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Summary Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the
selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for
treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal
liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or
photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of
molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an
antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The
conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h 
later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The
photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as
antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5
times more than the cationic 17.1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for
most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic
species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports
of other photosensitizers, which can result in tumour:normal liver ratios of less than 1. © 2000 Cancer Research Campaign
http://www.bjcancer.com
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A major cause of death from colorectal cancer is liver metastasis,
which at present has a bleak prognosis and is in urgent need of
novel therapies (Van Cutsem, 1996), one of which may be photo-
dynamic therapy (PDT) (Dougherty et al, 1998). PDT has not
previously been much used to treat liver tumours for two reasons.
Firstly, it is known that normal liver tissue accumulates large
amounts of conventional photosensitizers (PS) (Woodburn et al,
1992). In the case of the only PS with clinical approval Photofrin®
(Dougherty et al, 1998), this fact can lead to the occurrence of
reverse selectivity, where the normal liver actually has higher
concentrations of PS than the tumour (Van Hillegersberg et al,
1992). Secondly, the transmission of light through the highly
pigmented liver tissue is relatively poor compared to other tissue
types (van Hillegersberg et al, 1993). The latter drawback may be
overcome by selecting a PS, which absorbs further in the red and
using interstitial illumination via a fibre inserted into the tumour.
The first drawback may be overcome by seeking ways to increase
the selectivity of the PS for colorectal cancer cells at the expense
of normal liver parenchymal cells. One way of accomplishing this
is to attach the PS to a monoclonal antibody (Mab) which recog-
nizes tumour specific antigens expressed on the surface of tumour
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cells (Mew et al, 1983). Our laboratory has explored this approach
to experimental treatment of peritoneal dissemination of ovarian
cancer (Goff et al, 1992, 1994, 1996), and other workers have
applied this clinically in ovarian cancer treatment (Schmidt et al,
1992a, 1992b). The Mab construct is known as a photoimmuno-
conjugate (PIC), and we have reported (Hamblin et al, 1996;
Duska et al, 1997) on a method of preparing these PICs in a site-
specific manner using poly-L-lysine linkers to attach the PS chlo-
rin

e6 (ce6) and which allows them to be prepared with predominant
cationic or anionic charges. 

17.1A is a murine antibody (Gottlinger et al, 1986) that recognizes
the epithelial membrane antigen (a homophilic cell–cell adhesion
molecule known as Ep-CAM); this antigen is overexpressed on
many cancers of the gastrointestinal tract (Litvinov et al, 1994).
17.1A has been used in experimental clinical studies to treat human
colorectal cancer, both in an unconjugated form to induce antibody-
dependent cellular cytotoxicity (Riethmuller et al, 1994) and as
radioimmunoconjugates to target radioisotopes to residual tumour
(including liver metastases) (Meredith et al, 1995). In a previous
report we detailed the preparation of PICs between 17.1A and c

e6 and
which bore either polycationic or polyanionic charges (Del
Governatore et al, 2000a) (Figure 1). Both these charged PICs
preserved antigen-binding capacity, and showed selective uptake and
phototoxicity towards target HT29 cells. 

PDT or photoimmunotherapy might have a role to play in
treating liver tumours which are not amenable to surgery, but



