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Introduction

There is no doubt that the identification of an
inducible isoform of cyclooxygenase (here re-
ferred to as cyclooxygenase-2 or COX-2) has
brought about a renaissance in prostanoid
biochemistry, pharmacology and therapeutics.
This area is now as vigorous as it was 20 years
ago when thromboxane A2 (TXA2) and prosta-
cyclin (PGI2) were discovered1’2 and indeed is
almost as active as that of nitric oxide (NO),
with which it shares many features and correla-
tions. One of the most important features of
COX-2 is its close association with a variety of
inflammatory mediators and its consequent
description as the COX isoform involved in and
responsible for many of the signs of inflamma-
tion. It is also generally accepted that COX-1 is
the constitutive isoform involved in the physio-
logical actions of prostaglandins (PGs) in the
stomach and kidney, the inhibition of which
leads to gastric ulceration and nephropathy as
side effects of anti-inflammatory therapy with
nonsteroidal anti-inflammatory drugs (NSAIDs).
The initial findings and many of the subse-

quent developments are based on the techni-
ques of molecular biology3’4 and are often
expressed in terms unfamiliar to many research-
ers already established in inflammation. Our
purpose in this review is to summarize the
progress made so far in characterizing the
regulation of COX-2, to evaluate its role in
inflammation and, as a consequence, to assess
the utility of the selective inhibitors of COX-2.
In order to establish the appropriate context for
the analysis of regulatory mechanisms, we shall
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first consider the molecular biochemistry of
COX-2 and its possible place in physiology. We
shall also refer to work on COX-1 where
necessary.

Molecular Biochemistry of COX-2

Although the early work on COX-2 utilized
animal sources, information relating to the hu-
man form of this enzyme is steadily accumulat-
ing. Since the practical outcome of COX-2
research would be the more efficient alleviation
of human inflammatory conditions, emphasis
will be placed on results obtained with the
human protein, along with data from animal
sources wherever relevant. Here, for clarity and
simplicity, the molecular biochemistry of COX-2
will be considered at three separate levelsmits
DNA, its RNA and the enzyme protein; further
details of the molecular biolog.y4 of COX-2 are
available in two recent reviews.3’

DNA

The gene for COX-2 is located on chromosome
1 in both human and mouse cells.5-8 The small
size of the COX-2 gene (7.5-9kbp6’7’9) is
compatible with its inclusion in the group of
inducible, immediate early lg0enes, few of which
are over 10 kbp in length. It is relevant here
to note that the human gene for TXA2 synthase
is larger (75 kbp1) and, like that for human
PGI2 synthase, is only weakly (two-fold) in-
ducible. 12’3 The COX-2 gene has ten exons,
one less than that for COX-1.6,v Overall, the
descriptions from different groups, of human
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genomic DNA for COX-26’7’9 are in agreement
and show many similarities between the human

4gene and the corresponding murine gene,
underlining the close relationship between spe-
cies. The eDNA for human COX-2 was first
derived from HUVEC cells. 5 More recently
eDNA prepared from a human line of erythro-
leukaemia cells (HEL cells7) exhibited virtually
an identical sequence with only two nucleotide
differences.

In contrast to the similarity shown so far
between species in the protein coding and 3’-
flanking regions of COX-2 DNA, there are
important species-related differences in the 5’-
flanking region of the COX-2 gene, where the
promoters and transcription factors bind.
Whereas in the human gene there are putative
binding sites for a variety of transcription
factors including AP-2, SP-1, NF-IL6, NFkB and a
cAMP responsive element (CRE) along with a
TATA box and a TPA-response element in the
first intron,6’7’9’6’7 the corresponding region of
the mouse gene appears to lack a CRE,4 NFkB
or NF-IL6 site,7 although the others are present.
The rat gene which has over 80% identity with
the mouse gene in this region also lacks CRE,
NFkB or AP-2 sites and a TATA box but includes
a site for NF-IL6. &19 However more recent
analysis of the mouse gene for COX-2 in an
osteoblastic cell line has found an action of and
sites for, NFkB; the same authors have also

20identified a NFkB binding site in the rat gene.

mRNA

Reflecting the similarity in cDNA for COX-2
across species, there is also considerable similar-
ity in mRNA for COX-2, which at 4 kb is almost
twice the size of that for COX-1 (2.8 kb) in all

21species so far examined. Since the enzyme
proteins (COX-1 and COX-2) are very similar in
size, just over 600 amino acid residues, most of
the difference in mRNA for COX-1 and COX-2 is
taken up by the extensive 3’-untranslated region
in COX-2 mRNA. This region includes several
copies of the Shaw-Kamen ’instability’ se-
quence, the actual number varying

2
between

species from 14 to 18 in animals. 2 In two
examples of human mRNA, 17 and 22 copies
were found.7’9 These sequences are characteris-
tic of rapidly degraded RNA7’9 and have been
found in the mRNA for other immediate early
proteins.2 However such sequences do not
occur in the mRNA for COX-1 in any species.

Estimates of the half-life of COX-2 mRNA vary
with the cells studied and with the stimuli used
for induction of the protein. In an endothelium-

24derived cell line (ECV304) with IL-1 as the
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inducing agent, COX-2 mRNA had a half-life of
about 1 h. In the same system with transcrip-
tion blocked, IL-1 was able to prolong the half-
life of existing COX-2 mRNA to about 90 min,
thus contributing also at a post-transcriptional
stage to the overall induction of the enzyme. In
an epithelial cell line (EGV6), COX-2 mRNA
induced by the phorbol ester, TPA, had a half-
life of 30 min. 25- It appears that the ’built-in’
instability of the COX-2 mRNA is an essential
component of the regulation of this protein and
hence of its activity.

Protein structure and function

The COX proteins are very similar, both be-
tween species and between isoforms, as they
both carry out the same two separate catalytic
functions, oxidation of arachidonate to PGG2
and reduction of peroxide, specifically that of

4 26,-27PGG2 to PGH2. The differences in protein
structure are small and chiefly outside what is
considered to be the catalytically active site.4’26

The two isoforms are almost identical in size,
COX-1 is about 602 residues whereas COX-2
comprises 604 residues. The major differences
in sequence are at the N terminal where COX-2
has 17 less amino acids in the signal peptide
and at the C-terminal where COX-2 has 18 more
residues than COX-1.4’26 The central parts of
the proteins where the catalytic and substrate
binding sites are located, are almost identical.
The tyrosyl groups crucial for the oxidation and
the histidines interacting with the haem group
are all highly conserved as is the serine acety-
lated by aspirin.

(i) Substrate binding sites

There are important functional differences be-
tween the isoforms which suggest that the
active site in COX-2 is larger or has a looser fit
than that in COX-1. This has been deduced from
various mutations at the serine residue, which
is acetylated by aspirin in either enzyme, Ser

28.29530 in COX-1 or Ser 516 in COX-2. (The
different numbers for similarly placed residues
in the two isoforms is due to the longer N
terminal sequence in COX-l; the numbering for
COX-1 is thus about 14 in advance of that for
COX-2.) Mutation of serine to alanine in either
isoform altered neither Km nor PG production
but did confer protection against the irreversi-
ble inhibition caused by aspirin, since alanine
cannot be acetylated. 29 However, mutation of
serine to asparagine (isosteric with acetylated
serine) has a strikingly differential effect; the
COX-1 mutant lost cyclo-oxygenase activity
whereas the COX-2 mutant retained full activity
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and an unchanged Km. Substitution with a larger not important in binding of substrate as marked
amino acid, glutamine, abolished cyclo-oxyge- mutations at this site (Val to Lys or Glu) did not
nase activity in both isoforms. 28’29 materially alter Km for AA of the COX-2
Another indication of the larger active site in protein. 33

