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A quantitative analysis of the reduction in oxygen levels
required to induce up-regulation of vascular endothelial
growth factor (VEGF) mRNA in cervical cancer cell lines

JA Chiarotto and RP Hill

Experimental Therapeutics Division, Research Department, Ontario Cancer Institute/Princess Margaret Hospital, and Department of Medical Biophysics,
University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9

Summary The presence of hypoxia (low oxygen concentrations) in solid tumours correlates with poor prognosis, increased metastasis, and
resistance to radiotherapy and some forms of chemotherapy. Malignant cells produce an angiogenesis factor, vascular endothelial growth
factor (VEGF), which may increase metastatic ability and is up-regulated in the presence of hypoxia. Clinical data for cancers of the cervix and
head and neck relate oxygen levels in the tumour to treatment outcome. This suggests the possibility that the presence of VEGF mRNA might
be used as a marker for relevant levels of hypoxia. Suspension cultures of three human cervical cancer cell lines, SiHa, ME-180 and HeLa,
were used to investigate up-regulation of VEGF mRNA levels following exposure to precisely defined oxygen concentrations for 2 or 4 h. An
oxygen sensor was used to confirm the actual levels of dissolved oxygen present. The oxygen concentrations which caused half-maximal
upregulation (the Km value) of VEGF mRNA level in the three cell lines were similar except for one instance (Km at 4 h: SiHa 27.0 ± 5.7 µM,
ME-180 16.8 ± 3.3 µM, HeLa 13.0 ± 1.8 µM, SiHa and HeLa P = 0.01). The Km values for the HeLa cell line as measured at 2 h (24.9 ± 0.8 µM)
and 4 h (13.0 ± 1.8 µM) were significantly different (P < 0.0001). VEGF mRNA half-lives measured in air were consistent with values in the
literature (SiHa 59.8 ± 5.8 min, ME-180 44.4 ± 7.2 min, HeLa 44.5 ± 6.3 min). Differences in oxygen consumption at low oxygen
concentrations were noted between the different cell lines. Stirring in suspension culture was found to induce VEGF mRNA in SiHa cells. The
presence of VEGF mRNA may be a marker for radiobiologic hypoxia.

Keywords: VEGF; hypoxia; oxygen concentration; cervical cancer; gene up-regulation
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Regions of hypoxia, or low oxygen tension, are known to e
within tumours (Raleigh et al, 1996; Brown and Giaccia, 19
Dewhirst, 1998). Since radiotherapy and some forms 
chemotherapy are less effective at killing cancer cells in hyp
environments, much effort has been directed toward identify
tumours containing such regions. Measurement of oxygen ten
by needle electrodes in lymph node metastasis of cancer o
head and neck found that radiation was less effective at indu
regression when the lymph nodes were hypoxic (Gatenby e
1988) and such measurements have been reported to ide
patients with poor locoregional tumour control (Nordsmark et
1996). Similar work in advanced cancer of the uterine ce
(Hockel et al, 1993, 1996; Fyles et al, 1998; Hockel and Vau
1998) showed that increased levels of hypoxia in the prim
tumour mass correlated with poorer treatment outcome. T
results suggested that hypoxia in cervical cancers correlated w
greater likelihood of both local failure and nodal metasta
Metastases were also found to be more frequent in patients
the most hypoxic soft tissue sarcoma of the extremities (Br
et al, 1996). Furthermore, exposure of cancer cells to hyp
(Young et al, 1988; Jang and Hill, 1997) and hypoxia-indu
increases in vascular endothelial growth factor (VEGF) secre
ship
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have been associated with an increased metastatic a
(Danielsen and Rofstad, 1998).