Biodistribution of photoimmunoconjugates in liver metastasis 1545

H2C

H3C

H3C

H3C
H3C

H3C

H2C

N

N

N

N

N

H

H

H

COOH
COOH

COOH
COOH

N

NH

HN

HN

HN

N

N

N

NNH

H

H

N

N

N

H N

N
N

N

N

N

N

NN

HOOC

HOOC

N

H

N
N

N

N

N

N

N

N N

N

H

H

H

H H

H

H

H

H

H

H CH

H

H

H

H

H
H

H

N

H
O

O
C

H
2
C

H
2
C

O
C

H
N

N
H

C
O

C
H

2 C
H

2 C
O

O
H

N
H

C
O

C
H

2 C
H

2 C
O

O
H

H

HN

NH

NH

NH

HN

HN

N
H

HN

NH

NH

HN

H
N

C
H

H

O

O

HO

O

O

O

O S

SS

S

S S

O

O

O
O

O

O

O
O

O

O

O

O

NHCOCH2CH2COOH

NHCOCH2CH2COOH

NHCOCH2CH2COOH

O
C

C

O

O

O

O

O
O

O

H

H

CH3

CH3

CH3

NH2

NH2

CH2

H3C

H3C

CH3

CH3

H2

CH3

H2C

H3C

H3C

CH2

CH3

HOOC

HOOC

COOH
COOH

H3C

H3C

H3C

H2C

H2C

H3C

H3C

CH2

CH3

CH3

CH3

CH3

CH3

CH3

CH2

CH2

C

CH2

CH3

CH3

H

H2

H

HOOC

HOOC

NH2

CH2

primary amino groups
H2

carboxylic acid groups

17.1A -pl-ce6-succ 17.1A -pl-ce6 

CH2

H2

CH3

C

Figure 1 Structural representation of the PICs. 17.1A-pl-ce6 has primary amino groups, which give it a polycationic charge, while 17.1A-pl-ce6-succ has
carboxylic groups that give it a polyanionic charge. 17.1A-pl-ce6 contains 1 pl-ce6 chain per Mab, while 17.1A-pl-ce6-succ contains 2 
which nevertheless are localized within the liver. It may be
possible to deliver the PS or PIC in a locoregional approach via the
hepatic artery (Nishiwaki et al, 1989; Rovers et al, 1999). The
utility of this approach can only be established if selective delivery
to tumour can be demonstrated in vivo. As a first step towards this
goal the present study explores the biodistribution of these cationic
and anionic PICs in a nude mouse model of hepatic metastases of
human colorectal cancer. We previously showed (Duska et al,
1997) that for i.p. delivery to i.p. tumours a PIC with a cationic
charge performed better than one with an anionic charge.
However, the effect of charge on the biodistribution of intra-
venously delivered immunoconjugates is uncertain, but consid-
ering the short serum half-life of cationic macromolecules
(Pardridge et al, 1998), we hypothesized that the anionic 17.1A
PIC would perform more efficiently in vivo. The experiments were
designed to study the biodistribution of cationic and anionic 17.1A
PICs, the component cationic and anionic pl-c

e6
conjugates and the

free PS c
e6

, in order to assess the effect of both charge and antibody
recognition on the selectivity for tumour over normal liver. Two
© 2000 Cancer Research Campaign
time points (3 hours and 24 hours) after administration were
employed in order to assess the balance between absolute amounts
of PS in the tumour, and tumour-to-normal liver ratio. This study
should provide data for choosing parameters suitable for intraperi-
toneal photoimmunotherapy of liver metastasis of human
colorectal cancer in the nude mouse. 

MATERIALS AND METHODS 

Mice 

All experiments were carried out with the approval of the
Subcommittee on Research Animal Care of Massachusetts
General Hospital and were in accord with the NIH Health Guide
for the Care and Use of Laboratory Animals. Female Swiss nude
mice (Cox Breeding Laboratories, Cambridge, MA) (2–3 weeks
old, weighing 20–25 g) were kept in a barrier room under perman-
ent sterile conditions to avoid any infections and had continual
access to food and water, which was taken ad libitum. Throughout
British Journal of Cancer (2000) 83(11), 1544–1551
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the experiment mice were housed in laminar flow racks under
specific pathogen-free conditions, and were monitored daily for
general health status. 

Cell line and monoclonal antibody 

HT29 tumour cell line derived from a human colorectal adeno-
carcinoma, was a generous gift from Dr K Tanabe (Massachusetts
General Hospital, Boston, MA). Cells were grown in DMEM/F12
(50/50 MIX) containing 15 mM HEPES and l-glutamine and 
were supplemented with 10% heat-inactivated FBS (Whittaker
Bioproduct, Walkersville, MD), 100 units ml–1 penicillin and
100 µg ml–1 streptomycin, and maintained in an incubator at 37˚C
in an atmosphere of 5% CO2. 17.1A murine monoclonal antibody
was a kind gift from Centacor (Malvern, PA). 