COX-2 may be drawn from the effects of aspirin An attempt to exploit the selectivity sug-
on catalytic activity. This compound irreversibly gested by the larger substrate binding site in
inhibits the production of PGs by COX-1 or COX-2 had an unexpected outcome. It was
COX-2 through the acetylation of Ser 530 or Ser argued that, as the acetylation of COX-2 still
516. Nevertheless, acetylated COX-2 but not allows binding of AA to give 15-HETE, acylation
acetylated COX-l, still oxidized arachidonic acid with a larger acyl group should prevent any
(AA) to an alternative product, 15-HETE.28-3 oxidation of AA by encroaching further into the
This finding would suggest that there is space binding area. In the event, the most potent
for AA to bind to acetylated COX-2 close analogue of aspirin was valeryl salicylic acid but
enough to the active site for oxidation to occur it was a selective inhibitor of COX-1 with no
even though the orientation is not adequate for inhibition of COX-2. 34 The explanation for this
the full cyclo-oxygenase reaction to take place, result is still to be put forward.
Further support comes from the effect of It is important to note that in the COX mutant
another substitution of this serine in COX-2, proteins and in the acetylated native COX, the
with methionine; this leads to a ’pseudo-acety- peroxidase activity catalysed by an active site
lated’ form in that the mutant protein shows on the other side of the haem group from that
increased production of 15-HETE but with involved in the formation of PGG2 remains
much reduced COX activity (5-20% of normal) unaffected, demonstrating quite clearly the sep-
and almost 200-fold increase in Km.28’29 Clearly aration of these two activities within the same
with this substitution both the binding affinity protein molecule.29’35’

and the binding mode were affected.
These deductions from biochemical findings (iO Inhibitor binding sites

were compatible with the model of COX-1 Because COX-1 and COX-2 are catalytically and
structure derived from X-ray crystallographic structurally almost identical, it is likely that if
analysis. 1’32 The Ser 530 lies halfway along a selective inhibitors of COX-2 are to be found
tunnel leading up to the active site and it is then these would not bind to any catalytically
relatively easy to imagine how the acetylation of relevant site which would be the same for both
Ser 530 would block access of substrates to the isoforms, but to some other region possibly
active site at the head of the tunnel. On the unique to COX-2. However access to substrate
basis of the biochemical results for COX-2, one must still be denied in order to inhibit COX-2
would assume that Ser 516 either lies further activity. This line of reasoning would explain
within the wall of the tunnel or that in COX-2 why most of the selective COX-2 inhibitors so
there is enough room for AA to ’squeeze past’ far disclosed are not carboxylic acids (as are
the acetyl group and to bind close enough to most COX-1 inhibitors)but interestingly contain
the tyrosine-haem complex to allow oxidation a different common grouping, the sulphon-
to 15-HETE, but not to tare up the configura- amide or sulphone group.
tion which leads to the cyclic endoperoxide Support for this suggestion for different bind-
(PGG2). ing sites for the two types of inhibitors comes
Another possible factor is the residue on the from another mutant of COX-1 in which Arg

opposite side of the tunnel, Ile523 in COX-1 120 was replaced with Glu. 37’38 This positively
which in COX-2 is substituted by a1509, one charged residue (Arg 120) is located at the
methylene group smaller than lie. This location opening of the active site tunnel1 and was
also provides the only difference between the assumed to be the binding site for the carb-
active sites of the two isoforms. It is therefore oxylic acid group in the substrate fatty acids. It
possible that the extra methylene group of lie was also assumed to provide a binding site for
523 creates enough of a narrowing of the the ’old’, carboxylic acid, non-selective, COX
tunnel so that in combination with the acetyl inhibitors. These assumptions were fully con-
group on Ser 530, access to the active site in firmed by the characteristics of the (Arg 120-
COX-1 is essentially prevented. In COX-2, the Glu) mutant COX-l, which showed a 100-fold
presence of Yal 509 would not only allow a higher Km for AA and a much reduced suscept-
wider range of fatty acid configurations to gain ibility to the carboxylic acid inhibitors including
access as substrates in the normal enzyme but indomethacin, flurbiprofen and diclofenac all of
also provide less of a ’choke point’ in the which did not inhibit the mutant enzyme at
acetylated enzyme. Nevertheless, Val 509 was concentrations between 200- and 8000-fold
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higher than their IC50 values for the wild-type
37 However two COX-2 selective corn-enzyme.

pounds, the sulphone DuP 697 and a sulphon-
amide analogue, were more potent as inhibitors
of the mutant enzyme. Although this increased
potency is probably due to the decreased
binding of substrate AA (DuP 697 is a competi-
tive reversible inhibitor of the wild-type COX-1
enzyme), there was clearly no decrease in the
efficacy of the sulphonamide compounds and
hence no loss of their binding to the mutant
protein. In the other report, 38 the Arg 120-Glu
mutant of ovine COX-1 showed no COX activity
at all. Flurbiprofen binding was thus assessed
with the Arg 120-Gln mutant which had 5% of
the wild-type activity. This mutant did not show
time-dependent inhibition and flurbiprofen’s
IC50 value had increased from 5 bM (wild type)
to 1 mM in the mutant. These results are
probably adequate evidence for the importance
of the Arg 120 residue in the binding of the
’old’ non-selective inhibitors but the binding
sites for the COX-2 selective inhibitors still
remain to be determined, although two recent
reports33’39 provide some clues to its location.

In both, mutants of COX-2 have been gener-
ated with Val 509 being changed to lie, as in
COX-l, and, in the mutants, selective COX-2
inhibitors were much less potent and less
capable of causing the time-dependent inhibi-
tion of COX-2, characteristic of wild-type COX-
2. However in one report, 33 the COX-2 selective
inhibitors (nimesulide, DuP697, NS398,
SC58125) were still able to bind and inhibit
presumably on a ’reversible’ basis. The ’old’
NSAIDs were unaffected by this mutation. 39

Here the Val/Ile substitution appears to be
crucial in determining the activity and possibly
selectivity of inhibitors of COX-2. The possible
effects of this substitution have already been
discussed above in terms of substrate access but
it is less easy to visualize the crucial influence
of a methylene group in the binding of strongly
polar sulphone/sulphonamide compounds such
as the selective COX-2 inhibitors. The crystal
structure of human recombinant COX-2 was
described at a recent meeting4 and although
the full report is not yet avai{able some details
relevant to this point have emerged. As ex-
pected the crystal structure of COX-2 is almost
identical to that of COX-1. However for cox-2,
two conformations appear to be possible for

4othe binding of inhibitors, one in which
inhibitor binds to both Arg 120 and Tyr 355
(see Ref. 38) as polar sites (the closed con-
former) and the other (open conformer) in
which inhibitor binding excludes Arg 120. Since
mutants of Arg 120 do not change binding of

COX-2 selective inhibitors, the open conformer
would appear to be the most liRely form of
COX-2 bound to a selective inhibitor. However
these changes are at the mouth of the substrate
tunnel and involve polar residues not the non-
polar Val 509 which has such striking effects on
inhibitor efficacy. It may thus be necessary to
re-assess the role of another polar residue, Glu
524 (in COX-l). This negatively charged amino
acid is close enough in the crystal3’4 to form a
salt bridge with the positively charged Arg 120.
Although Glu 524 was not important for en-.
zymic activity in COX-l, 38 it, along with Tyr 335
could provide polar binding sites in COX-2,
alternative to Arg 120. This residue Glu 524/510
is also immediately adjacent to the lie 523/Val
509 and it may be that the crucial effects of the
Ile/Val substitution on inhibitor binding are
actually to alter the configuration of the next
residue, Glu 524/510. Clearly we need more
information before the binding site for COX-2
selective inhibitors and the nature of the
conformational change associated with their
action are fully elucidated. (See Note Added in
Proof).
The largest difference between the two pro-

teins is the C-terminal extension (18 amino
acids) and the lack of the 17 residues at the N-
terminus in COX-2. Although the C-terminus in
COX-13 and probably in COX-2, is also distant
from the active site, it clearly exerts a consider-
able influence on the function of the enzyme as
site-directed mutations at the extreme C-term-
inal of recombinant COX-1 had unexpectedly
strong effects on activity.4 Frustratingly, in
COX-1 crystals, the X-ray analysis appears to
extend reliably only to residue 586 of the 600
total residues in the ovine protein.3 The three-
dimensional structure of this C-terminal exten-
sion in COX-2 has also not been reported4

although in the full report more information on
this region may be presented. Mutants of COX-2
with alterations in this region will be invaluable
in this analysis.
Another feature of inhibitor interaction with

the COX proteins is the time-dependent irrever-
sibility of some compounds (apart from aspirin).
This varies between inhibitors and isoforms and
is discussed further below but one aspect is
relevant here. An inference from time-depen-
dent and irreversible inhibition is that there
may be chemical reaction between inhibitor
and enzyme, for instance the formation of a

42Schiff base. These interactions and subse-
quent conformational changes in protein

43 re differentstructure a from acetylation by
aspirin as all oxidation of AA is prevented, i.e.
there is no formation of 15-HETE as in acety-
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lated COX-2.28-30 The selective, time-dependent receptor family of proteins whose endogenous
inhibition of COX-242-45 would imply that con- ligands are still undefined, although their activ-
formational changes in COX-1 derive from inter- ity as transcription factors is well established. 53

actions different from those that inactivate PGD2, PGJ2 and other related cyclopentenone
COX-2. It is important to note that neither PGs bind to PPAR, and cause the protein to act
reversible nor irreversible inhibitors affect the as a transcription factor for reporter genes54-56

peroxidase activity of the proteins which con- and also to stimulate the differentiation of
tinue to function normally in the presence of fibroblasts into adipocytes. 54’55 These PGs may
the inhibitors. 29’35’36 Another important conse- be the endogenous ligands for the PPARs,
quence of the conformational rearrangement of which might also explain the effects on cell
the enzyme protein with inhibitor would be growth already described for these prost-
that the structure of COX-1 crystallized with anoids.57-59 An intriguing finding is the stimula-
inhibitor31 could be different from that of tion of transcription of the haem oxygenase
enzyme crystallized with substrate, as already gene in rat cells by PGJ2 derivatives6’61 in
recognized.46’47 relation to the possible role of haem oxygenase

