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We consider step 1: estimating the parameters m, β and ΣA. Step 2 is follows
directly as a special case of step 1.

Let xp denote the q−1 sized sub-vectors obtained by dropping the last dimension
of the vectors zp and let Hp = H(ȳp) where H : R → R2K−1 is a set B-spline basis
functions for a given set of K interior spline-knots, see chapter 5 of Hastie et al.
(2001). Thus for p = 1, . . . , P

xp|cp ∼ Nq−1(0, cpΣA)

cp ∼ Γ−1(1
2
m, 1

2
m · exp{HT

p β})
(1)

where Nn(µ,Σ) denotes the n-dimensional normal distribution with mean µ and
covariance matrix Σ, and Γ−1(k, θ) is the inverse-gamma distribution with density
function

f(x) =
θk

Γ(k)
x−(k+1) exp{−θ/x} , x > 0 .

For later use, note that for X ∼ Γ−1(k, θ) we have E[log(X)] = log(θ) − ψ(k)
and E[X−1] = k/θ from the properties of the log-gamma and gamma distribution
respectively (Johnson et al. 1995, page 89-90). Here ψ(x) = d

dx
log Γ(x) is the

digamma function.
Treating xp and cp as observed data the contribution from probe p to the full

log-likelihood (ignoring constant terms) of model (1) is

Lp = −1

2
log(|ΣA|)−

xT
p Σ−1

A xp

2cp

+
m

2
HT

p β −
m · exp{HT

p β}
2cp

−m
2

log(cp) +
m

2
log(

m

2
)− log(Γ(m/2)) . (2)

In the E-step of the EM-algorithm the expectation of Lp is calculated with respect to
the conditional distribution of cp given xp and governed by the parameter estimates
from the previous iteration: m0, β0 and ΣA0:

Qp = E[Lp|xp,m0, β0,ΣA0]
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Since cp given xp is Γ−1-distributed with parameters

m0 + q − 1

2
and

xT
p Σ−1

A0xp +m0 exp{HT
p β0}

2

we have

Qp = −1

2
log(|ΣA|)−

xT
p Σ−1

A xp

2
· m0 + q − 1

xT
p Σ−1

A0xp +m0 exp{HT
p β0}

+
m

2

(
HT

p β − exp{HT
p β} ·

m0 + q − 1

xT
p Σ−1

A0xp +m0 exp{HT
p β0}

)
−m

2

(
log
(xT

p Σ−1
A0xp +m0 exp{HT

p β0}
2

)
− ψ

(m0 + q − 1

2

))
+
m

2
log(

m

2
)− log(Γ(m/2)) . (3)

With

wp =
m0 + q − 1

xT
p Σ−1

A0xp +m0 exp{HT
p β0}

.

we can rewrite Qp as

Qp = −1

2
log(|ΣA|)−

xT
p Σ−1

A xp

2
· wp

+
m

2

(
HT

p β − exp{HT
p β} · wp

)
+
m

2

(
log(wp) + log

( m

m0 + q − 1

)
+ ψ

(m0 + q − 1

2

))
− log(Γ(m/2)) . (4)

In the M-step of the EM-algorithm Q1 + · · ·+QP is maximized with respect to m,
β, and ΣA. Starting with ΣA, since only the first row of (4) depends on ΣA the
updated estimate of ΣA is obtained directly as

Σ̂A =
1

P

P∑
p=1

wpxpx
T
p . (5)

Continuing with β only the second row of (4) needs to be considered. However, here
numerical optimization is needed to find an updated estimate of β by maximizing
the function h(β) defined as

h(β) =
1

P

P∑
p=1

(
HT

p β − wp · exp{HT
p β}

)
with gradient equal to

∇h(β) =
1

P

P∑
p=1

Hp

(
1− wp · exp{HT

p β}
)
.
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Since each evaluation of the function (and gradient) involves summing over all probes
a quasi-Newton optimization method (variable metric algorithm) implemented in C
is used for shorter computer run times. Given the updated estimate β̂, we then find
the value of m maximizing Q1 + · · · + QP through numerical optimization of the
function f :

f(m) =
m

2

(
log(m) + S

)
− log

(
Γ
(
m/2

))
.

where

S = h(β̂) + ψ
(m0 + q − 1

2

)
− log(m0 + q − 1) +

1

P

P∑
p=1

log(wp) . (6)
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