
TRANSFERRIN: FROM INORGANIC BIOCHEMISTRY TO MEDICINE

Luigi Messori* and Felix Kratz

Department of Chemistry, University of Florence, Via G. Capponi 7, 50121 Florence, Italy

Abstract
Transferrin is one of the key proteins of iron metabolism in mammalians. It is responsible for
the transfer of the essential iron(Ill) ions through the biological fluids from absorption to storage
and utilization sites. Moreover, transferdn is involved in the metabolism of other metal ions that
are either trace or toxic elements. In recent years the crystal structure of transferrin has been
solved at high resolution. This has allowed an extensive reinterpretation of the many
spectroscopic studies carried out on this protein in the last decade as well as the elucidation of
some interesting structure-function relationships. We review here recent progresses in
transferrin biochemistry, particular focus being given to those aspects that are relevant from a
medical point of view.

1, Inorganic Biochemistry of Transferrins.
Transferrins constitute an homologous family of monomeric glycoproteins whose primary
members are serum transferrin, lactoferdn and ovotransferdn [1]. Transferrins are bilobal
proteins comprising about 700 amino acids, with a molecular weight of ca. 78 kD. They bind
two iron(Ill) equivalents per molecule at two distant but very similar and apparently non-
interacting sites. Metal binding is strongly promoted by the concomitant binding of an anion, the
so called synergistic anion, which is carbonate under physiological conditions.

a) X-ray studies.
Protein crystallographic studies have shown that transferrins consist of two homologous lobes

each of which comprises two inequivalent domains with the iron binding sites located within an
interdomain cleft [2,3]. Such arrangement allows a large molecular flexibility and turns out to be
a critical factor for the function of transferrins (Figure 1). The structure of the two virtually
identical metal binding sites has been determined in detail. Iron is octahedrally coordinated by
four protein donors (namely two Tyr phenolates, one His imidazole and one Asp carboxylate)
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Figure 1. General structure of the protein
(from ref.3 with permission).

Figure 2. The metal binding site
(from ref.3 with permission).
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and by the bidentate carbonate anion. The carbonate anion fits into a pocket between the iron
atom and two positively charged protein groups, an arginine side chain and a helix N-terminus.
The structure of the metal binding sites is shown in Figure 2.
Inspection of the metal binding site structure provides an insight into the probable mechanism

of metal uptake. It has been hypothesized that the protein first binds the synergistic anion and
the metal at domain I, then domain II closure occurs and the coordination shell of the iron(Ill)
ions is completed through the carboxylate group of Asp [4]. The reverse might hold in case of
metal removal.

b) The metal binding properties
Apart from iron(Ill) apotransferrin can bind several other metal ions, which differ in charge and

in size, with relatively high affinity. Although preferential binding of tripositive metal ions has
been demonstrated -i.e. AI(III), Ga(lll), In(Ill), TI(III), all the lanthanides, Mn(lll), Co(Ill), V(III),
Cr(lll) and Ru(lll)-the protein can also bind bipositive-i.e. Ni(ll), Fe(ll), Co(ll), Cu(ll), Cd(ll),
Mn(ll), and Zn(ll)- and tetrapositive ions-i.e. Th(IV), Hf(IV) and Pu(IV). Binding invariantly
occurs at the iron binding sites as shown by a number of spectroscopic studies. The ability of
the protein to accomodate so many cations different in charge and size at the same binding site
suggests that the metal binding site itself is very flexible. Indeed, the X-ray results have shown
that the metal binding site is not preformed, but builds up around the metal cation through
domain closure. This fact reasonably accounts for its flexibility. The affinity constants of human
serum transferrin for several metal ions have been carefully measured by Harris through
competition studies using UV difference spectroscopy; the following series of affinity constants

3+ 3+ 3+ > 2+> 2+has been found: Fe >Ga >>AI > Zn Cd [5,6].
Another issue of major concern is the conformational equivalence among the different metal

derivatives of transferrin in terms of molecular recognition of metal loaded transferrins by the
specific cell receptor. It has been demonstrated that metal binding is accompanied by a large
conformational change of the protein from an open to a closed conformation [7]. Small angle X-
ray scattering studies suggest that the overall conformation of the protein depends on the
nature of the metal; this might affect the molecular recognition properties of the different
metallotransferrins by the cell receptor. In particular, it has been shown that In(Ill) and Cu(ll)
induce the same domain closure as Fe(lll) but AI(III) causes a conformational change of
somewhat smaller magnitude; Hf(IV) does not induce any major conformational change [8].
These findings contain important implications for the fate of the different metals in the body
after binding to transferrin.

