried a *Bcl2* transgene enforcing B lineage restricted expression. Irradiated recipient mice were either C57BL6/J.CD45.1 (B6) or littermates that carried a ubiquitously expressed κ -macroself transgene (Aït-Azzouzene et al., 2005) to promote negative selection of κ^+ cells. Radiation chimeras were analyzed at 10 weeks post reconstitution.

(A) CD21,CD23 cell surface phenotype of Ig κ + gated splenic cells in either RS^{Δ/Δ}; *Bcl2* Tg \rightarrow B6 or RS^{Δ/Δ}; *Bcl2* Tg $\rightarrow\kappa$ -macroself Tg chimeras.

(B) Analysis of CD21,CD23 phenotype of B220 gated splenic cells from the indicated chimeras. (C) Cell surface expression of AA4.1 marker (CD93) on Ig κ + gated B cells of the indicated chimeric mice. Note: RS^{WT/WT}; *Bcl2* Tg $\rightarrow \kappa$ -macroself Tg group was excluded because of a lack of κ + cells in the spleens of these mice.

Immunity, Volume 28

Figure S4. RNA Analysis of RAG Expression and *Igl* Locus Accessibility in RS^{Δ/Δ}; *Bcl2* Tg $\rightarrow \kappa$ -macroself Tg Chimeras

RNA was isolated from bone marrow B lineage cells (B220+IgD-) and specific messages quantitated.

(A) RAG mRNA levels measured using real time PCR. Four independent experiments were each normalized to control β -actin levels and combined results depicted in bar graphs. Wild type RAG levels were arbitrarily set to 1 for this comparison and statistical analysis used paired T test. (B) Expression of the λ_1 J-C germline transcript. cDNAs were analyzed by semi-quantitative RT-PCR normalized to control β -actin. Graph depicts mean \pm SD and p value determined using 2-tailed Student's T-test. Spleen cell cDNA served as negative control.

Immunity, Volume 28

Genotype	tissue	total cells	B220+	$\lambda_{1-3}+$	κ+	$\kappa + \lambda_{1-3} +$
RS ^{WT/WT} n=18	bone	37.8 ± 7.17	7.23 ± 1.44	$\textbf{0.31} \pm \textbf{0.08}$	3.07 ± 1.37	0.026 ± 0.007
$RS^{\Delta/\Delta} n=18$	marrow	33.1 ± 6.76	5.84 ± 1.34	$\boldsymbol{0.17 \pm 0.06}$	2.33 ± 0.47	0.023 ± 0.010
				p=0.000015		
RS ^{WT/WT} n=18	anlaan	51.4 ± 12.3	23.1 ± 7.02	1.38 ± 0.42	20.50 ± 6.37	0.152 ± 0.095
$RS^{\Delta/\Delta} n=18$	spieen	49.1 ± 16.4	20.6 ± 9.40	$\textbf{0.83} \pm \textbf{0.33}$	18.51 ± 8.66	0.095 ± 0.069
				p=0.000097		

Table S1. Absolute Numbers of B Cell Subsets in $RS^{\Delta/\Delta}$ and $RS^{WT/WT}$ Mouse Tissues (Millions)

Mice were 10-12 weeks of age at time of analysis. Shown are mean values \pm SD. p values based on an unpaired 2-tailed Student's T test show significance of difference between RS^{WT/WT} and RS^{Δ/Δ} mice in λ B cell frequency in the above-indicated tissues.