62in the inflammatory response.
(iii) Intracellular location andfunction The extent to which COX-2 accumulates in
The C-terminal region may also be especially this location rather than in the ER could provide
important in securing the protein to the endo- a control mechanism for this growth regulatory
plasmic membranes. For both COX-1 and COX- function, additional to any control of catalytic
2, the most commonly suggested location is in activity by inhibitors. The additional amino-acid
the membrane of the endoplasmic reticulum residues in the C-terminus of COX-2 could be
(ER) with an additional locus for COX-2 on the critical in the location of the enzyme in the
nuclear membrane.48-5 Results from the crys- nuclear membrane and spontaneous mutations
tallographic analysis suggested that the enzyme in this region of the protein might affect the
is bound to the ER by a sequence of short distribution between the ER and nuclear sites.
helical stretches of the molecule which prob- More COX-2 in the nuclear membrane could,
ably only interact with one-half of the lipid for instance, be associated with decreased apop-
bilayer, i.e. there is no transmembrane tosis in epithelial cell lines. 63

structure.3 This description may now need to
be modified. Ren et al. 5 using antibodies Physiological and
specific for particular sequences in COX-1 Pathophysiological Roles for
protein (including the C-terminus, the active COX-2
site and glycosylation sites), together with
selective lysis of cellular membranes have sug- The accepted role for COX-2 is to provide PGs
gested that the C-terminus may cross the ER in a range of inflammatory and host defence
membrane to the cytoplasm, while agreeing conditions, which could be termed a ’pathologi-
with a luminal location for the rest of the cal’ role. Other functions such as involvement
molecule. Such a model would be compatible in mitogenesis and reproduction inferred from

38 1957with the crystallographic analysis where the C- experimental results’ could be consid-
terminus beyond Arg 586 was not resolved and ered as physiological or pathophysiological.
other results attributing importance to amino These other roles have been supported by the
acid residues distant from the active site. 4]’52 results from ’knock-out’ animals in which a
Although analogous mutations in COX-2 have gene coding for a particular protein is selec-
not yet been assessed, these findings re-empha- tively inactivated. The logical purpose of knock-
size the importance of the structural analysis of out strains is to expose deficiencies in the
the C-terminal region of the proteins, knock-out animal and from these defects to
The intracellular location of the COX protein deduce the roles played by the missing protein.

is important because only COX-2 is found on In the present context the relevant proteins are
the nuclear membrane where it would be COX-1 and COX-2.
ideally positioned to participate in mitogenesis,
normal or neoplastic. InflammationA possible mechanism for this participation is
provided by recent findings, in three different Two separate reports64’65 of COX-2 knock-out
systems, of the activation by PGJ2 derivatives of mouse strains (null mice) have appeared and in
the peroxisome proliferator activated receptor each a model of acute inflammation (oedema
type gamma (PPARy). The PPARs (cz, and y) following AA applied to the ear) was used to
are members of the steroid hormone nuclear test responses in the null mice. Both agreed that
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the null mice had normal ear oedema in
response to AA and the interpretation of this
result was that COX-l, still present, was able to
generate the PGs required. Two other models of
acute inflammation (PMA-ear oedema and carra-
geenin paw oedema) also gave normal results in
null mice. The only model tested which failed
in COX-2 null mice was one of LPS-induced
hepatotoxicity which depends on induction of
COX-2 in macrophages and/or Kupffer cells.4

The implications of these experiments in mice
lacking COX-2 are that where COX-1 is normally
present (ear skin, paws) this isoform will substi-
tute for the missing COX-2; where COX-1 is
absent or at very low levels, as in macrophages,
the inducing agent fails to generate the usual
response.

Reproduction and development

An essential role for COX-2 in embryonic
development would be deduced from the
severe morphological defects and consequent
functional failures in the kidneys of COX-2 null
mice,4’5 which lead to their early death (some
at about 8 weeks and most by 6 months). A
similarly absolute requirement for COX-2 in
female fertility must be deduced from the failure
of null female mice to ovulate.4 It is important
to realize that these failures in null mice must
represent a highly localized generation of COX
products as the nature of the products from
COX-2 is the same as those derived from COX-1
and COX-1 is still fully active in the COX-2 null
mice.
A strong linkage between isoform and physio-

logical function was further supported by the
66results from COX-1 knock-out mice. Here the

null mice are healthy, without developmental
defects and with no ovulatory changes. How-
ever null pups carried by a null mother were
mostly (> 90%) born dead; either a heterozy-
gous mother or some heterozygous pups re-
stored viability of the whole litter to normal.
Clearly the COX-2 prese.nt in the COX-1 null
mice cannot provide the PGs needed for foetal
survival but COX-1 present in some littermates
will ensure survival of all foetuses. Again the
separate events in reproduction appear to have
differing absolute requirements for COX iso-
forms.

Implications of results from knock-
out mice

The possibility of compensatory changes sug-
gested for inflammation in COX-2 knock-out
mice could also explain why in COX-1 null mice

there was no gastric ulceration or NSAID-type
nephropathy. Both these effects would have
been predicted from the known effects of
aspirin and other NSAIDs in normal animals.
However in COX-1 null mice the compensation
was not due to increased amounts of COX-2
activity as gastric tissue from the null mice
synthesized less than 1% of the normal amount
of PGs.66 The most likely alternative compensa-
tion would be from NO; this mediator is, like
PGI2, a vasodilator and ulceration is associated
with vasconstriction in the gastric micro-
circulation. 67 Like COX, both constitutive and
induced NOS can be expressed in endothelium.
One predictable consequence of this alternative
pathway would be that NOS inhibitors would
be ulcerogenic in the COX-1 null mice, whereas
they are not noticeably so in normal animals.67

If the knock-out mice show that COX-1 and
COX-2 have separate and important physiologi-
cal roles in reproduction and COX-2, unlike
COX-I, plays an essential part in foetal develop-
ment, what do the knock-out mice tell us about
their pathological importance in inflammation?
One conclusion is that there is a clear need for
COX-2 in certain forms of inflammation, per-
haps all those related to the actions of LPS.64

However the logical deduction from the other
results is that COX-2 is not relevant to the
inflammatory models used for many years to
screen for anti-inflammatory compounds. On
the basis of the knock-out results alone, several
major pharmaceutical companies are wasting
time, effort and money in searching for selective
COX-2 inhibitors; these compounds will not
decrease inflammation nor will they affect the
incidence of NSAID-induced gastric ulcers as
that effect is not connected with the presence
or absence of COX-1 activity. In contrast to
these logical deductions, there is a considerable
body of empirical experimental evidence clearly
demonstrating both the anti-inflammatory effi-
cacy of selective COX-2 inhibitors and their
decreased ulcerogenicity when compared with
the more COX-1 selective inhibitors. This para-
dox is not without hope of resolution; there are
still many relevant measurements to be made in
the null strainsmlevels of COX-1 or COX-2
activity, of PEA2 activity, the effect of selective
inhibitors and many othersmand when these
results are gathered, another synthesis of the
apparently opposing views may be possible.

Regulation of COX-2 Activity

It is now clear that the activity of COX-2, as
expressed by the synthesis of PGs, is normally
controlled through the synthesis of the protein.
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Several of the transcription factors effective on
the COX-2 gene are known to be stimulated by
inflammatory cytokines. Other cytokines and
corticosteroids can alter the half-life of the
inherently unstable mRNA, either increasing or
decreasing translation into protein. For the
protein itself, one option is to control the
provision of substrate arachidonic acid (AA),
although the most obvious regulator of activity
would be a selective COX-1 or COX-2 enzyme
inhibitor. All these possibilities, considered in
more detail below, are summarized in Fig. 1.

Regulation by inflammatory factors

A great variety of agents, mostly derived from
inflammatory situations, have been used to

induce COX-2 activity. The most frequently used
inducing stimuli are IL-1 and lipopolysaccharide
(LPS; used here as a synonym for bacterial
endotoxin) and not as might have been ex-
pected the inflammatory stimuli often used for
in vivo models, carrageenin64’68-71 or

72 These and other stimuli used withzymosan.
human cells are listed in Table 1.

(i) Cytokines
Although IL-1 might be considered a model
stimulus for the local induction of COX-2 in
arthritis and LPS for the cardiovascular effects
of the systemic induction of COX-2, these two
stimuli are, in vivo, closely related as the effects
of LPS are consequent on the production of
TNFcz and IL-1 from a range of cell types.