VEGF is the most selective vascular endothelial cell mito
known (Dvorak et al, 1995). In cancer cells, the four VE
isoforms which have been most frequently described contain
165, 189 and 206 amino acids (Tischer et al, 1991). In s
studies, increased intra-tumoural VEGF mRNA and protein
been associated with poor prognosis (Berger et al, 1995; Toi 
1995), increased metastasis (Brown et al, 1995; Takahashi 
1995), and increased microvessel density (Guidi et al, 1995; T
al, 1995; Fontini et al, 1997). Antibodies directed towards VE
can inhibit angiogenesis and the proliferation of cancer cel
vivo (Kim et al, 1993; Kondo et al, 1993). Cancer cells cons
tively produce VEGF (Dvorak et al, 1995) and can up-regu
its expression under hypoxic stress (Shweiki et al, 1992) via
transcription factor hypoxia-inducible factor 1 (Forsythe et
1996) and by stabilization of the mRNA (Levy et al, 1996, 199

The qualitative relationship between oxygen level and VE
up-regulation has been examined in a variety of different tum
systems but has not been quantitatively documented in most 
studies performed (Shweiki et al, 1992; Minchenko et al, 19
Leith and Michelson, 1995; Mukhapadhyay et al, 1995). 
purpose of the present work was to examine the relation
between VEGF mRNA level and oxygen concentration in de
and to determine the extent of its variation between diffe
tumour cells of similar histopathological type. Cell lines deriv
from human cancer of the uterine cervix were chosen for
study based on the abundance of clinical data relating tum



t b
u

se
thu

eL
Th
an
La
 a
es
L

tal
s f
lu
%

nin
s
d 

ge
an

e
irr
 th
ge
e 
ia
t

 was
rom
rac-

,
 with
i-
f the
 and

lular
seen.
 stir-
sue
ged
ata
d for
t 7.5

xygen
osed,
was
m.
t to
. The
e
d

 had
sults

200
BS),
rizol
er’s
n

(Zinn
mal

Oxygen dependence of VEGF mRNA 1519
oxygenation as measured by the Eppendorf pO2 Histograph to
treatment outcome and the possibility that VEGF mRNA migh
usable as a marker for relevant levels of hypoxia in such tumo
VEGF mRNA rather than protein was chosen for study becau
is localized to the cell which is under hypoxic stress and is 
able to localize this environment.

MATERIALS AND METHODS

Cells

Cell lines used in the experiments were SiHa, ME-180, and H
which are derived from human cancer of the uterine cervix. 
SiHa and ME-180 cells were obtained from ATCC (Americ
Type Culture Collection, Manassas, VA, USA), while the He
cells were obtained from the laboratory of Dr Michael Rauth
OCI/PMH where they had been grown for many years. Th
cells were grown in plastic tissue culture flasks (Gibco BR
Burlington, ON, Canada) in α-minimal essential medium
(α-MEM; Gibco BRL, Burlington, ON, Canada) plus 10% fe
bovine serum (FBS; Wisent, Quebec, Canada) plus antibiotic
SiHa and HeLa and in McCoy’s 5A medium plus 10% FBS p
antibiotics for ME-180. The cells were grown to about 70
confluence, then trypsinized, counted and a volume contai
3 × 106 cells was spun down at 130g at 4°C. The supernatant wa
then poured off, leaving a cell pellet which was resuspende
the remaining medium, approximately 50µl, and introduced into
the vials within 10 min of centrifugation as described below.

Oxygenation

The apparatus used for accurate control of the level of oxy
exposure of the cells has been fully described (Whillans 
Rauth, 1980). Briefly, the apparatus consisted of a 37°C water bath
into which a set of glass vials, each containing a small magn
stir bar and 10 ml of medium, was placed. The medium was st
at 200 rpm and humidified gas was flowed through an inlet in
stopper for 90 min to achieve an equilibrium between the oxy
(O2) in the gas phase and the liquid medium. The small volum
medium containing the cells was introduced into each of the v
(final concentration: 3 × 105 cells ml–1) by sterile Pasteur pipe
© 1999 Cancer Research Campaign

Table 1 Oxygen concentration in µM measured in medium contai
the oxygen tension in the overlying gas in mmHg and to the expec
of cells in µM

Ambient oxygen Expected SiHa cells
tension (mmHg) oxygen ± s.e.m. (µM)
[% O2 in gassing concentration
mixture] ( µM)

7.5 [1.00] 10.6 2.1 ± 0.7a

11.2 [1.57] 15.9 8.9 ± 1.1
15.1 [2.11] 21.4 16.5 ± 0.8
24.8 [3.46] 35.2 30.7 ± 2.1
34.7 [4.85] 49.3 46.1 ± 5.1
44.8 [6.25] 63.6 59.5 ± 1.4