Preparation and characterization of PICs 

This has been described previously (Del Governatore et al, 2000a).
Briefly 17.1A IgG was partially reduced with mercaptoethylamine
hydrochloride and reacted with one of two poly-L-lysine c

e6
con-

jugates which had been derivatized with a heterobifunctional re-
agent bearing a pyridyldithiopropionamide group in order to form
a disulphide bond between the IgG hinge sulphydryl group and the
pl-c

e6
conjugate. The two PICs had opposite charges: the anionic

17.1A-pl-c
e6-succ had a loading of 8–9 ce6 molecules (2 pl-ce6-succ

chains) per Mab, while the cationic 17.1A-pl-c
e6 had a loading of

4–5 c
e6 molecules (1 pl-ce6 chain) per Mab. Their structures are

shown in Figure 1. Their immunoreactivity was demonstrated by
two colour direct/indirect immunofluorescence and ELISA assays
(Del Governatore et al, 2000a). Also available were identical
constituent polylysine conjugates, pl-c

e6 and pl-ce6-succ, which
had identical loadings of 5 c

e6 per polylysine chain of 225 lysine
residues. 

Animal model 

A xenograft model for liver metastases of colorectal cancer was
developed in our laboratory and utilized for the experiment. Mice
were anaesthetized by inhalation of Metofane (Pitman-Moore 
Inc, Mundelein, IL); 2 ml liquid vaporized in a 500 ml closed
container. Under aseptic condition mice were placed in a supine
position and a 1 cm left median incision (starting from sub-costal
region) was made through the skin and the peritoneum to expose
the left lateral lobe of the liver. That lobe was lifted out from the
abdominal cavity and secured in place by positioning a sterile
cotton-tipped stick inferior to the lobe. HT29 cells (5 × 106) in
50 µl of sterile DMEM/F12 were injected between the upper
surface of the lobe parenchyma and the liver capsule using a 30-
gauge needle in each mouse and after this the lobe was returned
into the peritoneal cavity. The puncture wound in the capsule was
sterilized with 100 µl povidone iodine 10% (Clinidine Solution,
Clinipad Corp., Guilford, CT). The peritoneum and the abdominal
wall were closed with sterile Ethilon 4-0 monofilament nylon
sutures (Ethicon Inc, Somerville, NJ) and the mice were monitored
and kept warm until they recovered completely from the procedure. 

Biodistribution 

Experiments took place 9 days after tumour cell injection. Five
different c

e6
-based photosensitizing agents were used: free c

e6
, 
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pl-c
e6

, pl-c
e6

-succ, 17.1A-pl-c
e6

, and 17.1A-pl-c
e6

-succ. The injected
dose of 0.25 mg c

e6
equivalent / kg body weight (approximately

8.3 nmol mouse–1) was the same for all the compounds tested and
involved the injection (lasting about 20 seconds) of 40 µl of a
200 µM c

e6
equivalent solution in sterile PBS per mouse in the tail

vein with mice under anaesthesia (Metofane, 2 ml vapour in closed
system). For the anionic PIC this involved the injection of approxi-
mately 145 µg 17.1A IgG per mouse, while for the cationic PIC the
dose contained 275 µg 17.1A IgG. At time points 3 h and 24 h after
injection (n = 6–10 mice/time point) animals were sacrificed by
CO2 inhalation. At necropsy the normal liver, tumour, blood, skin,
muscle, kidney, spleen, small intestine, stomach, bladder, lung, and
heart were harvested. Wet tissue samples (about 100 mg) were
weighed immediately after resection and frozen at –70˚C. For
extraction of the photosensitizer, the tissues were thawed and
homogenized (homogenizer model PT 10/35; Brinkman
Instruments, Westbury, NY) in 2 ml 1 M NaOH/0.2% SDS for 30
seconds and centrifuged at 1000 g (Sorvall RC-5B, refrigerated
superspeed centrifuge; Dupont Sorvall, Newtown, CT) at 20˚C for
15 min and the supernatant was collected by aspiration. Serum was
prepared from the blood and a weighed amount dissolved in 2 ml
1 M NaOH/0.2% SDS. The peak height of the fluorescence emis-
sion (usually between 658 and 664 nm) was measured with a
fluorometer (Fluorolog 2, Spex Industries, Edison, NJ) (excitation
at 400 nm, emission scanned from 580–720 nm). Quantitation of c

e6

concentration in the tissue extracts was obtained by constructing
calibration curves from known amounts of the same conjugate
together with specific tissue samples from uninjected mice
dissolved in 1 M NaOH/0.2% SDS. A separate calibration curve
was constructed for each combination of PS and each tissue type. In
agreement with previous reports (Weagle et al, 1988) we found
endogenous chlorin-like fluorescence emission spectra in tissue
extracts from stomach and intestines and to a much lesser extent in
the skin of non-injected mice. These values were variable and
generally lower than that delivered to these organs by injected c

e6

derivatives, and the mean values of endogenous fluorescence per
gram tissue from 9 control mice were subtracted from the values
found in skin, stomach and intestine tissue in the mice injected with
c

e6 conjugates before conversion to pmol ce6 equivalent. 