(+)

Free radicals

Protein kinases

Transcription factors (NFkB, NF-IL6)

Endotoxin
Pro-inflammatory cytokines (IL- 1, TNFa)
Mitogens

DNA

(-)

Protein kinase inhibitors

Anti-inflammatory cytokines (IL-4, IL- 10)

IL-1

Arachidonic acid

(+)

Phospholipase induction

(-)

Dexamethasone

Phospholipases

mRNA

COX-2 protein

PGs

Dexamethasone

Protein synthesis inhibitors

COX-2 inhibitors

FIG. 1. Control of PG synthesis by regulation of COX-2 induction and action. This figure outlines the different stages at
which modulation of COX-2 synthesis or function leads to alteration of the biological endpoint, production of PGs.
Stimulatory factors (/) are shown on the left and inhibitory factors (-) on the right hand side. As discussed in the text,
changes in the production of mRNA (transcription) by free radicals, protein kinases and cytokines are all finally mediated by
changes in transcription factors. Because mRNA for COX-2 is inherently short-lived, alterations in its biological half-life can
also significantly affect the amount of COX-2 protein synthesized. Protein synthesis inhibitors (cycloheximide) are included
in this scheme for completeness but are not considered any further in the text as a means of regulating COX-2 levels. Note
that factors affecting phospholipase induction or action could independently or co-operatively influence PG synthesis by
altering the amounts of endogenous AA available to COX-2. The levels of PG production in vivo under physiological or
pathological conditions will reflect the sum of changes in COX-2 and phospholipase activities. Intervention with COX-2
inhibitors allows exogenous control, overriding the endogenous mechanisms.
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Table 1. Stimuli known to induce COX-2 mRNA, protein or
activity in human cells

Stimuli Reference

LPS 17, 76, 99,108, 128, 130, 191-193
TNF 89, 193, 194
IL-1 126, 127, 139, 143, 148, 157, 160,

171, 194-199
EGF 88, 89, 91, 200
PDGF 200, 201
TGF(z, I 88, 89, 91
Phorbol ester 17, 148, 157, 202-204
Pregnancy 142, 203, 205, 206
Parturition 207-212

The references given are restricted to cells and tissues of human
origin and to papers published in 1994, 1995 and early 1996. These
are given as a guide to the range of systems (stimuli, cells, tissues
or in vivo) used and not as a complete list of all the work on COX-2.

Differences between the effects of LPS and IL-1
in cultured cells will clearly depend on the
ability of the cell line to release IL-1 in response
to LPS; such differences are less likely in vivo
or ex vivo where a wide range of cell types
have been exposed to the inducing agent. How-
ever as at least two cytokines, IL-10 and IL-4,
decrease induction (see below), their synthesis
in vivo following IL-1 or LPS treatment could
modify the final level of COX-2 activity attained.

In endothelial cells COX-2 is induced readily
by LPS, in some cases through the release of

73 76TNF, PDGF and other cytokines. However
the initial stage of this process, the binding of
LPS to the cell membrane, is still unclear as
endothelial cells do not express the particular
LPS-binding membrane proteins (CD 14) that
may be used as receptors on leukocytes,77-v9 a
major cell type responding to LPS with induc-
tion of COX-2. There are some indications that
soluble forms of CD 14 are involved in the
mediation of responses to LPS in endothelial
ceils. 77,80

Whereas most cytokines so far studied in-
crease induction of COX-2, there are examples
of inhibition by cytokines. Two interleukins, IL-
10 and IL-4, already known to antagonize other
effects of ’pro-inflammatory’ cytokines,81’82 de-
creased COX-2 levels in monocytes stimulated
by LPS or Con A, 79’83’84 but in mast cells,85’86

IL-IO potentiated, whereas IL-4 still inhibited,
induction of COX-2 by c-kit ligand and IL-1. It is
possible that this discrepancy in the effects of
IL-10 is related to the cell types involved; more
studies would be needed to define such a
selectivity.
The TGF proteins, TGF and TGF, present

conflicting results for analysis. As might be
expected from its mitogenic activity, TGFx was
able to stimulate COX-2 production in epith-
elia87 and to increase PGE2 output in human

amnion cells and in osteoblasts.88’89 TGF
synergized with IL-1 or TNFc9’91 to increase
PG output, perhaps because TGFc can also
induce IL-1 receptors. 91

Although TGF potentiated the induction of
COX-2 caused by phorbol ester in fibro-
blasts, 92’93 it had no effect when given alone. In
macrophages,94 the same cytokine inhibited the
induction of COX-2 by LPS, more in keeping
with its general anti-inflammatory profile. The
apparent divergence of the effects of TGF[ may
be more readily rationalized on the basis of cell
types; for an overall anti-inflammatory and
wound-healing effect, it would be reasonable to
de-activate leukocytes and to stimulate fibro-
blasts at the same time. TGF also affects NOS
induction in a range of cells95 but here the
majority of the results show a suppression of
iNOS synthesis. The down-regulation of two
major components of the inflammatory process
would contribute importantly to the anti-inflam-
matory action of this cytokine.

(ii) PGs
The PGs themselves are inducing agents, as
directly shown in osteocyte cultures96-98 or by
inference from the effects of COX in-
hibitors.87’99’1 In osteoblastic cell (MC3T3)or
calvarial cultures, PGE2, PGF2, PGD2 and ilo-

of PGI2) all inducedprost (a stable analogue
COX-2 mRNA and protein96-98 and indometh-
acin decreased COX-2 induction. Exogenous
PGE2 also stimulated COX-2 expression in
mouse macrophages treated with LPS.1 In
these cells and in two other cell systems, rat
epithelial cells stimulated with TGF and phor-
bol ester and in human PMNs stimulated with
LPS, COX inhibitors (indomethacin or sulindac
sulphide) decreased COX-2 induction. 87’99 The
positive feedback implied in these systems
contrasts sharply with the negative feedback
loops more usually found in inflammatory con-
ditions where PGE2 and other agonists that raise
cAMP, actually decrease cytokine secretion from

102 104macrophages and lymphocytes. Indeed
the breaking of this loop with COX inhibitors
(NSAIDs) in chronic inflammation is believed to
increase cytokine production and subsequent
degradation of joint cartilage while relieving
pain and oedema; thus symptomatic benefit is
undermined by a continuing or even acceler-

105,106ated disease process.

(iii) Free radicals and nitric oxide
Another totally different class of compounds
associated with inflammatory situations are the
reactive oxygen intermediates or oxygen de-
rived free radicals (ODFR), such as superoxide
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anion (O) and the hydroxyl radical (OH-). A
role for these species in the induction of COX-2
has also been proposed.17’18 These highly
reactive chemical species are present at sites of
inflammation, leukocytes generate ODFR in the
phagocytic process (the oxidative burst) and
NO is another free radical, present during
inflammation, synthesized by iNOS and capable
of interacting with the ODFR to increase free
radical actions. Thus, there are many opportu-
nities for interactions between these radicals
and COX-2. In rat mesangial cells following LPS,
IL-1 or TNFct, radical scavengers (thioureas) or
other antioxidants inhibited the usual increase
in COX-2 mRNA, COX-2 protein and PGE2
synthesis.17 The effects were selective in that
induction of other proteins (chemokines) by
LPS or of COX-2 by other stimuli (phorbol
esters, serum) were not similarly inhibited. At
present, the actual mechanism of the inter-
action between the ODFR and the transcription
of the COX-2 gene is not fully known, although
ODFR are known to activate NFkB,19’11 one of
the transcription factors active on the COX-2
gene. However, in the rat the COX-2 gene may
not exhibit a binding site for this transcription
factor. 19,21

Another free radical associated with inflamma-
tion is nitric oxide (NO) and its effects on COX
activity remain difficult to summarize briefly.
Both enzymes, COX and NO synthase (NOS),
have inducible isoforms, which are induced in
inflammatory situations by the same cytokines
and both genes belong to the family of immedi-
ate early genes. Thus interaction between these
two enzyme systems is highly likely; the diffi-
culty arises from the outcome of that inter-
action. There was potentiation of PG output in
the presence of NO11-115 apparently by direct
interaction of NO with the haem in COX
protein,116 although this interpretation has been
questioned.liT,118 The opposite effect, inhibition
of PG output .b. NO, has also been observed in
macrophages. Action of PGs on NO output is
less frequently encountered12’121 although such
effects might be deduced from the interactions
of raised cAMP with NO output.122-124 In one
case a truly reciprocal relationship, with PGs
inhibiting NO output and NO inhibiting PG
output, by which a constant level of vasodilator
tone may be maintained has been described in
human saphenous vein.125 This last example is
unlikely to involve induced forms of either
enzymes and is perhaps less relevant to the
present discussion but it does illustrate the
range of interactions possible between these
enzymes. The most valid conclusion would
seem to be that there is no generalization and

that each situation with its particular combina-
tion of species, cell type and stimulus has to be
evaluated individually.