141.7 [air] 200.3 194.3 ± 3.8

aOxygen concentration in medium containing SiHa cells significant
or HeLa cells (P < 0.001).
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after the 90-min gassing period and the gassing and stirring
continued. At defined time intervals later, a vial was removed f
the 37°C water bath and placed on ice prior to total RNA ext
tion. Gases containing O2 concentrations of 21% (air), 6.25%
4.85%, 3.46%, 2.11%, 1.57%, 1.00%, or 0% (< 10 ppm) each
5% carbon dioxide (CO2) and balance N2 were used. The compos
tion of the gases was analysed to be within 2% or better o
value given by the supplier (Praxair, Toronto, ON, Canada)
was confirmed in our laboratory.

Each cell line was checked twice for the occurrence of cel
aggregation after 4 h of stirring. No cellular aggregates were 
The effect of the stirring on the cells was checked after 4 h of
ring in both N2 and air environments by plating the cells in tis
culture dishes for colony formation. Plating efficiencies ran
from 50 to 80% of that found for cells which were not stirred (d
not shown). The pH of the stirred cell suspension was checke
each cell line and was found to be unchanged at abou
throughout the length of a 4-h gassing period.

Oxygen measurements

Since the cells can be expected to consume some of the o
and hence influence the level of oxygen to which they are exp
a Clark-type polarographic electrode (Marshall et al, 1986) 
used to measure O2 concentration in the cell-containing mediu
A glass vial and stopper, into which an extra hole was cu
accommodate the oxygen sensor, was prepared as above
sensor was first calibrated for O2 concentration using the abov
series of gases. A total of 3 × 106 cells was introduced into stirre
medium, as described above, and the resulting O2 concentration
was measured once a stable signal indicating equilibration
been achieved, a process requiring approximately 5 min. Re
obtained for the different mixtures are shown in Table 1.

RNAase protection assay

After exposure to gassing, the cells were spun into a pellet at g
at 4°C for 5 min, resuspended in phosphate-buffered saline (P
and repelleted as before. Total RNA was then extracted with T
(Gibco BRL, Burlington, ON, Canada) using the manufactur
protocol and stored at –70°C until analysis. An RNAase protectio
assay was used to quantitate VEGF and 36B4 mRNA levels 
et al, 1983). The 36B4 mRNA codes for an acidic riboso
British Journal of Cancer (1999) 80(10), 1518–1524

ning 3 × 105 cells ml–1 of one of the cell lines compared to
ted oxygen concentration in the medium in the absence

ME-180 cells HeLa cells
± s.e.m. (µM) ± s.e.m. (µM)

5.5 ± 1.3a 6.4 ± 1.0a

10.2 ± 1.4 10.8 ± 0.6
14.9 ± 1.6 16.8 ± 0.4
27.1 ± 0.8 28.5 ± 2.4

– 40.3 ± 1.8
53.7 ± 2.0 52.0 ± 1.4

196.0 ± 5.4 192.6 ± 4.3

ly different from medium containing ME-180 cells (P = 0.01)
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Figure 1 Relative VEGF mRNA level in cells exposed to anoxia or air in
stirred cell suspension as a function of time. Solid symbols with solid lines
indicate exposure to anoxia. Open symbols with dashed lines indicate
exposure to air. The absolute ratio of VEGF mRNA to 36B4 mRNA at time
0 h (mean ± s.e.m.) is 3.3 ± 0.3 for SiHa cells, 3.0 ± 0.3 for ME-180 cells,
and 1.4 ± 0.1 for HeLa cells
protein (Laborda, 1991) and served as a loading control. Br
riboprobes were purified on a 6% polyacrylamide/urea gel 
eluted overnight at 37°C in elution buffer (0.5M EDTA, 0.1%
sodium dodecyl sulphate (SDS), 0.1M EDTA), precipitated and
their radioactivity quantified. The probes were hybridized
excess to 10µg of total RNA overnight at 52°C. Samples wer
digested with 40µg ml–1 of RNAase and 2µg ml–1 of RNAase T1
for 30 min at 30°C. Ten microlitres of 20% SDS and 50µg of
proteinase K were then added, followed by incubation for 15
at 37°C, phenol–chloroform extraction, and ethanol precipita
with glycogen. The protected probes were then resolved on 
polyacrylamide/urea gel and quantitated on a PhosphorIm
(Molecular Dynamics, Sunnyvale, CA, USA).