Histology 

During necropsy mice were carefully examined in the entire
abdominal cavity. Pieces of tissue (200–300 mg) were removed
and immediately placed in 10% formalin followed by embedding
in paraffin. Sections were cut 5 µm thick and stained with haema-
toxylin and eosin. 

Statistics 

Differences between two means were assessed for significance by
the two-tailed Student’s t-test assuming equal or unequal variances
of the standard deviations as appropriate. Standard errors of the
ratios of two means were calculated in quadrature. 

RESULTS 

Tumour model 

After the injection of 5 × 106 HT-29 cells into the liver, mice were
inspected for the establishment and evaluation of hepatic tumours.
© 2000 Cancer Research Campaign
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A B C

Figure 2 Haematoxylin and eosin stained fixed and paraffin embedded
histological sections from left lateral lobes of liver bearing HT 29 tumours.
(A) Section of tumour from mouse 9 days after implantation; 1 = normal liver, 
t = tumour, scale bar = 100 µm. (B) Section of tumour from mouse 9 days
after implantation, scale bar = 25 µm. (C) Section of tumour from mouse 
18 days after implantation, n = necrosis, scale bar = 200 µm 
They were examined at laparotomy 3, 9, 18 and 40 days after
tumour injection. At the third day no tumour was visible in the
lobe, but a small mass was detectable by palpitation of the lobe
with forceps. Within 9 days of injection all the mice had visible
hepatic tumour localized in the lobe injected and the diameter
ranged from 5–7 mm. Macroscopically, the tumour appeared irreg-
ular and the lobe surface was grey-white and sometimes appeared
umbilicated. There was a distinct border between the tumour and
the normal liver tissue, in some cases small satellite nodules were
found close to the tumour (Figure 2a). Microscopically, the
histology was moderately to poorly differentiated adenocarcinoma
from colorectal cancer (Figure 2b). At this time there was only a
small area of necrosis within the tumour. The uninjected lobe of
the liver, colon, spleen, lung, stomach and kidney were grossly and
histologically examined and no evidence of metastases was found.
18 days after injection the tumour involved the entire left lateral
lobe and also the principal lobe, about half of the liver was
completely involved with tumour and appeared bigger, irregular
grey-white, with areas of necrosis and dilated vessels on the
surface, microscopically a more significant area of central necrosis
was found (Figure 2c). Tumour weight varied from 0.9–1.2 g and
remaining normal liver from 0.8–1.6 g (control mouse livers
ranged from 1.5–2.0 g). At 40 days after implantation the tumour
involved the whole liver. The shape of the lobes was conserved but
with bigger dimensions; the weight of the tumour was 2.8–3.3 g
and remaining normal liver 0.3–0.7 g. At 40 days ascites was
found in all the mice and macroscopically the tumour was 
© 2000 Cancer Research Campaign

Table 1 Biodistribution of ce6 in tissues at 3 hours post-injection 

17.1A-pl-ce6-succ (n = 10) 17.1A-pl-ce6 (n = 7)

Liver 520 ± 106 102 ± 24
Tumour 1044 ± 207 188 ± 37
Blood 217 ± 101 29 ± 14
Skin 108 ± 98 10 ± 11
Muscle 11 ± 13 18 ± 9
Kidney 216 ± 70 32 ± 7
Spleen 8 ± 7 3 ± 2
Bladder 107 ± 69 225 ± 59
Lung 27 ± 17 573 ± 200
Heart 14 ± 8 4 ± 2
Small bowel 87 ± 68 65 ± 44
Stomach 94 ± 84 34 ± 29

Mice were sacrificed 3 h after i.v. injection of 0.25 mg ce6 equivalent/kg body weig
fluorescence measured and converted to pmol ce6 equivalent by comparison with 
individual tissue samples. Fluorescence values from tissue taken uninjected mice
pmol ce6 equivalent per g wet weight of tissue, and errors are SEM. 
grey-red, necrotic and bleeding, microscopically a lot of necrotic
areas were found and all the normal parenchyma was substituted
by tumour. Mice were sacrificed at the 40-day time-point to avoid
undue suffering. This animal model produces a single intrahepatic
metastasis of colorectal cancer suitable for insertion of a diffuser-
tipped fibreoptic for interstitial illumination. 