(iv) Contribution ofphospholipases
A potential source of confusion in the interpre-
tation of experiments involving COX-2 induc-
tion is the simultaneous induction of PEA2
activit most frequently with IL-1 as inducing
agent. 6,126-132 Increased PEA2 activity implies
increased provision of free AA which could be
as easily available to COX-1 as to COX-2. Thus
the final effect, increased synthesis of PGs, is
not necessarily due solely to increased COX-2.
One prediction from this co-induction is that
the effectiveness of inhibitors of COX-2 could
depend on the level of PEA2 induced at the
same time and that level could vary with the
nature of the major inducing agent (IL-1, PAF or
TNF) and with the cell type involved. The
localization of the human gene for cytosolic
PEA2 to the same chromosomal region as the
gene for COX-2 (lq25), raises the possibili_ty of
coordinate regulation of these enzymes.133’13

(v) Effects of corticosteroids
The major inhibitory mechanism affecting COX-
2 induction, both in terms of experimental
results and of pathophysiological relevance is
the action of corticosteroids, most frequently
demonstrated with dexamethasone (Dex). In
many conditions, susceptibility of the produc-
tion of PGs, enzyme protein or mRNA to
inhibition by Dex is used as clear evidence for
COX-2 induction. This simple conclusion is
however clouded by other actions of Dex
including the inhibition of the induction of
PEA2132 and inhibition of PEA2 activity itself via
lipocortin. 135’136 For instance over 20 years ago
it was shown that the output of PGs from
freshly isolated lungs from untreated guinea-
pigs, conditions in which COX-2 induction
should be minimal, was decreased by infusions
of Dex.17 There is nevertheless clear evidence
for decreased induction of both COX-2 protein
and mRNA in the presence of Dex. 25’ 93’13g-141

There are also a few examples of cortico-
steroids increasing PG production. The mRNA
for COX-2 but not that for COX-1 was increased
20-fold in human amnion cell cultures exposed
to Dex for 16 h. 142 Interestingly, oestradiol and
progesterone did not increase COX-2 mRNA but
cortisol did. More typically, in human decidual
tissue, Dex and progesterone were inhibitory.143
As with other examples of corticosteroid inhibi-
tion of mRNA, the mechanism of action of Dex
on COX-2 induction is poorly elucidated; either
increased degradation of an already short-lived
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mRNA8,44 or decreased transcription are possi- Regulation by substrate
ble contributors to the overall affect.

One of the continuing controversies in the
analysis of COX action centres on the influence

Regulation via intracellular signalling of different sources of substrate on activity.
Tyrosine kinases play important roles in the There is a clear difference between the utiliza-
intracellular signalling pathways for COX-2 in- tion of endogenous and exogenous AA in that
duction in a range of cells; in endothelial cells, the supply of endogenous substrate is con-
epithelial cells and macrophages this was trolled by enzymes outside the COX cascade,
demonstrated with tyrosine kinase in- chiefly by the balance between phospholipid
hibitors7’74’45-48 and in mesangial cells by hydrolysis and re- or trans-acylation. 161’162 The
measurement of protein tyrosine phos- levels of endogenous substrate can be increased
phorylation. 72,149-151 The oncogene v-src en- and PG output consequently stimulated in a
coding a tyrosine kinase is by itself enough to number of cells and tissues (without induction
cause COX-2 induction in T cells.44 Whereas of COX-2) by agents such as thrombin, hista-

163the induction by EGF25 probably utilized the mine, brad kinin, PAF or the crosslinking ofY
164receptor tyrosine kinase, the kinases used by IgE receptors. Ths stimulation s charactens-

other inducing agents have not yet been clearly tically of short duration, less than 30 min and
identified. However the inhibition by tyrosine there is no doubt that endogenous substrate is
kinase inhibitors such as erbstatin and genistein utilized by COX-1 to increase PG synthesis. The

73 145 146 152of both COX-2 and iNOS induction experiments in which COX-2 utilizes endogen-
offers a new mode of anti-inflammatory action, ous substrate are characteristically of longer
which would have the advantage of not acting duration (6-24 h) and entail incubation of cells
on constitutive enzyme activities. Such an effect with an inducing agent such as LPS, TPA or
may contribute to the anti-inflammatory proper- PDGF which is present throughout the incuba-
ties of leflunomide5 which was shown to tion. The PGs accumulated over these longer
inhibit the EGF-stimulated tyrosine kinase,154 periods are increased many-fold in the presence
the Src tyrosine kinases55 and the synthesis of of the inducer molecule, relative to those in

PGE2 induced by LPS in human leukocytes. 99 control incubations. Most of the inducing agents
Another signalling pathway, via protein kinase will increase phospholipase action as well as

C (PKC), also appears to be involved but here inducing COX-2 protein.126’128-’165 Again
the net effects of stimulating PKC activity are there is no doubt that COX-2 can utilize
more variable. In most cases, increased PKC endogenous substrate to form PGs.
activity was associated with induction of COX- The problems appear with the use of exogen-
87 147 149 156 1582 but in alveolar macrophages, ous substrate. Addition of exogenous AA (10-

inhibition of PKC with staurosporine caused 30 btM) to systems containing COX-1 leads to
COX-2 induction.59 Another confusing factor is increased output of PGs. However in some
the well-established down-regulation of PKC on preparations where both COX-1 and COX-2 are
continued stimulation by phorbol esters. In the present, the induced enzyme appears to con-
present context this was illustrated by the tribute no additional amount of PGs over that
stimulation of COX-2 mRNA by 5HT (mediated seen with COX-1 alone, leading to the proposi-
via 5HT2 receptors and PKC activation)or by tion that COX-2 does not utilize exogenous
short exposure to phorbol ester. However pre- aa.92 Two comments are relevant. First, this
incubation with phorbol ester followed by 5- ’inaccessibility’ of exogenous AA is not a uni-
HT, abolished induction of COX-2 mRNA.149 versal finding; in a variety of cells, 74’75’158’166’167

These kinase pathways are not exclusive and induction of COX-2 did lead to an increase in
in mesangial cells with 5HT as stimulus both PG output from exogenous substrate. Second,
PKC and tyrosine kinase mediate the induction the use of exogenous AA involves incubation
of COX-2 mRNA.49 In human skin fibroblasts for short times, typically 10 min, compared with
after IL-1 stimulation, PKC appeared to be the 6 h incubations to show COX-2 induction.92

major protein kinase with only minor contribu- Within 10 min over 100 ng PGE2/ml was gener-
tions from PKA or tyrosine kinases.16 However ated, whereas over 6 h there was accumulation
in ovarian tissue both PKA and PKC were of only about 20ng/ml. An equally plausible
activated during LH and GnRH stimulation of explanation would be that although COX-2 was
COX-2.56 Other intracellular second messen- induced several-fold, the actual amounts of
gers identified in osteoblasts include cAMP and COX-2 protein were still low relative to the
PLC, stimulated by PGE2 or iloprost (a stable amount of COX-1 present. It is thus not possible
analogue ofPGI2) and PGF2a respectively. 96 to come to a definite conclusion on the
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selective accessibility of exogenous substrate to
either isoform on the basis of these experi-
ments.
A variation of this hypothesis was the conclu-

sion drawn from work with only endogenous
substrate in mast cells. 164 Here release of PGD2
and COX-2 protein were induced by incubating
the mast cells with a mixture of cytokines.
Incubation in this medium for 5-10 h increased
PGD2 output many-fold to about 5-10 ng/ml.
’Acute’ stimulation of PGD2 biosynthesis by the
crosslinking of IgE receptors in these cells was
not increased until after 24 h incubation with
the cytokine mixture, by which time the COX-2
protein had fallen again to near normal levels.
There was certainly no increase in the ’acute’
release of PGD2 at the time of peak COX-2
induction. From this the authors concluded that
the induced COX-2 did not have access to the
increased AA released during IgE stimulated
PGD2 synthesis and that only COX-1 was
utilized, even when COX-2 had been induced,
to form PGs subsequent to IgE stimulation. A
comparison of the times over which these
experiments were performed shows that the
IgE stimulation provided about 5 ng PGD2/IO6

cells in 10 min whereas the cytokine stimula-
tion took 10 h to provide 10 ng/106 cells. On
this basis the induced COX-2 would provide
about 0.2 ng in 10 min; this contribution would
be rather difficult to detect against the total of
5 ng produced. The authors may be correct in
postulating different coupling of stimuli to the
isoforms but the experimental results are not an
adequate test of their hypothesis. Indeed in a
more recent paper from this group, the ’stimu-
lus selective’ linkage of COX-1 or COX-2 action
has been replaced by a ’time selective’ hypo-
thesis. 168

