Parameter estimation in PLW. Supplement to the article titled "Empirical Bayes models for multiple probe type arrays at the probe level".

Magnus Åstrand

October 1, 2007

We consider step 1: estimating the parameters m, β and Σ_A . Step 2 is follows directly as a special case of step 1.

Let x_p denote the $q-1$ sized sub-vectors obtained by dropping the last dimension of the vectors z_p and let $H_p = H(\bar{y}_p)$ where $H : \mathbb{R} \to \mathbb{R}^{2K-1}$ is a set B-spline basis functions for a given set of K interior spline-knots, see chapter 5 of Hastie et al. (2001). Thus for $p = 1, ..., P$

$$
x_p|c_p \sim N_{q-1}(0, c_p \Sigma_A)
$$

\n
$$
c_p \sim \Gamma^{-1}(\frac{1}{2}m, \frac{1}{2}m \cdot \exp\{H_p^T \beta\})
$$
\n(1)

where $N_n(\mu, \Sigma)$ denotes the *n*-dimensional normal distribution with mean μ and covariance matrix Σ , and $\Gamma^{-1}(k, \theta)$ is the inverse-gamma distribution with density function

$$
f(x) = \frac{\theta^k}{\Gamma(k)} x^{-(k+1)} \exp\{-\theta/x\}, \quad x > 0.
$$

For later use, note that for $X \sim \Gamma^{-1}(k, \theta)$ we have $E[log(X)] = log(\theta) - \psi(k)$ and $E[X^{-1}] = k/\theta$ from the properties of the log-gamma and gamma distribution respectively (Johnson et al. 1995, page 89-90). Here $\psi(x) = \frac{d}{dx} \log \Gamma(x)$ is the digamma function.

Treating x_p and c_p as observed data the contribution from probe p to the full log-likelihood (ignoring constant terms) of model (1) is

$$
\mathcal{L}_p = -\frac{1}{2} \log(|\Sigma_A|) - \frac{x_p^T \Sigma_A^{-1} x_p}{2c_p} \n+ \frac{m}{2} H_p^T \beta - \frac{m \cdot \exp\{H_p^T \beta\}}{2c_p} \n- \frac{m}{2} \log(c_p) + \frac{m}{2} \log(\frac{m}{2}) - \log(\Gamma(m/2)) .
$$
\n(2)

In the E-step of the EM-algorithm the expectation of \mathcal{L}_p is calculated with respect to the conditional distribution of c_p given x_p and governed by the parameter estimates from the previous iteration: m_0 , β_0 and Σ_{A0} :

$$
Q_p = \mathrm{E}[\mathcal{L}_p | x_p, m_0, \beta_0, \Sigma_{A0}]
$$

Since c_p given x_p is Γ^{-1} -distributed with parameters

$$
\frac{m_0 + q - 1}{2} \quad \text{and} \quad \frac{x_p^T \Sigma_{A0}^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}}{2}
$$

we have

$$
Q_p = -\frac{1}{2}\log(|\Sigma_A|) - \frac{x_p^T \Sigma_A^{-1} x_p}{2} \cdot \frac{m_0 + q - 1}{x_p^T \Sigma_A^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}} + \frac{m}{2} \left(H_p^T \beta - \exp\{H_p^T \beta\} \cdot \frac{m_0 + q - 1}{x_p^T \Sigma_A^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}} \right) - \frac{m}{2} \left(\log \left(\frac{x_p^T \Sigma_A^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}}{2} \right) - \psi \left(\frac{m_0 + q - 1}{2} \right) \right) + \frac{m}{2} \log(\frac{m}{2}) - \log(\Gamma(m/2)).
$$
 (3)

With

$$
w_p = \frac{m_0 + q - 1}{x_p^T \Sigma_{A0}^{-1} x_p + m_0 \exp\{H_p^T \beta_0\}}
$$

we can rewrite Q_p as

$$
Q_p = -\frac{1}{2}\log(|\Sigma_A|) - \frac{x_p^T \Sigma_A^{-1} x_p}{2} \cdot w_p + \frac{m}{2} \left(H_p^T \beta - \exp\{H_p^T \beta\} \cdot w_p \right) + \frac{m}{2} \left(\log(w_p) + \log\left(\frac{m}{m_0 + q - 1}\right) + \psi\left(\frac{m_0 + q - 1}{2}\right) \right) - \log(\Gamma(m/2)).
$$
 (4)

In the M-step of the EM-algorithm $Q_1 + \cdots + Q_P$ is maximized with respect to m, β, and Σ_A . Starting with Σ_A , since only the first row of (4) depends on Σ_A the updated estimate of Σ_A is obtained directly as

$$
\hat{\Sigma}_A = \frac{1}{P} \sum_{p=1}^P w_p x_p x_p^T \tag{5}
$$

.

Continuing with β only the second row of (4) needs to be considered. However, here numerical optimization is needed to find an updated estimate of β by maximizing the function $h(\beta)$ defined as

$$
h(\beta) = \frac{1}{P} \sum_{p=1}^{P} \left(H_p^T \beta - w_p \cdot \exp\{H_p^T \beta\} \right)
$$

with gradient equal to

$$
\nabla h(\beta) = \frac{1}{P} \sum_{p=1}^{P} H_p \left(1 - w_p \cdot \exp\{H_p^T \beta\} \right) .
$$

Since each evaluation of the function (and gradient) involves summing over all probes a quasi-Newton optimization method (variable metric algorithm) implemented in C is used for shorter computer run times. Given the updated estimate β , we then find the value of m maximizing $Q_1 + \cdots + Q_p$ through numerical optimization of the function f :

$$
f(m) = \frac{m}{2} \Big(\log(m) + S \Big) - \log \Big(\Gamma(m/2) \Big) .
$$

where

$$
S = h(\hat{\beta}) + \psi\left(\frac{m_0 + q - 1}{2}\right) - \log(m_0 + q - 1) + \frac{1}{P} \sum_{p=1}^{P} \log(w_p) . \tag{6}
$$

References

- Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning (First ed.), Volume 1. Springer.
- Johnson, N., S. Kotz, and N. Balakrishnan (1995). Continuous Univariate Distributions (Second ed.), Volume 2. John Wiley and Sons.