TIN-BASED ANTITUMOUR DRUGS

Marcel Gielen

Free University of Brussels V.U.B., Faculty of Applied Sciences, Department of General and Organic Chemistry, Room 8G512, Pleinlaan 2, B-1050 Brussel, Belgium

We have been active in the synthesis and characterization of tin-based antitumour compounds for several years and we would like to summarize here the results that have already been $patented^{(1)}$ and that may therefore be disclosed⁽²⁾.

We synthesized some diorganotin 2,6-pyridinedicarboxylates. The dimethyltin compound has been found inactive *in vitro*, whereas the di-n-butyltin, di-t-butyltin and diphenyltin compounds were found more active than cisplatin⁽²⁾.

In order to increase the water-solubility of these diorganotin derivatives, which might be a way to increase the antitumour activity following $Atassi^{(4)}$, we converted them⁽⁵⁾ into their tetraethylammonium halide adducts.

The *in vitro* antitumour activity of the tetraethylammonium halide adducts of these diorganotin 2,6-pyridine dicarboxylates (see table 11)⁽⁵⁾ is not better than that of the parent molecules, even if their solubility in protic and also in less polar solvents is considerably enhanced.

We synthesized a series of di-n-butyltin derivatives of substituted salicylic acids and tested them against human tumour cell lines (see table 1)⁽²⁾.

ID ₅₀ values in ng/mL against			ID ₅₀ values in ng/mL against			
Y	MCF-7	WiDr	Υ	MCF-7	WiDr	
3-CH ₃	44	330	4-NH ₂	42	330	
4-CH ₃	51	316	5-NH ₂	38	316	
5-CH ₃	90	337	5-COOH	41	190	
3-CH ₃ O	45	323	5-F	46	256	
4-CH ₃ O	190	1 794	5-CI	31	280	
5-CH ₃ O	29	122	5-SO ₃ H	47	107	
Cisplatin	850	624	Mitomycin C	3	17	

Table 1: ID_{50} values (in ng/mL) of di-n-butyltin(IV) derivatives of substituted salicylic acids $[YC_6H_3(OH)COOSnBu_2]_2O\}_2$, and of cisplatin against MCF-7 and WiDr

Figure 1: X-ray structure of [diethyl(2-methylthio-3-pyridinecarboxylato) tin] oxide ⁽⁶⁾

Because Crowe has proposed that, among the factors relating the mode of action of diorganotin compounds R_2SnX_2 , the organic groups R determine the potential activity⁽⁷⁾, we prepared some diorganotin derivatives of substituted salicylic acids with various organic groups R linked to tin (see table 2)⁽²⁾. All the compounds of this type that we prepared were less active than the corresponding dibutyltin ones and than cisplatin.

RR'	Y	ID ₅₀ values in ng/ml against		
		MCF-7	WiDr	
Me-n-Bu	5-CH ₃ O	1 488	2 784	
Et ₂	5-CH ₃ O	2 236	4 806	
n-Oct ₂	5-CH ₃ O	4 677	10 639	
Cisplatin		850	624	

Table 2: ID_{50} values of selected di-organotin(IV) derivatives of substituted salicylic acids, $[[Y-C_6H_3(OH)COOSnRR']_2O]_2$ and of cisplatin

We also synthesized some other diorganotin 2,6-pyridinedicarboxylates, $C_5H_3N(COO)_2SnRR'$, varying once more the groups R and R' bound to tin (see table3). Here again, almost all the compounds prepared were less active than the di-n-butyltin derivative already described⁽²⁾.

	ID ₅₀ values ir	n ng/ml against	ID ₅₀ values in ng/ml agains			
RR'	MCF-7	WiDr		MCF-7	WiDr	
 n-Bu ₂	60	106	Ph-i-Pr	402	1 169	
[p-MeO-Ph]2	4 930	15 800	Ph-n-Bu	761	3 705	
Ph ₂	170	372	Ph-i-Bu	121	831	
PhMe	2 187	3 283	Ph[PhCH ₂]	2 910	10 995	
PhEt	918	4 046	Ph-[t-BuCH ₂ CH ₂]	50	161	
Ph-n-Pr	223	1 094	Ph[PhMe ₂ CCH ₂]	40	106	
Cisplatin	850	624				

Table 3: ID_{50} values (in ng/ml) of selected 2,6-pyridinedicarboxylatodiorganotin(IV) derivatives $C_5H_3N(COO)_2SnRR'$ and of cisplatin

Di-n-butyltin **di**carboxylates were also prepared, including some disalicylates⁽²⁾ (see table 4). The 4-hydroxy-3-methoxybenzoate shows very high activities.

Several di-n-butyltin difluorobenzoates that we synthesized and characterized recently ⁽⁹⁾ exhibited very promising in vitro antitumour activities that are reported in table 5 together with ID_{50} values on some compounds currently used clinically as antitumour agents are given for comparison.

From these data, it can be deduced that all the tested compounds score slightly better than cisplatin or etoposide against WiDr. Against MCF-7, they are even more active than doxorubicin, the 2,6-difluorobenzoate being as active as mitomycin C.

