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Effects of nicotinamide and carbogen on tumour
oxygenation, blood flow, energetics and blood glucose
levels
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Summary Both host carbogen (95% oxygen/5% carbon dioxide) breathing and nicotinamide administration enhance tumour radiotherapeutic
response and are being re-evaluated in the clinic. Non-invasive magnetic resonance imaging (MRI) and 3P magnetic resonance
spectroscopy (MRS) methods have been used to give information on the effects of nicotinamide alone and in combination with host carbogen
breathing on transplanted rat GH3 prolactinomas. Gradient recalled echo (GRE) MRI, sensitive to blood oxygenation changes, and spin echo
(SE) MR, sensitive to perfusion/flow, showed large signal intensity increases with carbogen breathing. Nicotinamide, thought to act by
suppressing the transient closure of small blood vessels that cause intermittent tumour hypoxia, induced a small increase in blood
oxygenation but no detectable change in perfusion/flow. Carbogen combined with nicotinamide was no more effective than carbogen alone.
Both carbogen and nicotinamide caused significant increases in the nucleoside triphosphate/inorganic phosphate (BNTP/P) ratio, implying
that the tumour cells normally receive sub-optimal substrate supply, and is consistent with either increased glycolysis and/or a switch to more
oxidative metabolism. The most striking observation was the marked increase in blood glucose (twofold) induced by both nicotinamide and
carbogen. Whether this may play a role in tumour radiosensitivity has yet to be determined. © 2000 Cancer Research Campaign
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Tumour oxygenation and blood flow are of fundamental impor- The response of tumours to host carbogen breathing has beer
tance to many forms of cancer therapy. Poorly-perfused regions sficcessfully monitored bjH MRI methods with high temporal
tumours are likely to be hypoxic and thus resistant to radiotherapgnd spatial resolution, and which are sensitive to the deoxyhaemo-
(Gray et al, 1956). At present it is believed that in addition to thelobin concentration. Deoxyhaemoglobin is paramagnetic and its
chronic, diffusion-limited hypoxia described by Thomlinson andpresence creates inhomogeneities in the magnetic field. This
Gray (1955), there is a second mechanism — transient, acuteduces the ;F magnetic resonance (MR) relaxation time of the
hypoxia in small (5@um diameter) tumour volumes (Chaplin et al, tissue surrounding blood vessels containing deoxygenated blood.
1987; Braun et al, 1999). Both nicotinamide and carbogen (95%radient-recalled echo (GRE) images are sensitivg*tatfius a
oxygen/5% carbon dioxide) have been shown to increase tumochange in GRE image intensity reflects a change in blood deoxy-
response to radiotherapy (Horsman et al, 1987; Chaplin et afjenation due to either a change in blood saturation or blood flow.
1991; Kjellen et al, 1991), and it is generally considered thaDeoxyhaemoglobin therefore acts as an endogenous, blood
they target these two different hypoxia mechanisms. Breathingxygenation level dependent (BOLD) contrast agent (Ogawa et al,
carbogen increases the amount of dissolved oxygen in the plasi890). GRE MR images are also sensitive to the so-called ‘in-flow
at the capillary level and this, assisted by hypercapnic-inducesffect’ whereby the water in fresh blood flowing into the selected
vasodilation, may allow diffusion of oxygen into chronically imaging slice is not saturated from the previous radiofrequency
hypoxic regions of tumours, resulting in an increase in tumoupulse, thus giving a stronger signal than that from static water in
oxygenation. Nicotinamide is thought to reduce the occurrence dissue (Duyn et al, 1994). Several studies have demonstrated large
acute hypoxia (Chaplin et al, 1990) and hence increase tumougarbogen-induced increases isf h both rodent (Robinson et al,
blood flow (Horsman et al, 1988; Hirst et al, 1993), although its1995; Dunn and Swartz, 1997; Oikawa et al, 1997; Robinson et al,
precise mechanism of action is still unclear. The combinatiori997, 1999) and human (Griffiths et al, 1997) tumours. This is a
of carbogen breathing and nicotinamide is currently beingconsequence of an improvement in both tumour blood flow and
re-evaluated in the clinic as a strategy to overcome hypoxic cetixygenation (Howe et al, 1996; Al-Hallaqg et al, 1998), a method
radioresistance (Hoskin et al, 1997; Kaanders et al, 199&ubsequently termed FLOOLCFI0w and Oxygen Dependent)
Bernier et al, 1999). imaging (Howe et al, 1999).
In preclinical in vivo studies, sensitization is only seen when
nicotinamide is administered prior to radiotherapy (Horsman,
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nicotinamide, alone and in combination with carbogen, wadollowing protocols.
monitored by three MR methods. GRE MR imaging was used t
monitor blood oxygenation via,¥, spin echo (SE) MR imaging to :
. . 2 S 40 min

monitor flow via the changes in the*Trelaxation time (Howe et - S . .

