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We consider step 1: estimating the parameters m, 3 and ¥ 4. Step 2 is follows
directly as a special case of step 1.

Let x, denote the ¢ —1 sized sub-vectors obtained by dropping the last dimension
of the vectors z, and let H, = H(y,) where H : R — R?*/ 71 is a set B-spline basis
functions for a given set of K interior spline-knots, see chapter 5 of Hastie et al.
(2001). Thus forp=1,..., P

plcp ~ Ng-1(0, ¢ X4)
1)
¢p ~ T (Gm, 3m - exp{H!'3})
where N, (i, ¥) denotes the n-dimensional normal distribution with mean g and
covariance matrix X, and I'"}(k,6) is the inverse-gamma distribution with density
function
_ 0" —(k+1) i 0
f(z) = mx exp{—0/z}, x>0.
For later use, note that for X ~ T7!(k,6) we have E[log(X)] = log(6) — (k)
and E[X 1] = k/0 from the properties of the log-gamma and gamma distribution
respectively (Johnson et al. 1995, page 89-90). Here ¢)(z) = “LlogD'(z) is the
digamma function.
Treating x, and ¢, as observed data the contribution from probe p to the full
log-likelihood (ignoring constant terms) of model (1) is
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In the E-step of the EM-algorithm the expectation of £, is calculated with respect to
the conditional distribution of ¢, given x, and governed by the parameter estimates
from the previous iteration: mg, Gy and ¥ 4¢:

QP = E[‘Cp‘xpa mo, ﬁOa EAO]
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Since ¢, given x, is I'"*-distributed with parameters

mo+q—1 i ngAfé:cp + my eXp{HpTﬁo}
2 2

we have
x;E;‘lxp ' mo+q—1
2 xS 0w, + mo exp{HI o}
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With
mo+q—1
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Wy
we can rewrite (), as

1 zIyTly
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In the M-step of the EM-algorithm ()1 + - - - + @ p is maximized with respect to m,
B, and ¥ 4. Starting with ¥4, since only the first row of (4) depends on ¥, the
updated estimate of X4 is obtained directly as
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ZA = F pzzlwp.fpl’g . (5)

Continuing with 4 only the second row of (4) needs to be considered. However, here
numerical optimization is needed to find an updated estimate of 3 by maximizing
the function h(/3) defined as

P
M8 = 3 S (I8 — w, - exp{HI5})
p=1
with gradient equal to
1 E
Vh(3) = 5 Y H, (1 —w, - exp{HpTﬁ}) .
p=1



Since each evaluation of the function (and gradient) involves summing over all probes
a quasi-Newton optimization method (variable metric algorithm) implemented in C
is used for shorter computer run times. Given the updated estimate B , we then find
the value of m maximizing ()1 + --- + Qp through numerical optimization of the
function f:

f(m) = %(log(m) + S) — log (I‘(m/Q)) :
where
§=h(B)+ o (ML) Ctoglmo ta - )+ 5 Y log(w) . (6)
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