c) The metalrereaction
The release of iron from transferrin has been investigated in detail. Them is now substantial

agreement that iron release from transferrin is at least a biphasic process with two observable
rate constants that probably represent release from the two distinguishable sites [1]. The more
facile releasing site is the N-terminal site. Iron release from transferrin is sensitive to the ionic
environment of transferrin and to the chemical nature of the iron accepting ligand. High
concentrations of salt stabilize binding at the N-terminal site while facilitating release from the
C-terminal site so that the relative labilities of the two sites are reversed.
The overall mechanism of iron release is as yet unclear. Two alternative pathways, perhaps

complementary, have been proposed. In the first of these the iron accepting ligand forms a
quaternary complex with transferdn; then the iron ion, bound to the ligand, dissociates from the
protein. Conversely, the pathway proposed by Cowart et al. implies a conformational change in
transferrin from a closed to an open structure in which iron dissociation occurs [9]. Recently
Aisen et al. have postulated an active role of the transferdn receptor in the metal release
mechanism [10]. The debate on the mechanism of iron release from transferrin has been
recently surveyed by Raymond [11]. Large interest has been devoted to the nature of the
ligands capable of removing iron from transferrin owing to their potential medical applications.
The most effective and popular chelators are those containing catecholate, hydmxamate or
phosphonate groups whereas hydroxipyddonates represent a relatively new class of iron
scavenging compounds. The possible use of such ligands in iron chelation therapy [12] and in
strategies of heavy metal decontamination [13] has been extensively considered.
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d) Molecular biology studies of transferrins

One of the most significant developments in transferdn research has been the cloning and the
high level expression of several transferdns, mutants and fragments [14,15]. Interestingly, it
has been shown that the half molecules of serum transferrin and lactoferrin bind iron with
spectroscopic properties similar to those of the native molecules, supporting the view that the
actual protein is the result of the fusion of two units of an ancestral protein. Site directed
mutagenesis experiments are now being performed that have the potential to elucidate the
structural and functional role of single amino acid residues in the active site of the protein.
Mutagenesis experiments have so far focused primarily on the metal and anion binding
residues, notably Arg 124, which forms a hydrogen bond to the carbonate anion and to the iron
ligand Asp 63. Mutations of the Asp ligand cause marked spectral changes and reduce stability
of iron binding. Surprisingly, mutations of Lys 206 and His 207 also induce marked spectral
variations. However, the structural and functional consequences of these and other mutations
have yet to be established.

e) The interaction of transferrin with its specific cell receptor
Iron uptake by cells is largely mediated by the specific receptor for transferrin located on the

cell surface. It is generally believed that diferric transferrin binds to its receptor and is then
rapidly internalized in nonlysosomal vesicles. The acidic environment of these vesicles would
cause iron to dissociate from the protein while apotransferrin remains bound to its receptor.
Afterwards, the complex of transferrin and the receptor is rapidly returned to the cell surface
where apotransferrin rapidly dissociates from the receptor at neutral pH [16]. The transferrin
cycle is represented in Figure 3.

The molecular aspects of the transferdn receptor (TfR) have started to be clarified [17].
The TfR are disulfide linked darners each of molecular mass 90-95 kDa corresponding to about
760 amino acid residues. The receptor is anchored in the plasma membrane by a
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Figure 3. The transferrin cycle
(from ref.1 with permission).

Figure 4. The transferrin receptor.
(from ref.1 with permission).
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transmembrane helix with an internal N-terminal domain of 61 residues and an external domain
of 671 amino acid residues. Some aspects of TfR physiology and molecular biology have been
elucidated. The distribution of the transferrin receptor in different cell types, the modulation of
its expression and its molecular recognition properties appear to be critical factors with respect
to the physiology of iron metabolism and to the use of transferrin and its derivatives in
medicine.