) " . . . 2. 1000 mg kg nicotinamide in saline administered followed by
al, 1999); and'P MRS to detect changes in tumour bioenergetics 20 min air breathin
(e.g.BNTP/P ratio) (Tozer and Griffiths, 1992). The combination o . 9 . . .
of these MlR methods was firstly validated in a bilot stud 3. initial 20 min carbogen breathing alone, resumption of air

y P y breathing for 40 min with administration of 1000 mg'kg

following the response of GH3 prolactinomas to hydralazine, a . . . ) . .
. nicotinamide, and finally 30 min carbogen breathing.
vasodilator whose tumour vascular steal-effects are well docu-

mented (Jirtle, 1988; Robinson et al, 1998). Subsequently the
tumour response to nicotinamide and carbogen was studied in Vi\f\ﬂ
using MR and other complementary methods to elucidate the
underlying mechanisms of action. For the images, a region of interest (ROI) encompassing the whole
tumour *H image but excluding the skin was chosen and the
average pixel intensity calculated. Image intensities are reported
relative to the average pixel intensity in the ROI during initial air
Animals and tumours breathing which was set to 100%.

GH3 prolactinomas were grown in the flanks of female Wistar Spectral analysis was performed using the Variable Projection

. .(VARPRO) time-domain non-linear least squares method (van den
Furth rats. Tumour cells from a serial passage of a cell suspensi

(Prysor-Jones and Jenkins, 1981) were injected subcutaneous oogaart et al, 1995). For each analysis the first three data points
into 180200 g rats and tum’ours grown to 1.5-2 cm diameter Were excluded from the fit to eliminate the influence of fast

. . . L - decaying signals from immobilized phosphates which cause a
Anaesthesia was induced with a 4 ml-*kgntraperitoneal f . . . .
- . - baseline hump in the spectra. The data were fitted assuming contri-
injection of fentanyl citrate (0.315mg ™l plus fluanisone . ) )
) , . . butions from phosphomonoesters (PME), inorganic phosphate
(10mg mt) (Hypnorm’, Janssen Pharmaceutical Ltd), mida- (P), phosphodiesters (PDE), phosphocreatine (PCr) and the three
zolam (5 mg m#) (‘Hypnovel’, Roche) and water (1:1:2). This * "’ phosp » PNOSP

combination has a minimal effect on tumour blood flow (MenkenuueOSIOIe triphosphates (NTP) resonances, and peak lineshape

- was assumed to be Lorentzian. Peak area rati@®oP/P and
and Vaupel, 1986) andP MRS characteristics (Sansom and P/2P were then determined. Intracellular tumour, plds deter-

Woo_d,_ 199.4)' The tail vein was car_mulated prior to MR’.tO al.lowrﬁined using the VARPRO-derived chemical shifts for thari
administration of hydralazine (Sigma, UK) or nicotinamide a-NTP resonances (Ojugo et al, 1999) '
(Sigma, UK) whilst the animal remained in the magnet bore. The ’ '
animals were placed on a flask containing circulating warm water

to maintain the core temperature af@7and positioned so the Blood pressure monitoring

tumour hung vertlcally_|r_1to a ra_dlofrequenc_:y coil. C_:arbogepMean arterial blood pressure (MABP) was measured over the
(BOC, UK Ltd) was administered via a nose-piece, equipped with .

: . same time course as for the MR protocols on separate cohorts of
a scavenger to prevent the leakage of paramagnetic oxygen into, _ ) - .
- . rats @ = 5), using a rat tail blood pressure monitor (Harvard
the magnet bore, which could potentially change the magnetlﬁ aratus Ltd, Edenbridge, UK)
susceptibility around the coil and produce image artefacts (Batespp ' ge, '

et al, 1995).