Probes

A probe for detecting VEGF mRNA was generated using theStyI
fragment (nucleotides 99–352) (Tischer et al, 1991) obtained
the cDNA for VEGF165 (kind gift of Dr Keith Laderout
Stanford Research Institute). The fragment was blunted
subcloned into the SmaI site of the pBluescript II KS(2) cloning
vector, which was then linearized with XbaI. Correct orientation o
the insert was confirmed with the production of a 121-bp DraII
fragment. The 32P-radiolabelled antisense riboprobe, contain
253 nucleotides was capable of recognizing all four cancer-re
isoforms. It was transcribed using a T7 RNA polymerase.

A cloning vector containing the cDNA for 36B4 (Labord
1991) (kind gift of Dr Linda Penn, Ontario Cancer Institute) 
linearized with EcoRV. The 32P-radiolabelled antisense ribopro
containing 63 nucleotides, was transcribed using an SP6 
polymerase. For all the results presented, the amount of V
mRNA was normalized to the amount of 36B4 mRNA detecte
the same lane on the polyacrylamide gel. A comparison o
36B4 levels in cells gassed with 95% N2–5% CO2 for 0 h or 4 h,
collected over 48 experiments for all three cell lines, showe
evidence of an effect of hypoxic exposure on the expression
(paired t-test, P = 0.69).

Statistical analysis

The curves for VEGF mRNA upregulation as a function of oxy
concentration were fitted to a logistic function using 
Levenburg–Marquardt algorithm in the Origin 5.1 softw
package (Microcal, Northampton, MA, USA) as described in
text. The Km values for VEGF mRNA up-regulation and the VE
mRNA half-lives were compared in a two-tailed test using th
statistic. Comparisons of oxygen concentrations in cell-conta
medium were made using a two-tailed Student’s t-test. In both
cases significance was determined by a P-value less than 0.05.

RESULTS

Net increase in VEGF mRNA levels under long-term
anoxia

Initially we examined the time course of the increase in VE
mRNA levels during exposure to anoxia (< 10 ppm O2). Cells
were placed in a vial containing medium which had been eq
brated either with N2–5% CO2 (anoxic) or air–5% CO2. The cells
were then exposed to this environment for up to 12 h with sam
British Journal of Cancer (1999) 80(10), 1518–1524
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taken at 0, 2, 4, 8 and 12 h for analysis of mRNA levels. Fig
shows the results for each cell line under anoxic and air cond
The degree of VEGF up-regulation was normalized to time 0
each cell line. The points represent the mean (± s.e.m.) of at leas
three independent experiments. By 4 h, VEGF mRNA in ME
cells had reached its maximum level. The HeLa line show
gradual up-regulation of VEGF mRNA over the 12 h; howe
the degree of up-regulation is similar to that in ME-180 cell
both these cell lines only slight changes in VEGF mRNA le
occurred over 12 h under air conditions. In the SiHa cells
VEGF mRNA level reached a plateau after 8 h of ano
However, there was also an increase in the control air cond
particularly after 2 h, presumably as a result of the stress of 
in the stirred suspension. Thus, a plateau for SiHa cells 
occurs earlier than 8 h.

Analysis of VEGF mRNA levels in cells exposed to
different oxygen concentrations

This set of experiments was performed to determine in deta
range of oxygen concentration over which VEGF mRNA is
regulated. Cells were gassed with various oxygen concentr
using groups of three vials, that included a vial which conta
cells exposed to the oxygen concentration in question, a
containing cells which were gassed with 95% N2–5% CO2 (the
positive control), and a vial containing cells gassed with 95%
5% CO2 (the negative control). Since the results in Figur
suggest that much of the effect of the hypoxic exposure occ
in the first 4 h of gassing, the cells were sampled at time 0, 2
h after the start of the gassing and total RNA extracted. The
of VEGF mRNA to 36B4 mRNA at 2 and 4 h was normalize
the ratio at 0 h. For each of the three cell lines, measureme
each of the above oxygen concentrations were performed a
in triplicate.