Figure 2: X-ray crystal structure of diethyltin bis(2-methylthio-3-pyridinecarboxylate) ⁽⁶⁾

 H H H 2-OH 2-OH	Н Н Н Н	2-F 3-F 4-F H	74 63 90	242 197 309
H H 2-OH 2-OH	н н н	3-F 4-F H	63 90	197 309
H 2-OH 2-OH	н н	4-F H	90 541	309
2-OH 2-OH	н	н	511	
2-0H		• •	541	2 974
2 011	н	3-CH ₃ O	105	474
2-OH	н	5-CH ₃ O	54	611
2-OH	н	5-Cl	89	319
4-OH	Н	3-CH ₃ O	44	82
3-OCH ₃	4-OCH ₃	5-OCH ₃	84	356
2-OCH ₃	3-OCH ₃	4-OCH ₃	93	398
2-OCH ₃	4-OCH ₃	5-OCH ₃	132	368
	Ũ	Ŭ	850	624

Table 4: ID_{50} values (in ng/ml) of a series of diorganotin(IV) dicarboxylates (X,Y,Z-C₆H₂COO)₂SnRR' and of cisplatin ⁽⁹⁾

Molar ratio			MCF-7	WiDr	
	Sunstituents				
1:2	2,3-F ₂	23		283	
1:2	3,5-F ₂	30		407	
1:1	2,3-F ₂	9		120	
1:1	2,5-F ₂	7		277	
1:1	2,6-F ₂	3		174	
1:1	3,5-F ₂	11		172	
Cisplatin		850		624	
Etoposide		187		624	
Doxorubicin		63		31	
Mitomycin C		3		17	

Table 5: ID_{50} values (ng/mL) of compounds of the type $(F_2C_6H_3COO)_2Sn(n-C_4H_9)_2$ (1:2 molar ratio), of the type $\{[(F_2C_6H_3COO)(n-C_4H_9)_2Sn]_2O\}_2$ (1:1 molar ratio), and of reference compounds tested against two human tumour cell lines, MCF-7 and WiDr

We prepared also several original series of organotin molecules that are as active *in vitro* as mitomycin C against MCF-7 and WiDr. The first of these, that has recently been $patented^{(1)}$, are triphenyltin carboxylates⁽⁸⁾.

X	Y	Z	MCF-7	WiDr
Н	Н	2-OCH ₃	16	15
н	н	4-F	15	14
н	3-F	5-F	18	17
н	2-OH	5-Cl	11	18
н	2-OH	5-NH ₂	14	17
Н	2-OH	5-0CH ₃	6	15
2-OH	3-CH(CH ₃) ₂	5-CH(CH ₃) ₂	8	13
Cisplatin			850	624
Mitomycin C			3	17

Table 5: Inhibition doses ID_{50} in ng/mL against MCF-7 and WiDr obtained for a series of triphenyltin benzoates, $(C_6H_5)_3$ Sn-OOC- C_6H_2 XYZ and for two reference compounds

Figure 2: X-ray crystal structure of [di-n-butyl(2,6-difluorobenzoato) tin] oxide (9)

I hope that I have convinced you that several organotin compounds exhibit rather promising *in vitro* antitumour activities again human tumour cell lines. Of course we have to wait for the *in vivo* test results before claiming anything about the interest of such compounds for cancer chemotherapy. More work has to be done in the field of the preparation and testing of organotin molecules that might become useful antitumour drugs in the future.

REFERENCES

(1) M. Bouâlam, M. Gielen, A. Meriem, D. de Vos and R. Willem (Pharmachemie B.V.): Antitumour compositions and compounds, *Eur. Pat.* 90202316.7-, 21/09/90; M. Bouâlam, M. Gielen, A. El Khloufi, D. de Vos and R. Willem, Pharmachemie B.V., Eur. Pat. 91202746.3-, 22.10.91, Novel organo-tin compounds having anti-tumour activity and anti-tumour compositions

(2) M. Gielen, P. Lelieveld, D. de Vos and R. Willem, *In vitro* antitumour activity of organotin compounds, in "Metal-Based Antitumour Drugs", vol. 2, Gielen M, ed., Freund Publ. House, Tel Aviv,1992, pp. 29 - 54 ; M. Gielen. P. Lelieveld, D. de Vos and R. Willem, "*In vitro* Antitumour Activity of Organotin(IV) Derivatives of Salicylic Acid and Related Compounds", in "Metal Complexes in Cancer Chemotherapy", Ed. B. Keppler, VCH, Weinheim, (1993), pp. 383 - 390

(4) G. Atassi, *Rev. Si, Ge, Sn & Sn Cpds*, 8 (1985), 219

(5) R. Willem, M. Biesemans, M. Bouâlam, A. Delmotte, A. El Khloufi and M. Gielen, *Appl. Organomet. Chem.*, 7 (1993), 311

(6) M. Gielen, A. El Khloufi, M. Biesemans, R. Willem and J. Meunier-Piret, Polyhedron, 11 (1992), 1861

(7) A.J. Crowe, The Antitumour Activity of Tin Compounds, in "Metal-Based Antitumour Drugs, vol 1, M. Gielen, Ed., Freund Publ. House Ltd, (1989), pp. 103 - 149

(8) M. Gielen, R. Willem, M. Biesemans, M. Bouâlam, A. El Khloufi and D. de Vos, *Appl. Organomet. Chem.*, **6** (1992), 287

(9) M. Gielen, M. Biesemans, A. El Khloufi, J. Meunier-Piret, F. Kayser and R. Willem, Diorganotin difluorobenzoates: synthesis, spectroscopic characterization and *in vitro* antitumour activity. X-Ray structure determination of bis[di-n-butyl(2,6-difluorobenzoato)tin] oxide, *J. Fluorine Chem.*, in press

Received: September 2, 1993