If distinct pools of substrate for COX-1 and
COX-2 do exist they are more likely to be
defined on a spatial basis than on a simple
endogenous/exogenous substrate criterion. In-
deed if COX-2 shares the general three-dimen-
sional structure proposed for COX-l, 31 with the
membrane anchors defining the entrance to the
active site tunnel which guides AA cleaved from
the adjacent membrane up to the oxidative site
of the enzyme, it is not immediately obvious
how one isoform could favour exogenous AA
over the freshly hydrolysed product of the
underlying ER membrane. However this model
of COX action would assume a phospholipase
in close proximity to the COX protein and a
more likely basis of selectivity is in the phos-
pholipase activated to supply endogenous AA.
Although most emphasis has been placed on
PEA2 in this context, the action of either PLC or

PLD can also give rise to free AA. Different
ligands for cell membrane receptors will acti-
vate these phospholipases differentially. Further-
more, each phospholipase has its own substrate
selectivities and the distribution of the phospho-
lipids is not uniform throughout all mem-
branes.162 There is also evidence for a selective
locus of COX-2 in the nuclear membrane, apart
from the location in the ER demonstrable for
both isoforms.5 Thus a combination of which
phospholipase is activated by which stimulus
and which phospholipid is closest to a particu-
lar COX protein might appear to give a degree
of selectivity between isoforms in terms of the
substrate.

Selective Inhibition of COX-2

One disadvantage of regulating COX-2 by inter-
ference with the processes of transcription,
translation or intracellular signalling pathways is
that, at present, selectivity of effect is low. This
is well recognized for the corticosteroids which
will prevent induction of many proteins apart
from COX-2 and could be equally true for
antagonists of or interference with, transcrip-
tion factors such as NFkB or NF-IL6169 or for the
inhibitors of tyrosine kinase. Logically the most
selective effect would be attained by inhibition
of the enzyme protein and this consideration
coupled with the effectiveness of COX inhibi-
tors already known has led to an extensive
search for new inhibitors with a selective action
on COX-2. Particularly, such selective agents
should be free of the most significant side
effects associated with COX-1 inhibition, gastric
ulcers and nephropathy.

Assessment of selectivity

The initial stages of this search were concerned
with assessment of the selectivity of the known
NSAIDs or COX inhibitors and very soon estab-
lished one major difficulty in the analysis, a
marked variation in the selectivity ratio (IC50 for
COX-I:IC50 for COX-2) for any given compound;
a high ratio representing selectivity for COX-2
inhibition. For instance, ratios for indomethacin
ranged from 20170 to 0.1.171 This variability is
due to variation, at every level, in the experi-
mental conditions of the assays. Different types
of cell are used, derived from different species,
as whole cells, homogenates, purified extracts
or recombinant proteins expressed in bacterial,
insect or animal cells. Further variation is intro-
duced in the time of pre-incubation with
inhibitor, the concentration of exogenous sub-
strate or the use of endogenous substrate. The
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last three factors contribute significantly to the trations of AA could thus be higher, providing
marked differences in selectivity. For instance more competition for the binding of inhibitor.
with 10 min pre-incubation, indomethacin at Even the time dependent irreversible inhibitors
1.6 bM completely abolished COX-2 activity will show some reversal of inhibition when
whereas COX-1 activity suffered only 50% in- exposed to high AA concentrations. 42

hibition. However, with no pre-incubation, indo- The value of a model system must lie in its
methacin had an IC50 of 13.5 bM for COX-1 ability to predict compounds with selective
whereas for COX-2 the IC50 was over COX-2 inhibition in vivo and one test of that
1 000 l,m. 172 Clearly two very different selectiv- value is to assess the compounds already known
ity ratios would be calculated from IC50 values to exhibit such activity alongside those NSAIDs
obtained under these two experimental condi- with the worst side effect profiles.75 Thus
tions. Time-dependent inhibition of COX-2 but compounds such as NS398, SC58125 and
not of COX-1 by NS 398 was the major reason CGP28238 must be clearly separated from
for its selectivity with human recombinant NSAIDs such as piroxicam, azapropazone or
enzymes.4’44 A similar differential time-depen- ketoprofen. Most model systems achieve this
dency was reported for CGP28238, another separation and will probably be efficient
COX-2 selective inhibitor. 42 This feature is not screens for selective COX-2 inhibitors. However,
the sole determinant of selectivity as several it must be remembered that over the last 25
COX-1 inhibitors also show time-dependent years, reliance on in vitro screening with COX
inhibition of either isoform. 42’44’45 purified from ram seminal vesicle (now known
Another source of variability with important to be almost entirely COX-l) must have led to

practical consequences is the nature of the the rejection of many COX-2 selective inhibitors
enzyme system used, i.e. in whole cells, homo- before they could be tested in vivo and a
genates or purified enzymes. Many groups have similar absolute reliance on a single in vitro
used human platelets as a source of COX-1 and screen for COX-2 could lead to similar mistakes.
a variety of cells (renal mesangial cells, macro-
phage cell lines, peripheral blood monocytes) Progress in develomn o selectivestimulated with IL-1 or LPS to provide COX-2.

inhiBitorsThe IC50 values for indomethacin for whole cell
preparations vary but are always lower than There were at least two examples of possible
those reported for cell free preparations.7 This selective COX-2 inhibitors in the literature; both
is true also for selective inhibitors; the IC50 for exhibited a good anti-inflammatory effect in
CGP28238 against COX-2 was 15 nM in whole vivo with little or no inhibition of the standard
cells but 750 nM even after prolonged preincu- COX preparation from ram seminal vesicle
bation with purified enzyme.42 Similarly, in- together with low ulcerogenic activity. The first
creased potencies (lower IC50) have been noted of these compounds, nimesulide, was patented
for aspirin, ibuprofen and even salicylate in over 20 years ago and has been available latterly
whole cells compared with values obtained in in several European countries as an out-of-
broken cell or purified enzymes.74 There are patent, non-prescriltion analgesic and anti-in-
no obvious explanations for this phenomenon, flammatory agent. The other, CGP28238, is
Preferential concentration of the inhibitor in closely related in structure (see Fig. 2) and was
lipid of the ER membrane to give a locally first reported in 1989.77 A third close relative,
higher concentration than in the bulk solution NS398, was described many years later as a
would not explain why inhibitory potency is selective inhibitor of COX-2.178
lost in broken cells as crude homogenates after Subsequent development has led to DuP
centrifugation would contain enzyme still at- 697,79 SC 581258 and L-745,337,8 with
tached to fragments of ER. One possibility is many other similar compounds less extensively
that in whole cells the concentration of free AA studied.42’82-85 The most striking feature of
is kept low by restraining phospholipase activ- this new generation of NSAIDs is that none of
ity (through low intracellular calcium, for in- them are carboxylic acids, like the ’old’ NSAIDs,
stance) and increasing re- or trans-acylation into and all have the sulphone or sulphonamide
lipid.’2 Thus, the initial binding of the grouping. The simplest (and perhaps simplistic)
inhibitor to the enzyme in whole cells takes inference from this is that the selective COX-2
place with little or no competition from the inhibitors bind to a site that is different from
substrate AA, allowing a maximal inhibitory that used by the ’old’ NSAIDs7 and, as
effect. In a broken cell preparation the calcium proposed earlier, would suggest a structure
concentration is much higher than the normal unique to the COX-2 protein which, at first
intracellular level, lipase activities and concen- sight, is most likely to be the 18-amino acid
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FIG. 2. Chemical structures of selective inhibitors of COX-2. All the compounds shown have exhibited inhibitory selectivity
towards COX-2 in a range of systems (see Table 2). The sulphonamide grouping is present in all except meloxicam in which
it forms part of a cyclic structure. None of these compounds has a carboxylic acid grouping characteristic of the ’older’
NSAIDs.

insert at the C-terminus. It is important to note
that neither the ’old’ nor the new selective
COX inhibitors affect the peroxidase activity of
the proteins, implying that the binding of COX-
2 inhibitors, like that of COX-1 inhibitors, does
not disturb the three-dimensional structure of
the protein on the ’other’ side of the haem
ring.29,35,36

