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Is there a role for retinoids to treat minimal residual
disease in neuroblastoma?
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Summary A variety of pre-clinical and clinical data point toward high drug levels of retinoids being required to achieve optimal efficacy
against neuroblastoma. The results of the Kohler trial reported in this issue demonstrate that low-dose 13-cis-RA does not have clinical
efficacy against neuroblastoma in a setting of minimal residual disease. A comparison of the Kohler trial with the US CCG trial provides
clinical evidence that high-dose levels of retinoids are optimal for treating minimal residual disease in neuroblastoma. The comparison of high-
dose and low-dose 13-cis-RA studies in neuroblastoma suggests the intriguing possibility that high dose, pulse schedules of other retinoids
could be effective as therapeutic and chemopreventive agents in diseases where low-dose, chronic retinoid administration was not effective.
Pre-clinical and perhaps clinical studies of the latter concept should be considered. © 2000 Cancer Research Campaign
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Rationale for retinoids in neuroblastoma

Relapse from minimal residual disease occurs in over 50% of
patients with high-risk neuroblastoma, despite intensive multi-
modality therapy with haematopoietic stem cell support (Matthay
et al, 1993). To improve outcome, therapies are required with
novel mechanisms effective against residual tumour that was able
to survive myeloablative doses of cytotoxic agents. The retinoid
13-cis-retinoic acid (13-cis-RA), also known as isotretinoin, is an
isomer of all-trans-retinoic acid (ATRA) that occurs naturally, but
in very low concentrations, and has been employed for therapy and
chemoprevention of cancer (Smith et al, 1992). In vitro, both 13-
cis-RA and ATRA caused differentiation, decreased proliferation
and decreased MYCN expression in neuroblastoma cell lines, in-
cluding some established from tumours refractory to cytotoxic
chemotherapy (Sidell, 1982; Thiele et al, 1985; Sidell et al, 1986;
Reynolds et al, 1991, 1994; Abemayor, 1992; Melino et al, 1997).
Because of the strong activity of ATRA in acute promyelocytic
leukaemia, an in vitro comparison was performed of the clinically
achievable levels of 13-cis-RA (5 µM) and ATRA (0.5 µM). It
was shown in 6 of 12 neuroblastoma cell lines that for ATRA and
13-cis-RA at clinically achievable levels, the two drugs were equal
in activity, while for 6 of 12 lines 13-cis-RA had significantly
better activity than did ATRA (Reynolds et al, 1994).

Anecdotal reports as well as a U.S. Children’s Cancer Group
(CCG) phase II trial of 13-cis-RA in children with neuroblastoma
suggested only modest activity in recurrent disease when 13-cis-
RA was given continuously at 100 mg/m2/day (Reynolds et al,
1991; Finklestein et al, 1992). In vitro testing of 13-cis-RA using
multiple neuroblastoma cell lines demonstrated that levels of
5–10 µM caused growth arrest, which was sustained in some cell
lines for weeks after removal of the 13-cis-RA from the culture
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medium. These data suggested that high-dose, pulse 13-cis-RA
would be effective for clinical studies in neuroblastoma patients
and might allow dose escalation above levels obtainable with
continuous dosing. Based on the results of the in vitro modelling, a
phase I dose escalation trial was designed in which patients were
given higher doses of 13-cis-RA on an intermittent schedule, to
allow recovery from toxicity (Villablanca et al, 1995). This phase I
study was done in children with high-risk neuroblastoma fol-
lowing autologous bone marrow transplantation, and established
that the high-dose intermittent schedule (using 13-cis-RA for 14
days consecutively out of every 28 days) had low toxicity and
achieved levels known to be effective against neuroblastoma in
vitro. The maximum tolerated dose was 160 mg/m2 daily, which
achieved peak levels of 7 µM. Three complete responses in bone
marrow were observed in ten evaluable patients (Villablanca et al,
1995). These data showed that 13-cis-RA is well tolerated after
intensive chemoradiotherapy, and suggested that it could have
efficacy against minimal residual disease that causes relapse.

Phase III clinical trials of 13-cis-RA in neuroblastoma

Based on the laboratory and clinical studies of 13-cis-RA, the U.S.
CCG designed a Phase III randomized trial for high-risk neuro-
blastoma. Children who were progression-free after completion
of either intensive chemotherapy or myeloablative chemoradio-
therapy and autologous bone marrow transplantation were as-
signed to either 6 months of high-dose intermittent 13-cis-RA or to
no further treatment. The event-free survival (EFS) for the group
randomized to 13-cis-RA (n = 130) was 46%, significantly higher
than that of patients randomized to no further treatment
(n = 128), at 29% (P = 0.027) (Matthay et al, 1999).

In this issue of British Journal of Cancer, Kohler and colleagues
for the European Neuroblastoma Study Group (ENSG) report a
double-blind randomized trial of low dose continuous 13-cis-RA
given after completion of cytotoxic therapy for high-risk neuro-
blastoma. The results of the ENSG study differ from that of the
CCG trial in that no difference in EFS was seen with the use of
1121



1122 KK Matthay and CP Reynolds
13-cis-RA given to patients in complete or very good partial remis-
sion after cytotoxic therapy. There are a number of possible reasons
for this discrepancy. The most likely reason for the lack of efficacy in
the ENSG trial is the low dose employed for 13-cis-RA. The study
was begun in 1989, prior to publication of the data from the in vitro
studies and the phase I trial that led to the CCG randomized study.
The ENSG study was designed using a dose that was approximately
15% of that shown to be the maximum tolerated dose in the phase I
study by Villablanca and colleagues (Villablanca et al, 1995) and of
the subsequent randomized CCG phase III trial (Matthay et al, 1999).
At that low dose, drug levels would be far below those shown to be
effective for sustained growth arrest of neuroblastoma cell lines
(Reynolds et al, 1991, 1994; Reynolds and Lie, 2000).