Figure 2A shows the relative VEGF mRNA level as a func
of oxygen concentration for ME-180 cells measured at 2 an
Figures 2B and 2C show the 2- and 4-h data for SiHa and 
cells respectively. The data were fitted to a logistic function
© 1999 Cancer Research Campaign
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Figure 2 Relative VEGF mRNA level as a function of oxygen
concentration. Data for ME-180 cell line (A), SiHa cell line (B) and HeLa cell
line (C) showing VEGF mRNA levels as measured at 2 h (■■) and 4 h (■)

Table 2 Oxygen concentrations which cause half-maximal up-regulation of
VEGF mRNA at 2 and 4 h and half-lives in presence of air

Cell line 2 h ( µM ± 1 s.e.m.) 4 h ( µM ± 1 s.e.m.) Half-life (min ± 1 s.e.m.)

SiHa 29.1 ± 6.1 27.0 ± 5.7 59.8 ± 5.8
ME-180 18.7 ± 6.9 16.8 ± 3.3 44.4 ± 7.2
HeLa 24.9 ± 0.7 13.0 ± 1.8 44.5 ± 6.3

Oxygen concentration (µM)
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Figure 3 Percentage change in VEGF mRNA level in the SiHa and HeLa
cell lines as a function of oxygen concentration
the oxygen concentration at which half-maximal up-regula
occurs was determined. During curve fitting, the maximum
minimum values were fixed based on observations of the data
minimum values were the lowest points at the highest ox
concentration with the single exception of 4-h data for the H
cells where an average of the values at the two highest o
concentrations was used. For the ME-180 cell line, the maxi
level was chosen to be the highest single point (at 5.5µM) in the 2-
h and 4-h data set. In the case of the SiHa cells, the max
value was an average of the two values (at 2.1µM and 8.9µM)
which appeared to be on the upper plateau. For the SiHa an
180 cell lines, this calculation did not include the 95% N2–5% CO2

point because it was generally below the maximum value obs
at intermediate oxygen levels and it is possible that a cell’s a
to produce mRNA may be compromised at very low oxy
© 1999 Cancer Research Campaign
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concentrations. This effect was not seen in the HeLa cell
consequently for the HeLa cells, the maximum value was ch
to be the relative VEGF mRNA level at the anoxic point. Figu
indicates that the lines generated are generally a good fit 
data. Modifying these choices of maximum levels (or minim
levels for the HeLa 4-h data) modified slightly the calculatedKm

values but did not affect the conclusions drawn from the data
The data shows that at high oxygen concentrations, i.e. a

60µM, there is relatively little upregulation of VEGF mRNA.
the region between 10µM and 50µM, there is a dramatic increa
in the amount of VEGF mRNA present in the cell. Below 10µM,
the up-regulation of VEGF mRNA appears to reach max
levels. There may be a trend towards VEGF mRNA levels w
are lower than maximal at very low oxygen levels, but this 
not reach statistical significance.

Table 2 shows the oxygen concentrations which produce
maximal upregulation at the 2- and 4-h time points. There we
statistical differences between the 2- and 4-h values for the
and ME-180 cell lines. The difference between 2- and 4-h v
for the HeLa cell line was significant (P < 0.0001) and remaine
British Journal of Cancer (1999) 80(10), 1518–1524
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Figure 4 Relative VEGF mRNA level in ME-180 cells exposed to anoxia for
3 h, then exposed to air as a function of time
so with alternate choices for maximum and minimum. No st
tical differences were seen among the 2-h values for the thre
lines. The 4-h value for the SiHa cell line and the HeLa cell 
was statistically different (P = 0.01) and remained so with recalc
lation using alternate choices of maximum and minimum. Figu
illustrates this difference by showing the percentage chang
VEGF mRNA levels in SiHa and HeLa cells at 4 h as a functio
oxygen concentration. The data for ME180 cells at 4 h lies in
mediate between these two curves and has been omitted for c