15 mg kg of hydralazine administered with air breathing for

R data analysis

MATERIALS AND METHODS

Blood plasma glucose

MRI and MRS Arterial blood samples were taken from the iliac artery of a sepa-
H MRI and*P MRS was performed with a 4.7 T, 33 cm SISCO rate cohort of tumour-bearing rats before and (1) 40 min post-
(Spectroscopy Imaging Systems Corporation) instrument fitte@dministration of 1000 mg kgnicotinamide intravenously or (2)
with a 10 G cm, 12-cm bore high-performance auxiliary gradient &fter 10 min of carbogen breathing< 10 samples per treatment
insert, using a two-turn 3-cm coil tuneable to Bbtrand®P reso- group). The blood samples were centrifuged to remove the red
nant frequencies. Prior to data acquisition, field homogeneity wagellS, an aliquot of the plasma supernatant was deproteinized with
optimized by shimming on the water signal for each tumour to ggrchlorlc acid and ;ubsequently neutra!lzed. Glucose was deter-
linewidth of between 50 and 70 Hz. GRE images (echo time TE mined on the neutralized extracts according to Bergmeyer (1974).
20 ms, repetition time TR = 80 ms, flip angle= 45°) and SE
images (TE = 20 ms, TR = 300 ms) were acquired from a sing|
1 mm slice taken through the centre of the tumour. Each imag
took 3 min to acquire using 256 phase encode steps over a 4 chhe reproducibility of the MRI andP MRS acquisitions was
field-of-view (FOV) with 8 averages. Non-localizé# spectra  assessed from the two sets of pre-challenge measurements made in
were acquired using a hard pulse with TR = 3's, 64 transients amhch protocol. For the normalized GRE and SE image intensities,
an acquisition time of 4 min. The hard pulse flip angle wasBNTP/P and R'ZP, the coefficient of variation (CV) was measured
optimized to minimize the appearance of PCr from surroundingn each of the 18 animals and the r.m.s. value determined. For pH
muscle tissue. the standard deviation was measured and the r.m.s. determined.
Interleaved MRI and MRS were acquired from separate cohortResults are presented as meastandard error, and significant
(n = 6) of tumours for an initial 20 min of baseline (air breathingchanges identified using Student’s two-taitedst at a 5% confi-
with no vasoactive agent) data, and thereafter using one of thience level.