2. Transferrin and Medicine.
Transferrin plays a central role in iron metabolism and therefore represents an obvious target

for therapeutic strategies of iron overload. Many research efforts have been devoted to develop
ligands capable of removing iron from transferrin for clinical use in iron chelation therapy.
Furthermore, the ability of transferrin to bind metals other than iron has additional medical
diagnostic and therapeutic implications. For example, among the non-physiological metals
capable of binding transferdns, gallium(Ill), and indium(Ill) are exploited for medical use (tracer
and imaging studies) whereas others like aluminum(Ill) and the actinides are of toxicological
interest. Another aspect of transferrin chemistry, of potential medical interest, is drug targeting
of cytotoxic compounds. We survey below all these aspects.

a) Iron metabolism and its disorders: iron chelation therapy.
In a healthy man the total body iron is maintained at a constant level of about 4-5g by

balancing the daily absorption with an average daily loss of a similar amount. Serious toxic
effects can arise as a consequence of excess body iron, a rather frequent situation known as
iron overload. Iron ovedoad may occur as a consequence of thalassemia or other genetic
disorders like idiopathic hemochromatosis. Treatment of iron overload is a difficult medical task
and requires long-term therapy with iron chelating agents. Recent work suggests future
extension of iron chelation therapy to other important areas of medical concern such as the
prevention of tissue damage following myocardial infarction and the control of some bacterial
infections [18].
To revert iron overload selective iron chelators must be used to sequester iron. For the past

20 years desferrioxamine B (Desferal) has been the only clinically useful drug. Desferrioxamine
is a fungal siderophore and has an extremely high affinity for iron(Ill). The molecule is quite
selective for iron possessing much lower affinities for copper, zinc, calcium and magnesium.
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Figure 5. Structure of some iron chelators: a. desferrioxamine B; b. enterobactin; c. 3,4
LICAMS; d. L-mimosine, a hydroxypyridone ligand (from ref. 11 with permission).
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These facts render the molecule particularly attractive for clinical use. However,
desferrioxamine has the disadvantage of being orally inactive and only causes sufficient iron
excretion when given either subcutaneously or intravenously over 8-12 h periods up to six
times per week. Consequently, orally active chelators with the potential of replacing
desferrioxamine in the clinic are actively sought after. Among these hydroxamate,
tricatecholate and, in the last period, hydroxypyridinone ligands appear to possess rather
favorable properties and are being tested in clinical trials [19].

b) Transport ofradiopharmaceuticals: gallium-67 and indium-Ill
The medical literature is rich of reports on the use of gallium 67 and indium 111 to detect
many types of malignancies in humans [20]. Some examples are lung cancer, Hodgkin and non
Hodgkin lymphomas, malignant melanoma, breast carcinoma and Ewing sarcoma. It is now
largely accepted that gallium-67 is superior to indium-Ill in cancer diagnosis. When gallium-
67 and indium-111 are administered parentemlly in a readily dissociable form, they bind quickly
to plasma transferrin. Further biodistribution processes are then mainly governed by transferrin
even if not in the same way as for iron(Ill) ions. On the other hand, if the two radionuclides are
administered in forms that do not significantly dissociate, scarce binding to transferrin occurs so
that gallium-67 and indium-111 follow the biodistribution characteristics of the ligand to which
they are associated.Apart from their being useful mdiodiagnostic agents gallium and indium, in
their stable isotopic forms, have been used, bound to transferrin, as experimental drugs to
inhibit cell proliferation (see later).

c) Heavy metal contamination and strategies for detoxification
Heavy metals are hazardous for humans. This raises the medical problem of decontamination