Other differences, which may have influenced the outcome,
include the somewhat later start of the 13-cis-RA in the European
trial, at a median of 341 days from diagnosis, compared to an
average of 290 days in the Children’s Cancer Group study.
Beginning 13-cis-RA relatively soon after cytotoxic therapy,
before tumour cells can begin to grow, may be critical for this
agent to be most effective. The greater efficacy of 13-cis-RA
against minimal disease (compared to a larger tumour burden) is
supported by the fact that the CCG study showed that the most
significant effect of the 13-cis-retinoic acid was in children in
apparent complete remission, with no significant difference seen
when the analysis was restricted to those in partial remission
(Matthay et al, 1999). Although the ENSG study selectively
treated only children whose disease was in complete or very good
partial remission after chemotherapy, it is possible that the longer
interval from ablative chemotherapy to the use of the differenti-
ating agent allowed regrowth of tumour. The new US cooperative
paediatric clinical trials group, the Children’s Oncology Group,
will test 13-cis-RA after myeloablative therapy even earlier,
beginning 8 weeks after haematopoietic stem cell transplantation.

Compliance with the use of 13-cis-RA is a potential problem in
small children, since currently the only available formulation is in
capsules. For small children, the dosing may be sub-optimal, with the
inability to take the capsules requiring removal from the capsule and
administration with food, as done in the CCG study, or else not
administering to very young children, as in the ENSG study. Since no
pharmacokinetic measurements were obtained in the Kohler study,
compliance cannot be verified. In the Kohler study, both induction
regimens and myeloablative therapy (employed in 126 of the 175
randomized patients) were treatment centre-dependent, leading to a
considerable variation in the different therapies given to patients
prior to beginning 13-cis-RA. Furthermore, patient numbers were
smaller in the ENSG study relative to the US CCG study. All of these
issues could have diminished the power of the ENSG study to iden-
tify a positive benefit for 13-cis-RA.

The pre-clinical and clinical data on use of 13-cis-RA against
neuroblastoma indicate that dosing, scheduling, and beginning
treatment with 13-cis-RA at a time when tumour burden is low are
all important elements in the efficacy of 13-cis-RA. The failure of
13-cis-RA to improve survival in the Kohler study provides
further evidence supporting the use of optimal doses and schedules
of retinoids when employed as anti-neoplastic agents.

NEW RETINOIDS AND POSSIBLE FUTURE
RETINOID COMBINATIONS

Although 13-cis-RA improved the survival of patients with high-
risk neuroblastoma, resistance to 13-cis-RA and ATRA occurs in
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neuroblastoma. If agents can be identified that are effective against
retinoic acid-resistant neuroblastoma at drug levels obtainable
in patients, further improvements in survival may be achieved
(Reynolds and Lie, 2000). N-(4-hydroxyphenyl)-retinamide (4-
HPR), or fenretinide, is a synthetic retinoid that is cytotoxic for
tumour cells. In contrast to 13-cis-RA and ATRA, 4-HPR does not
induce maturational changes, but causes apoptosis (Delia et al,
1993; Ziv et al, 1994; Supino et al, 1996) and 4-HPR has shown
activity against cell lines known to be resistant to ATRA (Delia
et al, 1993; Sheikh et al, 1995; Kazmi et al, 1996; Supino et al,
1996). 4-HPR has been reported to inhibit the growth of neuro-
blastoma cell lines in vitro at 4-HPR concentrations of 1–10 µM in
a dose dependent manner (Di Vinci et al, 1994; Mariotti et al,
1994; Ponzoni et al, 1995), and 4-HPR was highly active against
RA-resistant neuroblastoma cell lines at 5 to 10 µM drug levels
(Reynolds et al, 1997).

Although until recently 4-HPR was only used at low doses, toxi-
city of 4-HPR in clinical trials has been minimal (Cobleigh et al,
1993; Formelli et al, 1993; Costa et al, 1995) and no haematologic
toxicity has been reported. The major clinical toxicity of 4-HPR is
decreased night vision, due to decreased plasma retinol levels
(Decensi et al, 1997). Initial results of our US CCG phase I trial in
children have shown no systemic toxicity of oral 4-HPR to date,
even at higher doses that have achieved 4-HPR plasma levels of 3
to 7.5 µM (Basniewski et al, 1999). A phase II trial of oral 4-HPR
as a single agent in recurrent neuroblastoma is planned within the
Childrens Oncology Group, once the ongoing CCG phase I trial is
complete.

Recent studies have shown that 5–10 µM 4-HPR stimulates
large increases of ceramide in neuroblastoma cell lines, which is
likely one of the mechanisms by which anti-tumour cytotoxicity is
achieved with 4-HPR (Maurer et al, 1999). Neuroblastoma cell
lines established at relapse after myeloablative therapy often have
acquired a sustained resistance during the course of therapy to
drugs which act via traditional cytotoxic mechanisms (Keshelava
et al, 1998). However, such cell lines can be sensitive to high
levels of 4-HPR, perhaps due to 4-HPR achieving tumour cell
cytotoxicity via novel mechanisms of action (Maurer et al, 1999).
The activity of 4-HPR against drug-resistant neuroblastoma cell
lines, including cell lines resistant to ATRA and 13-cis-RA
(Reynolds et al, 1997), suggests that high-dose 4-HPR may be
effective against tumour cells that persist after current therapeutic
approaches. Future trials may also employ 4-HPR in combination
with agents that modulate ceramide metabolism so as to increase
the anti-tumour activity of 4-HPR (Maurer et al, 2000).
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