Determination of VEGF mRNA half-life in the presence
of oxygen

In the final series of experiments we examined the stability o
VEGF mRNA when the cells were returned from anoxic expo
(< 10 ppm O2) to exposure to air. The cells were placed in v
equilibrated with either 95% N2–5% CO2 or 95% air–5% CO2, and
stirred in their respective environments for 3 h, then one via
each was sampled and the remaining 95% N2–5% CO2 vials were
switched to gassing with 95% air–5% CO2. The cell-containing
medium required 4 min to reach an oxygen concentration of
µM at which point the effect of hypoxia on upregulation of VE
mRNA was considered to be negligible. The vials were su
quently sampled at 1, 2 and 3 h. The level of VEGF mRNA in
N2-gassed vials was divided by the values in the air controls
this ratio plotted against time. Figure 4 shows the results for 
180 cells, fitted to an exponential decay curve. Similar results 
obtained for SiHa and HeLa cells (data not shown). The half
for reduction of the mRNA levels was determined for each 
line from the fitted exponential decay curve. The values obta
are shown in Table 2. These data suggest a similar decay tim
all three cell lines. The calculated half-lives of the VEGF mR
in ME-180 cells, HeLa cells and SiHa cells are consistent 
values reported in the literature: approximately 40 min in
glioblastoma (Stein et al, 1995) and 43 ± 6 min in rat pheochromo
cytoma cells (Levy et al, 1996).
British Journal of Cancer (1999) 80(10), 1518–1524
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DISCUSSION

In the present study we examined the effect of different ox
concentrations on the upregulation of VEGF mRNA in th
cervical cancer cell lines. One aim of the experiments wa
examine whether the presence of high levels of VEGF mR
could serve as a surrogate marker for radiobiological hypox
number of different cell lines were studied using the same 
niques to determine if differences existed. VEGF mRNA 
chosen for study over VEGF protein because the mRNA s
localized to the cell which is under hypoxic stress and is thus
to localize this environment.

Figure 1 shows that the rate of the hypoxia-induced increa
the relative level of VEGF mRNA differs amongst cell lines.
our knowledge, the increase in the relative level of VEGF mR
associated with a stirred cell suspension, as was the case esp
for the SiHa cell line, has not been described before. The phy
stress of stirring, alteration of the cell shape while in suspen
or the loss of cell contact with its extracellular matrix may
contribute to this effect. A cancer cell may be exposed to sim
stresses in the metastatic process. The increased vascular 
ability caused by VEGF, partly due to the opening of endoth
intercellular junctions large enough to allow the passag
erythrocytes (Roberts and Palade, 1995), might allow a meta
cell producing it to penetrate a microvascular wall more ea
The oxygen concentrations at which the VEGF mRNA is h
maximally up-regulated (Km value) appear to be cell line speci
(Figure 2 and Table 2), indicating differences in the ability
cervical cancer cell lines to react to hypoxic stress. Differenc
the sensitivity of the oxygen sensor within the cell, thought to 
haem protein (Bunn and Poyton, 1996), could explain these d
ences. One possible explanation could be the existence of 
cellular oxygen gradients (Boag, 1970) which result in the oxy
concentration at the oxygen sensor being lower than that i
media surrounding the cells, thus triggering VEGF mRNA prod
tion at higher measured oxygen concentrations. At oxygen co
trations in the range of the Kms for each of the cell lines the oxyg
consumption appears to be equivalent (Table 1). However, a
lowest oxygen concentrations the SiHa cells appear to ha
higher rate of oxygen consumption than HeLa and ME-180 
(Table 1). Since the exact location of this sensor is not kn
(Bunn and Poyton, 1996), the significance of these differe
cannot be assessed.

The observed shift in the Km value to a lower oxygen concentr
tion at 4 h (vs 2 h) for the HeLa cell line may indicate a chang
the cell line’s ability to react to hypoxic stress with time.

The oxygen dependence of HIF-1 protein production and D
binding activity has been studied previously using the HeLa
line (Jiang et al, 1996). The half-maximal value for these 
activities, measured after 4 h of treatment, occurred betwee
and 2% oxygen (15–20µM). This value is close to that observ
for HeLa cells in the present study (13.0 ± 1.8µM). In deriving
their value, Jiang et al circumvented the problem of oxy
gradients created by cellular respiration by inhibiting oxida
phosphorylation with potassium cyanide (KCN). The presenc
KCN altered the HIF-1 subunit levels, however the oxygen v
associated with the half-maximal HIF-1 level in the presenc
absence of KCN were about the same.