Biodistribution 

The method for extraction of the c
e6

from tissue samples and serum
has been shown to give reliable results in a previous publication
(Duska et al, 1997). The values for the content of c

e6 expressed in
pmol g–1 tissue extracted from the different organs when mice were
sacrificed 3 h after injection are presented in Table 1. The corres-
ponding values for percentage injected dose c

e6 per gram of tissue,
and tumour-to-normal liver and tumour-to-skin ratios are shown in
Table 2. It can readily be seen that the tumour and the normal liver
had high levels of PS compared to other organs for all 5
compounds investigated. The absolute amount of c

e6
delivered to

the tumour by the anionic 17.1A-pl-c
e6-succ (1044 ± 207 pmol g–1)

was significantly higher than any other tissue or other compound.
Both the anionic species (17.1A-pl-c

e6
-succ and pl-c

e6
-succ) had

similar accumulations in normal liver, and for the non-antibody
targeted pl-c

e6
-succ this was similar to the value in the tumour,

while for the Mab targeted 17.1A-pl-c
e6-succ the tumour had

almost twice as much. Both cationic species delivered signifi-
cantly smaller amounts of c

e6 to both tumour and normal liver than
their anionic counterparts. The low values remaining in the blood
after injection of both cationic species were balanced by the high
values in the lungs, suggesting that the lungs relatively quickly
take up both the cationic species. The bladder also had a high level
of c

e6 for all 5 compounds, while the level in the skin was very low
for cationic compounds, low for anionic compounds, and high for
free c

e6. The spleen had remarkably low levels of ce6 delivered by
all 5 compounds, as did the muscle and heart. Tumour-to-normal
liver ratios were significantly greater than one for PICs of both
charges, the cationic pl-c

e6 and free ce6. Although the tumour-to-
normal liver ratio was highest for free c

e6, this appeared to be a
function of a low uptake in liver, rather than a high affinity for
tumour. Tumour-to-skin ratios were very high for all the conju-
gates (≥ 38), compared to that of free c

e6 (1.94). It should be
noted that the mean of the tumour-to-normal tissue ratios is not
British Journal of Cancer (2000) 83(11), 1544–1551

pl-ce6-succ (n = 8) pl-ce6 (n = 7) free ce6 (n = 6) 

560 ± 148 209 ± 73 92 ± 19 
441 ± 181 373 ± 123 313 ± 54 
263 ± 42 43 ± 41 517 ± 260 
127 ± 69 16 ± 16 347 ± 199 
39 ± 17 6 ± 7 55 ± 36 
74 ± 31 39 ± 7 28 ± 7 

4 ± 3 14 ± 6 12 ± 5 
162 ± 79 162 ± 85 295 ± 187 
16 ± 6 539 ± 149 7 ± 3 
9 ± 9 2 ± 2 2 ± 1 

44 ± 42 107 ± 66 189 ± 80 
51 ± 51 57 ± 19 57 ± 43 

ht. Samples of tumour and normal organs (≈ 100 mg) were extracted, the
standard fluorescence curves of known amounts of conjugate dissolved with
 were subtracted to correct for autofluorescence. All values are expressed in
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Table 2 Tissue ce6 content (% ID/g tissue) and mean of tumour-to-normal tissue ratios at 3 h 