following acute or chronic poisoning. Since several toxic metals bind transferrin, the protein
represents an obvious target for decontamination strategies. Particular interest has been
devoted to the cases of accidental contamination with the extremely toxic plutonium, where a
very rapid therapeutic intervention is required. Also aluminum poisoning has attracted scientific
interest since the latter element appears to be correlated to the appearance of the Alzheimer
disease.
Plutonium: Because of the extensive manipulations involving plutonium in the nuclear weapons
industry accidents involving this element occur with a certain frequency. The biological
transport and storage of plutonium(IV) is similar to that of iron(Ill) and this characteristic
provides the rationale for the most recent developments in decontamination strategies. It was
shown that EDTA type compounds, of which DTPA is the most effective member, are capable
of significantly enhancing the excretion of Pu-239 [13,21]. The many similarities between
Pu(IV) and Fe(lll) stimulated the search for chelating agents with donor groups similar to those
of the naturally occurring iron binding compounds, the so called sidemphores, synthetized by
various microrganisms. Indeed, desferrioxamine can mobilize Pu-239 from most organs with
the exception of the kidney [13]. Among the other tested ligands LICAMS are the most effective
ones [13,22]. It has been reported that the removal of an injected dose of Pu-239 by these
chelating agents was approximately the same as found for DTPA, but the new ligands have the
advantage of an even lower reactivity at physiological pH with essential divalent metal ions and
the ability to remove some of the Pu(IV) already deposited in the bone. This development is a
striking demonstration of the design of a new selective chelating agent for a toxic metal on the
basis of an effective understanding of its coordination properties.
Aluminum: Although aluminum has no known biological function, a toxic amount of aluminum
can cause dialysis encephalopathy in humans and is associated with other degenerative
disorders such as senile dementia of the Alzheimer type. In vitro the binding of aluminum(Ill) to
transferrin has been probed by a number of spectroscopic techniques [23,24]. Plasma
speciation studies point to transferrin as the major carrier protein of aluminum(Ill). Recent
evidence suggests that Tf from people affected with Alzheimer disease may be deficient in its
ability to complex and remove aluminum contributing to the deposition of high levels of this
metal in the brain [25]. In other words the aluminum toxicity would greatly increase when the
binding capacity of transferrin is saturated; low molecular weight aluminum(Ill) complexes
would form that are capable of crossing the blood-brain barrier. These findings led to the belief
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that the use of aluminum chelators might well provide a therapeutic rationale for the treatment
of aluminum toxicity. Both apotransferrin and desferrioxamine B are being tested for the
treatment of aluminum toxicity.

d) Drug targeting
In light of the presence of high amounts of transferdn receptors on human cancer cells, Faulk

and colleagues proposed that these receptors could be utilized as targets to bind drug
conjugates of transferrin [26]. A similar proposal was that transferrin receptors could be used as
a target to bind drug conjugates of antibodies to transferrin receptors. The concept of drug
targeting with antibody has been actively pursued with the use of antibodies conjugated with
doxorubicin, methotrexate, ricin A chain and other chemotherapeutic agents; however,
antibodies often cause serious problems such as severe anaphylactic reactions. These side
effects caused by antibodies are reduced if the delivery system is transferrin which is the
natural ligand for the transferrin receptors. Faulk has shown that transferrin conjugates of the
anticancer drug adriamycin selectively target to tumor cells and the targeted cells are thus
killed [27]. These conjugates have been used in the treatment of patients with acute leukemia
and the results have shown diminished numbers of leukemic cells in peripheral blood, no
increase of leukemic cells in bone marrow biopsies and no anaphylactic reaction in the
patients. Other transferrin conjugates, like those with toxins [28] and those with some
ruthenium(Ill) complexes [29], have been prepared and are being investigated in cell
proliferation inhibition studies.
Another somewhat different example of drug targeting is represented by gallium transferrin

[30]. It has been reported that gallium significantly inhibits cell growth, this inhibitory effect
being potentiated by the addition of transferrin. Chitambar et al. have conducted interesting
studies of the effects of gallium transferrin on cell proliferation. Initially they found that after
exposure to gallium transferrin HL60 cells stop proliferating while exhibiting an increased
number of transferdn receptors [31]. Subsequent studies indicated that gallium transferrin
impairs intracellular release of iron from transferrin by interfering with processes responsible for
intracellular acidification [32]. Finally, Chitambar et al. have shown that gallium transferrin
inhibits DNA synthesis through action on the iron containing M2 subunit of ribonucleotide
reductase [33]. In view of these findings, we believe that gallium transferrin deserves careful
clinical evaluation for the treatment of malignancies in which tumor cells display significant
numbers of transferrin receptors. For example high grade lymphomas are potential candidates
to treatment with gallium transferrin.

3. Concluding Remarks
The knowledge of transferrin has increased in recent years thanks to the determination of its

X-ray structure and to a host of spectroscopic and kinetic studies. Studies on site specific
mutants obtained through recombinant techniques have now the potential to elucidate the role
of individual residues in the thermodynamics and kinetics of the metal binding/release
reactions. This will help designing new ligands capable of scavenging metals from transferrin
with high selectivity and efficiency. Moreover, we have described the expanding role of
transferdn in medicine. Transferrin indeed is involved in several processes of large biomedical
concern such as treatment of iron overload, detoxification of heavy metal poisoning, delivery of
radiopharmaceuticals, drag targeting, treatment of the Alzheimer disease, control of cell
proliferation, etc. We feel that a deeper knowledge of the bioinorganic chemistry of transferdn
will contribute significantly to these medical developments.
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