tatistical analysis
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RESULTS 18 animals prior to treatment, the precision of the measurements
was determined: these were 3% for GRE MR intensity, 2% for SE
In all the studies the blood-oxygenation-sensitive GRE image#RI intensity, 23% foBNTP/P, 19% for RZP (all .m.s. CV) and
showed a heterogeneous pattern of intensities whereas the flo@-1 units for pH (r.m.s. std. dev.).
sensitive SE images showed a fairly homogeneous pattern. In theMean arterial blood pressure was unchanged by nicotinamide
GRE images during air breathing, the regions of high signaand carbogen but significantly reduced by hydralazine (Table 1).
intensity are thought to delineate well-oxygenated/perfused areas Circulating blood glucose levels were determined prior to and
of the tumour, whilst dark areas are thought to indicate poorlither 40 min post-administration of nicotinamide or after 10 min
perfused/necrotic regions. The small hyperintense spots in both SE carbogen breathing, these time points selected on the basis o
and GRE images are probably attributable to signal from largéhe maximum observed improvement in tumour energetics. Both
blood vessels (Howe et al, 1999). In ## MR spectra, typical nicotinamide (11.4+ 0.7umol miY) and carbogen breathing
resonances were identified for PME, PDE, PCr ang, a and(- (15.6 £ 0.6umol mk?) induced significant increases in plasma
NTP. Non-localized®® MRS was utilized to maintain adequate glucose levels (Table 1). The control plasma glucose levels (6.6
temporal resolution and can result in spectral contaminatiorD.3umol mt') and the enhanced levels after carbogen breathing
However, in all the acquired spectra the PCr peak, when presenmtgere similar to those previously reported (Stubbs et al, 1998).
was always less than that of NTP.
In the pilot study, hydralazine produced the expected significa
decreasesn both GRE and SE image intensity andBNTP/P %ISCUSSION
after 5 min. After 20 min the changes were maximal and stable fofhe observed MRI and MRS responses of GH3 prolactinomas to
the further 20 min of measurements. Within some of the GRE anhydralazine were as expected, and this pilot study validated our
SE images, bright structures were observed whietreasedn interpretation of the changes seen with nicotinamide and carbogen.
number and intensity post-hydralazine (Figure 1). Hydralazine acts directly on vascular smooth muscle in vessels of
Figure 2 shows representative GRE and SE MR image¥Rand normal tissues, causing vasodilation and an overall decrease in
spectra from a GH3 prolactinoma where the changes followingMABP. Tumour blood vessels, which may lack smooth muscle, do
nicotinamide challenge had reached a maximum. Figure 3 showmot dilate in response to hydralazine, resulting in a redistribution
the time course of changes in MR image intensity RdMRS  of blood away from the tumour, described as vascular steal (Jirtle,
parameters following administration of nicotinamide. A signifi- 1988), and hence a reduction in tumour blood flow. This reduction
cantincrease iBNTP/P was observed 10 min after administration in tumour perfusion results in nutrient and oxygen deprivation, and
of nicotinamide; the maximal increase was reached after 40 mihence reduced bioenergetic status as observed iARhBIRS
and it was then stable for a further 30 min. Concurrent with thispectrum (an increase in felative to NTP). This has also been
was a significant decrease 2 and a small but statistically observed for hydralazine in other tumour models (Okunieff et al,
non-significant increase in tumour pkChanges in the oxygena- 1988; Dunn et al, 1989; Bhujwalla et al, 1990; Robinson et al,
tion-sensitive average GRE MR image intensity over the tumout998). SE MR images (Figure 1 C,D) are sensitive to flow, and
were much less but there was a small significant signal increasg/dralazine causes a decrease in overall signal intensity due to
after 40 min. The SE MR images, which are sensitive to bloodeduced perfusion. The hyperintense spots are from the water in
flow, showed no change in average image intensity. blood vessels and are thus identified as large blood vessels in
These results formed the basis of the protocol designed toross-section. This is confirmed by their reduction in number in
assess the combination of carbogen and nicotinamide; carbogessponse to hydralazine, the reduced perfusion resulting in less of
breathing was started 40 min post-nicotinamide when thean ‘in-flow’ effect. The overall reduction in GRE image signal
maximum response to nicotinamide occurred. The response intensity reflects the increase in capillary blood deoxyhaemo-
carbogen breathing alone was much greater and faster than tlgddbin as the reduced perfusion means a larger oxygen fraction is
with nicotinamide alone. Significant increases in both GRE andxtracted. A similar GRE MRI response to hydralazine has been
SE image intensity and iBNTP/P, were observed after 5 min of observed in RIF-1 fibrosarcomas (Bhujwalla et al, 1994; Williams
carbogen breathing with maximum increases after 10 min. Figuret al, 1996).
4 shows representative GRE and SE MR images of the maximum Despite the plethora of data demonstrating the ability of nicoti-
response to host carbogen breathing. On return to air-breathim@amide to radiosensitize (Chaplin et al, 1991; Kjellen et al, 1991;
these changes were reversed within 5 min. When carbogen wékrsman 1995 and references therein), there appears to be n
given 40 min after administration of nicotinamide, tHeMRI and ~ consensus on its precise mechanism of action. The main aim of
3P MRS changes were no different to those caused by carbogémis study was to investigate tumour response to nicotinamide
breathing alone. Hyperintensities in both GRE and SE imageadministration and carbogen inhalation, which were given sepa-
increased in number and intensity with carbogen breathingately and in combination. Carbogen caused marked and wide-
irrespective of whether nicotinamide had been administeredpread increases (392%) in GRE MR image intensity, whereas
(Figure 4). those caused by nicotinamide were much smallerd®), though
Table 1 summarizes the data for each vascular challenge wheiill statistically significant (Table 1). The results with carbogen
MRI and MRS changes were maximal and stable, i.e. 40 min aftewere qualitatively similar to those seen in our previous studies
hydralazine administration, 40 min after nicotinamide administra-on this tumour model which we interpreted as largely due to
tion and after 10 min of carbogen breathing. The data during ailecreased deoxyhaemoglobin in the tumour blood vessels
breathing represent the average of data from all three of th@obinson et al, 1995, 1997, 1999; Howe et al, 1996, 1999). It
previously described protocols, but prior to the vascular challengeshould be noted that the GRE MR images with short TRs are also
From the two successive MRI afi®® MRS measurements in all susceptible to in-flow effects, and hence an increase in blood flow