Tumour (% ID/g)a P vs PIC-b Liver (% ID/g) Tumour/liverc Tumour/skin 

17.1A-pl-ce6-succ 12.58 ± 2.49% 6.27 ± 1.28% 2.52 ± 0.71 68.5 ± 15.4 
17.1A-pl-ce6 2.27 ± 0.45% 0.003 1.23 ± 0.29% 2.2 ± 0.45 71.7 ± 19.7 
pl-ce6-succ 5.31 ± 2.18% 0.034 6.75 ± 1.78% 0.73 ± 0.17 38.0 ± 19.4 
pl-ce6 4.49 ± 1.48% 0.019 2.52 ± 0.88% 1.98 ± 0.38 81.4 ± 14.2 
free ce6 3.77 ± 0.65% 0.024 1.11 ± 0.23% 3.61 ± 0.39 1.94 ± 0.9 

aMean tumour content of ce6 equivalent per gram tissue as a percentage of total injected dose per mouse ± SEM. bUnpaired two-tailed
Student’s t-test was used to compare the values of tumour %ID/g for other conjugates versus the value determined for 17.1A-pl-ce6-
succ (12.58 ± 2.49%). cMean of individual tumour-to-normal liver ratios derived from each mouse ± SEM. 

Table 3 Biodistribution of ce6 in tissues at 24 hours post-injection 

17.1A-pl-ce6-succ (n = 7) 17.1A-pl-ce6 (n = 6) pl-ce6-succ (n = 7) pl-ce6 (n = 6) free ce6 (n = 6) 

Liver 452 ± 153 59 ± 15 353 ± 101 164 ± 47 30 ± 1 
Tumour 664 ± 177 89 ± 36 418 ± 246 216 ± 113 41 ± 23 
Blood 2 ± 1 4 ± 3 24 ± 12 14 ± 10 25 ± 15 
Skin 15 ± 16 0 75 ± 28 27 ± 20 20 ± 17 
Muscle 5 ± 5 8 ± 9 9 ± 6 0 23 ± 25 
Kidney 41 ± 8 8 ± 3 32 ± 9 14 ± 5 5 ± 1 
Spleen 17 ± 9 26 ± 17 81 ± 20 23 ± 7 4 ± 2 
Bladder 128 ± 69 18 ± 9 255 ± 75 94 ± 65 55 ± 6 
Lung 12 ± 3 103 ± 46 8 ± 2 315 ± 124 3 ± 1 
Heart 8 ± 4 0 3 ± 2 2 ± 1 0 
Small bowel 95 ± 37 33 ± 26 89 ± 63 202 ± 142 16 ± 12 
Stomach 77 ± 66 64 ± 61 107 ± 61 12 ± 13 19 ± 20 

See caption to Table 1. 

Table 4 Tissue ce6 content (% ID/g tissue) and mean of tumour-to-normal tissue ratios at 24 h 

Tumour (% ID/g)a P vs PIC-b Liver (%ID/g) Tumour/liverc Tumour/skin 

17.1A-pl-ce6-succ 8.00 ± 2.13% 5.45 ± 1.84% 1.54 ± 0.4 87.1 ± 13.9 
17.1A-pl-ce6 1.07 ± 0.43% 0.011 0.71 ± 0.18% 1.6 ± 0.59 52.0 ± 24.5 
pl-ce6-succ 5.04 ± 2.96% n.s. 4.25 ± 1.22% 1.7 ± 1.17 27.5 ± 14.0 
pl-ce6 2.60 ± 1.36% 0.043 1.98 ± 0.57% 1.7 ± 0.8 59.7 ± 20.5 
free ce6 0.49 ± .28% 0.009 0.36 ± 0.1% 2.6 ± 1.73 2.16 ± 24.1 

See caption to Table 2.
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Figure 3 Pharmacokinetics of conjugates and free ce6 in tumour and normal
liver. Values of mean ce6 equivalent content in tumour and normal liver at 24 h
as a fraction of the corresponding mean values at 3 h ± SEM calculated in
quadrature
necessarily numerically equal to the ratio of the mean c
e6

contents
in tumour and normal tissue as can be seen by comparing the
values in Table 2 with those calculated from Table 1. 