A number of other studies have shown up-regulation of VE
mRNA with hypoxia, but in most cases have not examine
© 1999 Cancer Research Campaign
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dependence on oxygen concentration quantitatively (Shweiki 
1992; Minchenko et al, 1994; Mukhapadhyay et al, 1995). To
knowledge only one study has examined the oxygen concentr
dependence of VEGF production in cells (Leith and Michels
1995). In this study VEGF protein production was examine
two colon cancer cell lines exposed to a range of oxygen con
trations. Similar VEGF protein secretion rates were observe
oxygen concentrations in the gas phase below 0.3%. The app
for control of oxygen concentration consisted of cells in mo
layer culture with an overlying 2.3-mm layer of medium o
which flowed gas of accurately known oxygen concentrat
With this depth of medium, a significant oxygen gradient du
cellular respiration would exist (Koch, 1984) and would resul
uncertainty in the actual oxygen concentration to which the 
were exposed. In fact, the cell density was similar to that in
present study (2.8 × 105 vs 3.0 × 105 cells ml–1) where a decreas
in oxygen concentration due to cellular respiration was cle
demonstrated (Table 1). The present study was conducted
well-controlled environment with direct oxygen measureme
and specifically measured the Km value for upregulation of the
mRNA, not protein, and showed that differences in that value 
exist in cells of the same cancer type.

Interestingly, the Km values that we have measured for VEG
up-regulation are similar to the oxygen concentrations which s
ulate the ability of endothelial cells to form capillary netwo
(Helmlinger and Jain, 1998). They are also low enough tha
oxygen concentration were the only deteminant for VEGF pro
tion, most tumours should contain areas which are hypoxic en
(Vaupel and Hockel, 1998) to have large areas which stain
VEGF. In-situ hybridization which showed that VEGF mRNA w
found primarily in cells adjacent to areas of necrosis (Shw
et al, 1992) or tumour cell nests (Plate et al, 1994) did not att
to quantitate the oxygen concentration within the tumour. To w
extent the observed variation in VEGF staining for protein
mRNA in human tumours may reflect technical factors is 
known (Senger et al, 1993; Guidi et al, 1995).

One possible use for a detailed understanding of the ox
dependence of VEGF mRNA up-regulation would be as a ma
for hypoxia, especially radiobiological hypoxia. Oxygen acts
a radiation sensitizer and the Km value for half maximum radio
sensitization is usually regarded as being in the range o
5 mmHg (3–7µM) (Chapman et al, 1974; Vaupel et al, 198
However, recent studies in our laboratory with the SiHa 
ME-180 cell lines used in this study suggest much higher va
(Vukovic et al, 1998) similar to the Km values for VEGF mRNA
upregulation reported here. Thus, such up-regulation may p
useful as a marker for radiobiologic hypoxia.

Physiologic conditions other than hypoxia are known to cause
regulation of VEGF. Low glucose levels in the presence of oxy
(Shweiki et al, 1995) and low pH (Xie et al, 1998) can both incre
VEGF levels in vitro. This complicates the interpretation of chan
in the level of VEGF in vivo. The levels of hypoxia required for
upregulation in vivo need to be established. This might be done
the use of a marker for hypoxia such as the 2-nitroimidazole E
which has a Km value for binding of about 1 mmHg (1.5µM) (Koch
et al, 1995). The amount of EF-5 bound in cells can be used to 
mine their oxygen level during exposure to EF-5 and seems to c
late with VEGF protein expression in spheroids (Waleh et al, 19
however, it has been recently reported that pimonidazole bin
does not correlate with VEGF protein expression in human s
mous cell carcinomas (Raleigh et al, 1998).
© 1999 Cancer Research Campaign
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Increased VEGF production by a cell may enhance its abil
form metastases. Evidence exists linking increased product
VEGF in rodent tumour cells (Jang and Hill, 1997), hum
melanoma cells (Claffey et al, 1996; Slaven et al, 1997; Dani
and Rofstad, 1998), and human fibrosarcoma cells (Goldman
1998) to increased ability to form metastases. Thus, tumou
which cells up-regulated VEGF at higher oxygen concentra
may be more likely to form metastases.
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