© 2000 Cancer Research Campaign British Journal of Cancer (2000) 82(12), 2007-2014



2010 SP Robinson et al

Figure 1 Response of a GH3 prolactinoma to 5 mg kg hydralazine i.v., monitored by interleaved *H MRI & 3P MRS: (A and B) are GRE MR images prior to
and 32 min post-hydralazine; (C and D) are SE MR images prior to and 35 min post-hydralazine; (E and F) are non-localized **P MR spectra prior to and 38 min

post-hydralazine
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Figure 2 Response of a GH3 prolactinoma to 1000 mg kg™ nicotinamide administered i.v., monitored by interleaved *H MRI & **P MRS: (A and B) are GRE
MR images prior to and 42 min post-nicotinamide; (C and D) are SE MR images prior to and 45 min post-nicotinamide; (E and F) are non-localized 3P MR

spectra prior to and 48 min post-nicotinamide
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the tumours. Furthermore, these effects are likely to be widespread

A 120+ throughout the tumour, so the overall signal intensity of the image
W 110 i T Ty ow is likely to change. Nicotinamide, on the other hand, is thought to
O 100l . = [] : act by suppressing the transient closure of small blood vessels _thaw
ot . causes intermittent tumour hypoxia (Chaplin et al, 1987). Studies

907 using window chamber tumours (Eddy and Cassarett, 1973;
80 T T T T T T T T T r ) Yamaura and Matsuzawa, 1979; Dewhirst et al, 1992) or histo-
—20 0 20 40 60 80 logical methods (Chaplin et al, 1987) have indicated that less than

B 120+ 10% of tumour blood vessels are subject to intermittent hypoxia at
" 110 any one time. This would be consistent with the present results in
@ 100 * . - which nicotinamide changed the GRE image intensity by only 8%.
g8 . * 3 %3 * E A 3 In a study by Kimura et al (1996) up to 30% of the tissue in a

90-] mammary tumour model was found to contain vessels subject to
80 T T T T T r T T T r ) unstable blood flow and thus liable to experience transient
—20 0 20 40 60 80 hypoxia, but the volume of transiently hypoxic tissue at any one

c 2.0+ - time was not calculated. If each susceptible vessel were closed for
o ] . } > ¥ E* 30% of the time the overall volume of transiently hypoxic tumour
E 1'6__ o »”" E - tissue would still be about 10%. Our SE MRI experiments directly
s 124 = addressed the question of tumour blood flow, and we found that

] E E nicotinamide had no effect on flow into the imaged slice. This,
0.8 — —T . — T . y however, is explicable, since the vessels we are able to image are
-20 0 20 40 60 80 quite large (> 0.3 mm), whereas the transient hypoxia phenom-
D 0141 ; ; enon occurs in vessels of less than 0.1 mm diameter (Kimura et al,
0.12 4 . 1996).
% ] i P When carbogen and nicotinamide were administered sequen-
- 0107 - L E* - tially, the addition of nicotinamide made no significant difference
0.08 A A ;“ to the GRE MRI image, i.e. carbogen followed by nicotinamide
0.06 ——— 77— had the same effect as carbogen alone. This, too, is explicable in
-20 0 20 40 60 80 terms of the standard mechanisms of action of the two agents.
E 7.40- There is no reason to think that their effects would be synergistic,
7.35 and if they are additive one would not expect to be able to distin-
T 7.30 o I ; E ¥ E ¥y guish the small effect of nicotinamide superimposed on the larger
a R v L K .
7.25 -] I i i one caused by carbogen. In radiobiological experiments, carbogen
7.20] ; and nicotinamide in combination cause more radiosensitization
7.15] — T — T than either treatment alone (Chaplin et al, 1991; Kjellen et al,
-20 0 20 40 60 80 1991). The difference between this result and the present one coulc
Time from administration of 1000 mg kg™ nicotinamide (minutes) be due to the much smaller proportion of cells in a tumour that are

radiobiologically hypoxic. Nicotinamide could have a major effect
Figure 3 Time course of 'H MR imaging and *P MR spectroscopy changes on radiobiological hypoxia by oxygenating some of these cells
?:;)L%’r;’;ﬂzfgg"gg‘g aanm;g:tilr?tner?;itlyO(()«)Z)r_n?BI)(gNo?r:gﬁlzn:?édsmR mage without significantly affecting the overall MRI response of the
intensity (%). (C) BNTP/P, (D) P/=P. (E) pH,. All data are mean + s.e.m. for tumour.
n=6.*P<0.05 Student's two-tailed t-test The increase@NTP/P, ratio in response to carbogen in these

