Parameter estimation in PLW. Supplement to the article titled "Empirical Bayes models for multiple probe type arrays at the probe level".

Magnus Åstrand

October 1, 2007

We consider step 1: estimating the parameters m, β and Σ_A . Step 2 is follows directly as a special case of step 1.

Let x_p denote the q-1 sized sub-vectors obtained by dropping the last dimension of the vectors z_p and let $H_p = H(\bar{y}_p)$ where $H : \mathbb{R} \to \mathbb{R}^{2K-1}$ is a set B-spline basis functions for a given set of K interior spline-knots, see chapter 5 of Hastie et al. (2001). Thus for $p = 1, \ldots, P$

$$\begin{aligned} x_p | c_p &\sim \mathcal{N}_{q-1}(0, c_p \Sigma_A) \\ c_p &\sim \Gamma^{-1}(\frac{1}{2}m, \frac{1}{2}m \cdot \exp\{H_p^T\beta\}) \end{aligned}$$
(1)

where $N_n(\mu, \Sigma)$ denotes the *n*-dimensional normal distribution with mean μ and covariance matrix Σ , and $\Gamma^{-1}(k, \theta)$ is the inverse-gamma distribution with density function

$$f(x) = \frac{\theta^k}{\Gamma(k)} x^{-(k+1)} \exp\{-\theta/x\} , \quad x > 0$$

For later use, note that for $X \sim \Gamma^{-1}(k,\theta)$ we have $E[\log(X)] = \log(\theta) - \psi(k)$ and $E[X^{-1}] = k/\theta$ from the properties of the log-gamma and gamma distribution respectively (Johnson et al. 1995, page 89-90). Here $\psi(x) = \frac{d}{dx} \log \Gamma(x)$ is the digamma function.

Treating x_p and c_p as observed data the contribution from probe p to the full log-likelihood (ignoring constant terms) of model (1) is

$$\mathcal{L}_{p} = -\frac{1}{2}\log(|\Sigma_{A}|) - \frac{x_{p}^{T}\Sigma_{A}^{-1}x_{p}}{2c_{p}}$$

$$+\frac{m}{2}H_{p}^{T}\beta - \frac{m \cdot \exp\{H_{p}^{T}\beta\}}{2c_{p}}$$

$$-\frac{m}{2}\log(c_{p}) + \frac{m}{2}\log(\frac{m}{2}) - \log(\Gamma(m/2)) . \qquad (2)$$

In the E-step of the EM-algorithm the expectation of \mathcal{L}_p is calculated with respect to the conditional distribution of c_p given x_p and governed by the parameter estimates from the previous iteration: m_0 , β_0 and Σ_{A0} :

$$Q_p = \mathbf{E}[\mathcal{L}_p | x_p, m_0, \beta_0, \Sigma_{A0}]$$

Since c_p given x_p is Γ^{-1} -distributed with parameters

$$\frac{m_0 + q - 1}{2}$$
 and $\frac{x_p^T \Sigma_{A0}^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}}{2}$

we have

$$Q_{p} = -\frac{1}{2} \log(|\Sigma_{A}|) - \frac{x_{p}^{T} \Sigma_{A}^{-1} x_{p}}{2} \cdot \frac{m_{0} + q - 1}{x_{p}^{T} \Sigma_{A0}^{-1} x_{p} + m_{0} \exp\{H_{p}^{T} \beta_{0}\}} \\ + \frac{m}{2} \left(H_{p}^{T} \beta - \exp\{H_{p}^{T} \beta\} \cdot \frac{m_{0} + q - 1}{x_{p}^{T} \Sigma_{A0}^{-1} x_{p} + m_{0} \exp\{H_{p}^{T} \beta_{0}\}} \right) \\ - \frac{m}{2} \left(\log\left(\frac{x_{p}^{T} \Sigma_{A0}^{-1} x_{p} + m_{0} \exp\{H_{p}^{T} \beta_{0}\}}{2}\right) - \psi\left(\frac{m_{0} + q - 1}{2}\right) \right) \\ + \frac{m}{2} \log(\frac{m}{2}) - \log(\Gamma(m/2)) .$$
(3)

With

$$w_p = \frac{m_0 + q - 1}{x_p^T \Sigma_{A0}^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}}$$

we can rewrite Q_p as

$$Q_{p} = -\frac{1}{2} \log(|\Sigma_{A}|) - \frac{x_{p}^{T} \Sigma_{A}^{-1} x_{p}}{2} \cdot w_{p} + \frac{m}{2} \left(H_{p}^{T} \beta - \exp\{H_{p}^{T} \beta\} \cdot w_{p} \right) + \frac{m}{2} \left(\log(w_{p}) + \log\left(\frac{m}{m_{0} + q - 1}\right) + \psi\left(\frac{m_{0} + q - 1}{2}\right) \right) - \log(\Gamma(m/2)) .$$
(4)

In the M-step of the EM-algorithm $Q_1 + \cdots + Q_P$ is maximized with respect to m, β , and Σ_A . Starting with Σ_A , since only the first row of (4) depends on Σ_A the updated estimate of Σ_A is obtained directly as

$$\hat{\Sigma}_A = \frac{1}{P} \sum_{p=1}^P w_p x_p x_p^T .$$
(5)

Continuing with β only the second row of (4) needs to be considered. However, here numerical optimization is needed to find an updated estimate of β by maximizing the function $h(\beta)$ defined as

$$h(\beta) = \frac{1}{P} \sum_{p=1}^{P} \left(H_p^T \beta - w_p \cdot \exp\{H_p^T \beta\} \right)$$

with gradient equal to

$$\nabla h(\beta) = \frac{1}{P} \sum_{p=1}^{P} H_p \Big(1 - w_p \cdot \exp\{H_p^T\beta\} \Big) .$$

Since each evaluation of the function (and gradient) involves summing over all probes a quasi-Newton optimization method (variable metric algorithm) implemented in C is used for shorter computer run times. Given the updated estimate $\hat{\beta}$, we then find the value of m maximizing $Q_1 + \cdots + Q_P$ through numerical optimization of the function f:

$$f(m) = \frac{m}{2} \left(\log(m) + S \right) - \log \left(\Gamma(m/2) \right) \,.$$

where

$$S = h(\hat{\beta}) + \psi\left(\frac{m_0 + q - 1}{2}\right) - \log(m_0 + q - 1) + \frac{1}{P} \sum_{p=1}^{P} \log(w_p) .$$
(6)

References

- Hastie, T., R. Tibshirani, and J. Friedman (2001). *The Elements of Statistical Learning* (First ed.), Volume 1. Springer.
- Johnson, N., S. Kotz, and N. Balakrishnan (1995). *Continuous Univariate Distributions* (Second ed.), Volume 2. John Wiley and Sons.