The corresponding values for c
e6

content of various tissue
samples and ratios, at 24 hours after injection, are given in Tables
3 and 4. Again the absolute amount of c

e6
in the tumour delivered

by the anionic PIC was greater than any other tissue or compound,
but the difference between this value and that delivered to tumour
by pl-c

e6
-succ was no longer significant. The absolute amounts of

c
e6

that were retained in both tumour and liver were higher for both
anionic species. Considerable amounts of c

e6
were retained in the

lungs when delivered by cationic species, and the values in blood
were uniformly low for all the compounds. Free c

e6
appeared to

have been almost totally eliminated from all the organs of the mice
by 24 hours. The tumour-to-normal liver ratios were lower at 24 h
than at 3 h for all compounds except pl-c

e6
-succ. Again tumour-to-

skin ratios were high for all the conjugates but not free c
e6

. 
Figure 3 presents the values for the c

e6
content remaining in

tumour and normal liver at 24 hours expressed as a percentage of
that measured at 3 hours. It can be seen that the amounts of free c

e6
British Journal of Cancer (2000) 83(11), 1544–1551 © 2000 Cancer Research Campaign
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remaining in both tumour (13%) and liver (3%) were very low
compared to those found with the conjugates. The value found for
the cationic PIC remaining in the tumour (31%) is significantly
lower compared to that found for the anionic PIC (64%, P < 0.05).
All the other values are relatively similar at between 55 and 85%
remaining and there are no significant differences between them. 

DISCUSSION 

Optimizing PDT involves attempting to increase both the absolute
tumour content of PS and the selectivity between tumour and
surrounding normal tissue. For many tumour types selectivity may
be provided by spatial confinement of illumination, but for
tumours in more complex sites such as the liver or diffuse
intraperitoneal carcinomatosis (Duska et al, 1997) this may not be
possible. Hepatic metastases of colorectal cancer are only rarely
thought to be eligible for surgical resection due to the common
occurrence of mulifocality, involvement of major blood vessels,
and extrahepatic disease (Steele and Ravikumar, 1989). Although
PDT has been suggested for treatment of liver metastases (van
Hillegersberg et al, 1992), it has not found much support due to the
relative lack of selectivity for tumour as opposed to normal liver
(which accumulates large amounts of clinically employed PS such
as Photofrin® (Van Hillegersberg et al, 1992)). Mab conjugates
have been proposed as targeting vehicles to increase the selectiv-
ity of PS for tumours (Hasan, 1992; Yarmush et al, 1993;
Klyashchitsky et al, 1994). It was attractive to explore the ability
of the Mab 17.1A that is in clinical use for treating liver metastases
of colorectal cancer (Nieroda et al, 1991; Riethmuller et al, 1994)
to target a PS to tumour cells while sparing normal liver. 

We have previously shown (Hamblin et al, 1996; Duska et al,
1997) that poly-L-lysine can be used as a linker to attach several
c

e6 molecules to a Mab in a site-specific manner which preserves
as much as possible the antigen recognizing site of the Mab. In
addition this approach allows the preparation of these PICs with
either polycationic or polyanionic charges. In a previous report
(Del Governatore et al, 2000a) PICs prepared from the Mab 17.1A
were tested for cellular uptake, localization, specificity and photo-
toxicity against HT29 cells in vitro. However we had not previ-
ously compared the delivery of PICs of opposite charge to tumours
after i.v. administration. 

The results from the present biodistribution study showed that
both the presence of the tumour-targeting Mab, and the overall
charge borne by the conjugate had significant effects on both the
absolute amount of PS in the tumour, and on the selectivity for
tumour over normal liver. The charge borne by the conjugates
clearly affected their biological processing. Cationic charge led to
very high uptake in the lungs, and relatively low levels in blood
and other organs. This finding is in agreement with a report
(Ekrami et al, 1995), which investigated the biodistribution of
Bowman-Birk protease inhibitor conjugated to various poly-
lysines. These investigators found that the accumulation in the lungs
correlated well with the size and degree of polycationic charge of
their conjugates. Pardridge et al (1998) found that giving a Mab a
polycationic charge reduced its serum half-life in rats after i.v.
administration to less than 5% of the unmodified level. The
present study found that the uptake of both the antibody-targeted
and non-antibody-targeted polyanionic conjugates was very much
higher than their polycationic counterparts in both tumour and
normal liver. This difference may be partly explained by the fact
that each anionic 17.1A conjugate had twice the loading of c

e6
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compared to each cationic PIC, but even accounting for this
difference, the anionic PIC was still much more efficient in
delivering c