GH3 tumours is unsurprising (although not all tumour models

show such rises after carbogen challenge), if we assume that the
could also result in an increase in GRE signal (Duyn et al, 1994). fumour’s oxygen supply is sub-optimal when the host is breathing
secondary effect that we demonstrated herein with SE MRI waair. If there are substantial, chronically hypoxic volumes of tissue
enhanced blood flow into vessels within the tumour slice beinghen the improved blood flow and blood oxygen content caused by
imaged, and here again the results with carbogen in the preserdarbogen inhalation would be expected to enhance tumour ener-
study were qualitatively similar to those we have previouslygetics. In contrast, if the action of nicotinamide is confined to a
published (Howe et al, 1999). Nicotinamide, however, had nemall fraction of the cells in the tumour one would not expect to
effect on the SE images, suggesting that it did not cause changessiee such marked changes in BNTP/P ratio. A similar response
blood flow in the tumour vessels that we were able to image. Flowhas been previously reported in both SCCVII and KHT murine
sensitive MRI perfusion maps of 9L rat brain gliomas also showetumours (Wood et al, 1991), However, there is another factor to be
no change in response to nicotinamide (Brown et al, 1999). taken into account: surprisingly, both these very different treat-

In general, these results can be understood in terms of thments caused marked and statistically significant hyperglycaemia.

accepted mechanisms of action of carbogen and nicotinamide. We can explain the improved bioenergetic parameters in GH3
Since carbogen inhalation causes vasodilation (because of ti@mour in response to carbogen if we assume that the tumour cells
hypercapnia) and enhanced oxygen transport (because of thermally receive sub-optimal substrate supply. Many studies with
hyperoxia) it is not surprising that there is evidence of enhanceperfused tumours have shown that glucose consumption varies
blood flow and decreased vascular deoxyhaemoglobin content afirectly with glucose supply (Sauer et al, 1982; Vaupel et al, 1989).

© 2000 Cancer Research Campaign British Journal of Cancer (2000) 82(12), 2007-2014
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Figure 4 GRE and SE *H MR images of one GH3 prolactinoma acquired during (A) initial air breathing, (B) host carbogen breathing, (C) resumed air
breathing and ca. 40 min post-administration of 1000 mg kg nicotinamide i.v. and (D) subsequent carbogen breathing and ca. 70 min post-nicotinamide

Table 1
Air Hydralazine Nicotinamide Carbogen Nicotinamide and
carbogen
GRE SI 100 85+ 22 108 + 3° 139 + 22 146 + 52
SE SI 100 90 + 22 100+ 4 115 + 22 117 £ 32
BNTP/P, 1.06 £ 0.02 0.66 + 0.062 1.81 £0.212 1.58 £ 0.12 1.62 +0.142
P/zP 0.13+0.01 0.17 +0.012 0.08 +0.01? 0.09 +0.012 0.09 £0.012
pH 7.22+£0.01 6.92 £ 0.042 7.32+0.04 7.23+0.02 7.26 £0.02
MABP (mmHg) 103+ 6 46 £ 22 92+7 112 +5 95+4
Glucose (umol ml?) 6.6 +0.3 - 11.4 +0.72 15.6 £ 0.62 -

2P < 0.01 compared to air. °P < 0.05 compared to air. Summary of the data for each vascular challenge when MRI and MRS changes were
maximal and stable. The data during air breathing are the average of data from all three protocols prior to the vascular challenge.

Since carbogen and nicotinamide cause approximately doublediffering observations of the metabolic fate of glucose, they are all
blood glucose concentrations, it is not, therefore, surprising thatonsistent with enhanced energetic status in response to an
they both enhance the tumd@NTP/P ratio. It is not possible to increased substrate supply.