Table S2. Numbers of B Cell Subsets in RS ^{Δ/Δ} ; <i>κ-n</i>	macroself Tg and RS ^{WT/WT} ;κ-macrose	<i>lf</i> Tg Mice (Millions)
--	---	------------------------------

Genotype	tissue	total cells	B220 +	$\lambda_{1-3}+$	κ+	$\kappa + \lambda_{1-3} +$
RS ^{WT/WT} ; <i>к-macroself</i> Tg n=5	BM	46.6 ± 5.18	7.39 ± 1.52	6.21 ± 3.10	0.904 ± 0.27	0.029 ± 0.009
RS ^{Δ/Δ} ; <i>κ-macroself</i> Tg n=5		50.4 ± 7.16	8.53 ± 1.28	$\boldsymbol{1.92 \pm 0.88}$	1.14 ± 0.30	0.057 ± 0.015
				p=0.018		p=.007
RS ^{WT/WT} ; <i>к-macroself</i> Tg n=5	spleen	44.4 ± 15.1	12.4 ± 4.56	11.1 ± 3.92	0.05 ± 0.02	0.159 ± 0.085
RS ^{Δ/Δ} ; <i>κ-macroself</i> Tg n=5		36.6 ± 11.4	9.01 ± 2.28	6.94 ± 2.60	0.09 ± 0.05	0.227 ± 0.053
				p= 0.08		

Mice analyzed were 10 weeks old. Shown are mean values \pm SD.

Genotype (n)	tissue	total cells	B220 +	λ+	κ+	κ+λ+
RS ^{WT/WT} ; <i>Bcl2</i> Tg $\rightarrow \kappa$ -macroself Tg n=5	DM	113.6 ± 35.1	15.46 ± 6.6	2.74 ± 1.3	0.71 ± 0.79	$0.043 \pm .018$
RS ^{Δ/Δ} ; Bcl2 Tg $\rightarrow \kappa$ -macroself Tg n=7	DIVI	93.71 ± 12.83	16.23 ± 1.8	1.67 ± 0.3	5.48 ± 0.49	$\textbf{0.179} \pm .032$
				p=.06	p<10 ⁻⁶	p<10 ⁻⁵
RS ^{WT/WT} ; <i>Bcl2</i> Tg $\rightarrow \kappa$ -macroself Tg n=5	Splaan	86 ± 16.4	13.27 ± 2.7	8.64 ± 4.8	0.05 ± 0.07	0.022 ± 0.023
RS ^{Δ/Δ} ; <i>Bcl2</i> Tg $\rightarrow \kappa$ -macroself Tg n=7	Spieen	49.6 ± 5.6	8.19 ± 2.7	4.31 ± 1.3	$\boldsymbol{0.78 \pm 0.48}$	0.064 ± 0.068
		p=.0003	p=.009	p=.04	p=.008	
$RS^{WT/WT}$; <i>Bcl2</i> Tg \rightarrow B6 n=5	DM	102.2 ± 14.8	18.37 ± 2.2	1.90 ± 0.5	6.66 ± 1.77	$0.094 \pm .019$
$RS^{\Delta/\Delta}$; <i>Bcl2</i> Tg \rightarrow B6 n=6	DIVI	108.3 ± 25.3	16.66 ± 5.4	1.49 ± 0.4	6.47 ± 3.10	$0.146 \pm .088$
$RS^{WT/WT}$; <i>Bcl2</i> Tg \rightarrow B6 n=5	Sulaan	100.8 ± 14.0	40.92 ± 9.3	3.94 ± 1.3	34.17 ± 7.51	$0.236 \pm .049$
$RS^{\Delta/\Delta}; Bcl2 Tg \rightarrow B6 n=6$	spieen	96.1 ± 20.2	37.1 ± 9.7	3.61 ± 2.1	31.2 ± 7.49	$0.304 \pm .169$

Table S3. Numbers of B Cell Subsets in $RS^{\Delta/\Delta}$; *Bcl2* Tg $\rightarrow \kappa$ -macroself Tg and $RS^{WT/WT}$; *Bcl2* Tg $\rightarrow \kappa$ -macroself Tg Chimeras (Millions)

Chimeras were analyzed 10 weeks after bone marrow transplantation. Shown are mean values \pm SD.

Supplemental References

Aït-Azzouzene, D., Verkoczy, L., Peters, J., Gavin, A., Skog, P., Vela, J.L., and Nemazee, D. (2005). An immunoglobulin C{kappa}reactive single chain antibody fusion protein induces tolerance through receptor editing in a normal polyclonal immune system. J.Exp.Med. 201, 817-828.