e6
to the tumour. The amount of c

e6
delivered by the

anionic PIC expressed as % injected dose g–1 was 12.5, which
compares well with values delivered to mouse xenograft tumours
by radiolabelled Mabs (Duewell et al, 1986; Sato et al, 1999). This
difference between anionic and cationic PICs administered i.v. is
in clear contrast with a study from our laboratory (Duska et al,
1997) in which polycationic and polyanionic PICs were
constructed in a similar fashion to the present PICs, but conjugated
to the Mab OC125 which was targeted against human ovarian
cancer growing as disseminated intraperitoneal tumours in nude
mice. After i.p. injection it was found that the cationic PIC deliv-
ered several times more c

e6
to the tumour than the anionic counter-

part, both at 3 h and 24 h after injection. The ratio of the c
e6

content
in the i.p. tumour to that in the intestines (the critical organ for i.p.
delivery) was also higher for the cationic PIC. The findings 
from these two studies led to the hypothesis that polyanionic con-
jugates perform better after i.v. delivery, while polycationic conju-
gates perform better after intracavitary delivery. It is possible that
administration of the PIC via the hepatic artery could give even
better selectivity for the tumour over normal liver (Rougier, 1998).
Nishiwaki et al (1989) used intra-arterial Lipiodol (a contrast
medium composed of iodized castor oil) to transport the PS
pheophorbide a to VX-2 liver tumours in rabbits, and found
tumour-to-normal liver ratios > 30 times higher than those found
when an i.v. injection of water soluble PS was used. Rovers et al
(1999) found that hepatic artery administration of the PS 
Foscan gave significantly higher levels of PS in the liver 
tumour and better selectivity over normal liver than femoral vein
administration. 

Does the presence of the tumour-targeting Mab lead to
increased specificity for the tumour compared to normal liver? In
the case of the anionic PIC at 3 h there was a significant increase in
the tumour-to-normal liver ratio, 2.52 compared to 0.73 (P =
0.028) found with the non-antibody-targeted pl-c

e6-succ, but this
differences disappears at 24 h. The cationic PIC and the cationic
pl-c

e6 did not show any significant differences in tumour-to-
normal liver ratios either at 3 h or 24 h, but the values at 3 h were
both significantly greater than one. These latter findings may be
explained by a report (Kornguth et al, 1991) that cationic macro-
molecules may possess a tumour-localizing ability independent of
any antibody interaction, and in a study of the biodistribution of
radiolabelled polylysines in orthotopic C6 gliomas growing in rats
they found tumour-to-normal brain ratios of up to 10. Tumour
selectivity was lost when the polymers were rendered polyanionic
by complete succinylation. These authors attributed (Kornguth et
al, 1989) the tumour localizing ability of polycationic macromole-
cules to binding to polysialic acid residues overexpressed on the
membrane of cancer cells. 

Free c
e6

gave only very low tissue uptakes although the selec-
tivity for the tumour was quite good. This is in agreement with a
report (Orenstein et al, 1996) which found that c

e6
had higher

selectivity for tumours than the other PS studied. It has been well-
established that the main side effect of clinical PDT is cutaneous
photosensitivity, which may entail a patient keeping out of direct
light for some time (Tralau et al, 1989; Baas et al, 1995). For this
reason it is of interest to study the uptake of PS in the skin in addi-
tion to the tumour and normal liver. In Table 2 it can be seen that
the tumour-to-skin ratios obtained with all the conjugates were
very high compared to that found with free c

e6
, suggesting that
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macromolecular delivery might decrease cutaneous photosensi-
tivity after PDT. 

In conclusion we have shown that the PIC with a polyanionic
charge delivers both higher absolute amounts of c

e6
to the tumour,

and gives higher tumour:normal liver ratios, than the PIC with a
polycationic charge. Both the pharmacokinetics and biodistribu-
tion of conjugated c

e6
are very different from free c

e6
, regardless of

targeted binding. Based on the data in the current study, a recent
report (Del Governatore et al, 2000b) will describe the use of
experimental photoimmunotherapy in this model. The anionic PIC
gave significant reductions in tumor weight and increased survival
of the mice not seen with free c

e6. Photoimmunotherapy might also
be applied to other liver tumours for which Mabs are available,
such as primary hepatocellular carcinomas, and metastases from
other primaries such as melanoma, breast and ovarian cancer. 
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