deduce whether the glucose substrate in the present experimentdn summary, the MRI results can be accounted for on the basis
was metabolized oxidatively or glycolytically, and there areof the accepted mechanisms of action of carbogen and nicotin-
reports of both types of metabolism in the literature. Dewhirst et aimide, whereas th&P MRS changes can be explained by the
(1999) showed that combined hyperglycaemia and hyperoxieaised (~twofold) blood glucose induced by these two agents.
improved tumour pOmore than hyperoxia alone, suggesting thatSystemic effects of raised blood glucose induced by nicotinamide
the R3230Ac tumour line they studied switched from an oxidativeand carbogen do not appear to have been considered in the litera-
to a more glycolytic metabolism when challenged with glucoseture with respect to tumour radiosensitization, although attempts
thus sparing oxygen — a Crabtree effect. HoweveFlGnMRS  to increase tumour p®y decreasing the consumption of oxygen,
dynamic studies in the RIF-1 tumour, Nielsen et al (1999) havand hence radioresponse, have been (Biaglow et al, 1998). It has
shown that carbogen breathing significanttiecreasesthe been known for many years that metabolism of nicotinamide
‘apparent’ glycolytic (i.e. **C glucose to*C lactate) rate, resultsin glycogen breakdown and a consequent increase in blood
suggesting a more oxidative metabolism. Similarly Stubbs et ajlucose (Ammon and Estler, 1967; Moreno et al, 1985). However,
(1998) showed carbogen-induced hyperglycaemia accompaniede have not found any previous reports (other than our own work,
by a decrease in [lactate] (in Morris hepatoma 9618a), also consiStubbs et al, 1998) of carbogen-induced hyperglycaemia and the
tent with a switch to a more oxidative metabolism. Despite theseechanism of this effect must be speculative. Carbogen breathing
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induces hypercapnia which is known to cause an excitatoriewhirst MW, Vinuya RZ, Ong ET, Klitzman B, Rosner G, Secomb TW and Gross

response of the sympathetic nervous system and epinephrine JF (1992) Effect§ of bradykinin onlthe hemodynamics of tumor and granulating
normal tissue microvasculatuiRadiat Red30 345-354

r.elease' Eplnephrlne induces glycpgen()ly.SIS as well as Stlml"“ﬂfewhirst MW, Snyder S, Lanzen J, Braun RD, Secomb TW and Biaglow J (1999)
tion of cardiac output and metabolic rate via the adrenal medulla  pyperglycemia plus hyperoxia improves tumor oxygenation more efficiently
(Guyton and Hall, 1996). The impact of these systemic effects on than hyperoxia alon®roc Int Soc Oxygen Transport T8

tumour phys|0|ogy and metabo”sm is C|ear|y Comp|ex and ma}Dunn JF and Frostick S, Adams GE, Stratford 1J, Howells N, Hogan G and Radda

; ; . _ GK(1989) Induction of tumour hypoxia by a vasoactive agent. A combined
well influence how a tumour responds to radiotherapy in the pres NMR and radiobiological SIUGFEBS Letp4a 343347

ence of clinical radiosensitizers. ngh levels of hyperglycaemlq}unn JF and Swartz HM (1997) Blood oxygenation: heterogeneity of hypoxic
induced by glucose infusion (fourfold higher than normal blood tissues monitored using BOLD MR imaging. @xygen Transport in Tissue
glucose) have been shown to decrease tumour blood flow and XIX, Harrison and Delpy (eds), pp. 645-650. Plenum Press: New York

pH and used as an adjuvant for hyperthermia (Song, 1998 arwyn JH, Moonen CTW, van Yperen GE, de Boer RW and Luyten PR (1994) Inflow

. . . versus deoxyhaemoglobin effects in ‘BOLD’ functional MRI using gradient
therein) but these effects probably do not play a role in this study . =" 1éNMR giomed,: 83.88 99

in which the degree of hyperglycaemia was much less Severggdy Ha and Cassarett GW (1973) Development of the vascular system in the
However, in view of the current clinical radiotherapy trials of hamster malignant neurilemontdicrovasc Re$: 63-82

combined nicotinamide and Carbogen administration to pauem§;ray LH, Conger AD, Ebert M, Hornsey S and Scott OCA (1956) The concentration

f P of oxygen dissolved in tissues at the time of irradiation as a factor in
it would be prudent to check for hyperglycaemia in human radiotherapyBr J Radiol26: 638648

SUbJECtS' Griffiths JR, Taylor NJ, Howe FA, Saunders MI, Robinson SP, Hoskin PJ, Powell
MEB, Thoumine M, Caine LA and Baddeley H (1997) The response of human
tumors to carbogen breathing, monitored by gradient-recalled echo magnetic
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