In spite of all the reservations outlined above,
the search for selective COX-2 inhibitors has
been remarkably successful. To some extent this
reflects the efficacy of the exemplar compound,
nimesulide, but all the subsequent develop-
ments exhibit the predicted properties. They all
have good selectivity in vitro with pure en-
zymes or in cell systems with ratios of IC50
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favouring COX-2 in all assays and some values
are shown in Table 2. Furthermore they exert
anti-inflammatory activity in a range of models,
acute and chronic, as well as anti-pyretic and
analgesic activities and at these doses there is
little or no gastric ulceration. Clearly, it is
possible to achieve selective inhibition of COX-
2 and now it seems only a matter of refining the
effective structures to combine the highest
selectivity with the best pharmacokinetics and
provide compounds for clinical evaluation.
One result of the selectivity of COX inhibition

coupled with a better understanding of the
conditions in which COX-2 can be induced is
that it may now be reasonable to use COX-2
inhibitors in therapeutic areas such as endotox-
in shock or asthma where the ’old’ NSAIDs
were ineffective. The greater potency against
COX-2 together with lack of toxicity on sto-
mach and kidney could allow a reduction in PG
output via the induced enzyme while allowing
the ’beneficial’ output from constitutive COX-1.
Another potential therapeutic area of consider-
able promise for COX-2 inhibitors is suggested
by the negative correlation between colon
cancer and NSAIDs;186 recently aspirin was
shown to reduce the risk of colorectal cancer
by almost half. 187 The crucial observations were
that the COX-2 isoform was present only in
malignant tissue188’189 and conferred resistance
to apoptosis,63’19 implying an important role
for COX-2 in neoplastic growth.
The side effects or toxicity of COX-2 inhibi-

tors are not easy to predict; certainly those of
the ’old’ NSAIDs should be absent, by defini-
tion. From the evidence of the knock-out
mice,64’65 the major toxicities will be on the

Table 2. Selective COX-2 inhibitors

reproductive system, on fertility and foetal
development. Whereas decreased fertility, as
long as it is reversible, may not be an unaccep-
table side effect, developmental defects, espe-
cially in the kidney, would most certainly
prevent the use of COX-2 inhibitors during
pregnancy and thus extensive testing for poss-
ible teratogenic effects would be required.

Summary

Elucidation of the regulation of COX-2 provides
an instructive example of the interaction be-
tween molecular biology and applied pharma-
cology. The basic science of the identification of
the isoforms and the stimuli for induction was
rapidly transformed into a new and powerful
therapeutic concept, NSAIDs without the usual
side effects. We now know a great deal about
COX-2 from the gene to the crystal structure of
the protein, its substrate sites and its intracellu-
lar location, much more than about many other
enzymes of pharmacological importance. How-
ever in one significant aspect this encouraging
utilization of molecular biology has failed; for all
our knowledge, the design of selective inhibi-
tors has not been based on a careful study of
the structure of the protein and its interactions
with substrate but, as in the past, on chemical
variations of a molecular structure, found em-
pirically to be effective. Moreover, deductions
based on the knock-out mice would deny much
of the equally empirical evidence correlating
inflammation with COX activity.

Nevertheless it was molecular biology that
disclosed the important place of COX-2 in
reproduction, that raised new possibilities for

Compound alC50 for COX-2 bRatio IC50 CAnti-inflammatory doses dUIcerogenic References
(nM) COX-1:2 (mg/kg) potential in vivo

(mg/kg)
acute chronic

Nimesulide 13 13 3 0.2 100 213, 214
CGP 28238 15 5000 2 0.05 30 171, 177
NS 398 100 260 5 > 000 44, 215
SC 58125 50 > 2000 2 > 600 180
L 745337 23 > 400 2 > 30 181
Meloxicam 2 3 3 0.1 2.5 216, 217
DuP 697 10 80 0.03 0.2 > 400 45, 179
Indomethacin 6 0.03 1.5 O. 8 215, 216
Piroxicarn 175 0.03 2.7 0.6 1.1 216, 217

aThese values were obtained in vitro with whole cells, purified native or recombinant enzymes.
bA high value here denotes high selectivity for inhibition of COX-2.
CThe acute model was usually paw oedema, sometimes carrageenin pleurisy. The chronic model was usually adjuvant arthritis. The values
shown are ED50 or ED30 doses in each model.
dThese values represent the threshold dose for gastric damage or the highest dose at which damage was still absent.
Bearing in mind the diversity of test systems used, the important values in the table are not the absolute potencies of the compounds in any
given test system but the ratios, firstly of IC50 COX-I:COX-2 which gives some indication of selectivity in vitro (see text for further comment)
and then the ratio of the ED50 in chronic inflammation and the ulcerogenic dose, giving an estimate of in vivo selectivity. Note that the last
two compounds in the table (shown in italics) are examples of the ’old, non-selective’ NSAIDs. In fact these were quite selective for COX-l, as
shown by the values for the IC50 ratios.
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the physiological role of COX-1 and that eluci-
dated the correlation between COX-2 and neo-
plastic growth. In this last context, there is an
intriguing possibility for which there is no
direct evidence yet but which is entirely as-
sessable with molecular biological techniques,
namely that COX-2, like the products of other
immediate-early genes, has effects on gene
transcription and/or translation that do not
entail the oxidation of AA to PGs. In all these
roles and in the new ones to come, the analysis
of regulatory mechanisms, physiological, patho-
physiological and pharmacological, will remain
central to scientific and clinical progress.

Note Added in Proof

The X-ray crystal structure of human COX-2
desribed by M. Browner et al. is to appear in
Nature (Structural biology) in November 1996.
Two further descriptions, of murine COX-2 by
R. G. Kurumbail et al. and of the human protein
by B. M. McKeever et al. were given at a
meeting in Vienna in September 1996 and have
been submitted for publication. All three re-
ports include discussions of the binding sites
for selective inhibitors of COX-2.

References
1. Hamberg M, Svensson J, Samuelsson B. Thromboxanes; a new group

of biologically active compounds derived from prostaglandin
endoperoxides. Proc Natl Acad Sci USA 1975; 71: 345-349.

2. Moncada S, Gryglewski RJ, Bunting S, Vane JR. An enzyme isolated
from arteries transforms prostaglandin endoperoxides to an unstable
substance that inhibits platclet aggregation. Nature 1976; 263: 663-
665.

3. Herschman HR. Prostaglandin synthase 2. Biochim Biophys Acta
1996; 1299: 125-140.

4. Otto JC, Smith WL. Prostaglandin endoperoxide synthases-1 and 2.

J Lipid Mediat Cell Signal 1995; 12:139-156.
5. Tay A, Squire JA, Goldberg H, Skorecki K. Assignment of the human

prostaglandin-endoperoxide synthase 2 (PTGS2) gene to lq25 by
fluorescence in situ hybridization. Genomics 1994; 23: 718-719.

6. Tazawa R, Xu XM, Wu KK, Wang LH. Characterization of the genomic
structure, chromosomal location and promoter of human prostaglan-
din H synthase-2 gene. Biochem Biophys Res Commun 1994; 203:
190-199.

7. Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, Takahashi
E and Tanabe T. Characterization of the human gene (PTGS2)
encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem
1994; 221: 889-897.

8. Xie W, Merrill JR, Bradshaw WS, Simmons DL. Structural determina-
tion and promoter analysis of the chicken mitogen-inducible prosta-
glandin G/H synthase gene and genetic mapping of the murine

homolog. Arch Biochem Biophys 1993; 300: 247-252.
9. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. Structure of the

human cyclo-oxygenase-2 gene. BiochemJ 1994; 302: 723-727.
10. Herschman HR. Primary response genes induced by growth factors

and tumor promoters. Annu Rev Biochem 1991; 60: 281-319.
11. Miyata A, Yokoyama C, Ihara H, Bando S, Takeda O, Takahashi E and

Tanabe T. Characterization of the human gene (TBXAS1) encoding
thromboxane synthase. EurJBiochem 1994; 224: 273-279.

12. Miyata A, Hara S, Yokoyama C, Inoue H, Ullrich V, Tanabe T. Molecular
cloning and expression of human prostacyclin synthase. Biochem
Biophys Res Commun 1994; 200: 1728-1734.

13. Nanayama T, Hara S, Inoue H, Yokoyama C, Tanabe T. Regulation of
two isozymes of prostaglandin endoperoxide synthase and thrombox-
ane synthase in human monoblastoid cell line U937. Prostaglandins
1995; 49: 371-382.

14. Fletcher BS, Kujubu DA, Perrin DM, Herschman HR. Structure of the

mitogen-inducible TIS10 gene and demonstration that the TIS10-
encoded protein is functional prostaglandin G/H synthase. J Biol
Chem 1992; 267: 4338-4344.

15. Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci
USA 1992; 89: 7384-7388.

16. Inoue H, Nanayama T, Hara S, Yokoyama C, Tanabe T. The cyclic AMP
response element plays an essential role in the expression of the
human prostaglandin-endoperoxide synthase 2 gene in differentiated
U937 monocytic cells. FEBS Lett 1994; 350: 51-54.

17. Inoue H, Yokoyama C, Hara S, Tone Y, Tanabe T. Translational
regulation of human prostaglandin-endoperoxide synthase-2 gene by
lipopolysaccharide and phorbol ester in vascular endothelial cells.

J Biol Chem 1995; 270: 24965-24971.
18. Sirois J, Richards JS. Transcriptional regulation of the rat prostaglandin

endoperoxide synthase 2 gene in granulosa cells. J Biol Chem 1993;
268: 21931-21938.

19. Sirois J, Levy LO, Simmons DL, Richards JS. Characterization and
hormonal regulation of the promoter of the rat prostaglandin
endoperoxide synthase 2 gene in granulosa cells. J Biol Chem 1993;
268: 12199-12206.

20. Yamamoto K, Arakawa T, Ueda N, Yamamoto S. Transcriptional roles
of nuclear factor kB and nuclear factor-interleukin-6 in the tumor

necrosis factor s-dependent induction of cyclooxygenase-2 in MC3T3-
E1 cells. JBiol Chem 1995; 270: 31315-31320.

21. Goppelt-Struebe M. Regulation of prostaglandin endoperoxide syn-
thase (cyclooxygenase) isozyme expression. Prostaglandins Leuko-
trienes Essential Fatty Acids 1995; 52: 213-222.

22. Feng L, Sun W, Xia Y, Tang W, Chanmugam P, Soyoola E, Wilson CB
and Hwang D. Cloning two isoforms of rat cyclooxygenase; differ-
ential regulation of their expression. Arch Biochem Biophys 1993;
307: 361-368.

23. Shaw G, Kamen R. A conserved AU sequence from the 3’-untranslated
region of GM-CSF mRNA mediates selective mRNA degradation. Cell
1986; 46: 659-667.

24. Ristimaki A, Garfinkel S, Wessendorf J, Maciag T, Hla T. Induction of
cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcrip-
tional regulation. J Biol Chem 1994; 269:11769-11775.

25. Hamasaki Y, Kitzler J, Hardman R, Nettesheim P, Eling TE. Phorbol
ester and epidermal growth factor enhance the expression of two
inducible prostaglandin H synthase genes in rat tracheal epithelial
cells. Arch Biochem Biophys 1993; 304: 226-234.

26. Smith WL, Marnett LJ. Prostaglandin endoperoxide synthases. Metal
Ions 1994; 30: 163-199.

27. Percival MD, Ouellet M, Vincent CJ, Yergey JA, Kennedy BP, O’Neill
GP. Purification and characterization of recombinant human cyclooxy-
genase-2. Arch Biochem Biophys 1994; 315:111-118.

28. Mancini JA, O’Neill GP, Bayly C, Vickers PJ. Mutation of serine-516 in
human prostaglandin G/H synthase-2 to methionine or aspirin acetyla-
tion of this residue stimulates 15-R-HETE synthesis. FEBS Lett 1994;
342: 33-37.

29. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL. Acetylation of
human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by
aspirin. J Biol Chem 1994; 269: 13207-13215.

30. O’Neill GP, Mancini JA, Kargman S, Yergey J, Kwan MY, Falgueyret JP,
Abramovitz M, Kennedy BP, Ouellet M, Cromlish W, Culp S, Evans JE
Ford-Hutchinson AW and Vickers PJ. Overexpression of human
prostaglandin G/H synthase-1 and -2 by recombinant vaccinia virus:

inhibition by nonsteroidal anti-inflammatory drugs and biosynthesis of
15-hydroxyeicosatetraenoic acid. Mol Pharmacol 1994; 45: 245-254.

31. Picot D, Loll PJ, Garavito RM. The X-ray crystal structure of the
membrane protein prostaglandin H2 synthase-1. Nature 1994; 367:
243-249.

32. Loll PJ, Picot D, Garavito RM. The structural basis of aspirin activity
inferred from the crystal structure of inactivated prostaglandin H2
synthase. Nature Structural Biology 1995; 2: 637-643.

33. Guo Q, Wang L, Ruan K, Kulmacz RJ. Role of Val59 in time-dependent
inhibition of human prostaglandin H synthase-2 cyclooxygenase
activity by isoform-selective agents. J Biol Chem 1996; 271: 19134-
19139.

34. Bhattacharyya DK, Lecomte M, Dunn J, Morgans DJ, Smith WL.
Selective inhibition of prostaglandin endoperoxide synthase-1 (cyclo-
oxygenase-1) by valerylsalicylic acid. Arch Biochem Biophys 1995;
317: 19-24.

35. Tsai A, Hsi LC, Kulmacz RJ, Palmer G, Smith WL. Characterization of
the tyrosyl radicals in ovine prostaglandin H synthase-1 by isotope
replacement and site-directed mutagenesis. J Biol Chem 1994; 269:
5085-5091.

36. Kulmacz RJ, Pendleton RB, Lands WE. Interaction between peroxidase
and cyclooxygenase activities in prostaglandin-endoperoxide synthase.
Interpretation of reaction kinetics. J Biol Chem 1994; 269: 5527-
5536.

37. Mancini JA, Riendeau D, Falgueyret JP, Vickers PJ, O’Neill GP. Arginine
120 of prostaglandin G/H synthase-1 is required for the inhibition by
nonsteroidal anti-inflammatory drugs containing carboxylic acid

moiety. J Biol .Chem 1995; 270: 29372-29377.
38. Bhattacharyya DK, Lecomte M, Rieke CJ, Garavito RM, Smith WL.

Mediators of Inflammation Vol 5 1996 319



Y. S. Bakhle and R. M. Botting

Involvement of Arginine 120, Glutamate 524 and Tyrosine 355 in the
binding of arachidonate and 2-phenylpropionic acid inhibitors to the
cyclooxygenase active site of ovine prostaglandin endoperoxide H
synthase-1. J Biol Chem 1996; 271: 2179-2184.

39. Gierse JK, McDonald JJ, Hauser SD, Rangwala SH, Koboldt CM, Seibert
K. A single amino acid difference between cyclooxygenase-1 (COX-l)
and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors.

JBiol Chem 1996; 271: 15810-15814.
40. Browner ME X-ray crystal structure of human cyclooxygenase-2. In:

Bazan N, Botting JH, Vane JR, eds. New Targets in Inflammation:
Inhibitors of COX-2 Adhesion Molecules. London: Kluwer, 1996.

41. Ren Y, Loose-Mitchell DS, Kulmacz RJ. Prostaglandin H synthase-l:
evaluation of C-terminus function. Arch Biochem Biophys 1995; 316:
751-757.

42. Klein T, Nusing RM, Wiesenberg-Boettcher I, Ullrich V. Mechanistic
studies on the selective inhibition of cyclooxygenase-2 by indanone
derivatives. Biochem Pharmacol 1996; 51: 285-290.

43. Copeland RA, Williams JM, Giannaras J, Nurnberg S, Covington M,
Pinto D, Pick and Trzaskos JM. Mechanism of selective inhibition of
the inducible isoform of prostaglandin G/H synthase. Proc Natl Acad
Sci USA 1994; 91: 11202-11206.

44. Ouellet M, Percival MD. Effect of inhibitor time-dependency on
selectivity towards cyclooxygcnase isoforms. Biochem J 1995; 306:
247-251.

45. Gierse JK, Hauser SD, Creely DP, Koboldt C, Rangwala SH, Isakson PC
and Seibert K. Expression and selective inhibition of the constitutive
and inducible forms of human cyclo-oxygenase. Biochem J 1995;
305: 479-484.

46. Hsi LC, Hoganson CW, Babcock GT, Garavito RM, Smith WL. An
examination of the source of the tyrosyl radical in ovine prostaglandin
endoperoxide synthase-1. Biochem Biophys Res Commun 1995; 207:
652-66O.

47. Loll PJ, Garavito RM. The isoforms of cyclooxygenase: structure and
function. Expert Opinion on Investigational Drugs 1994; 3: 1171-
1180.

48. Otto JC, Smith WL. The orientation of prostaglandin endoperoxide
synthases-1 and -2 in the endoplasmic reticulum. J Biol Chem 1994;
269: 19868-19875.

49. Regier MK, DeWitt DL, Schindler MS, Smith WL. Subcellular localiza-
tion of prostaglandin endoperoxide synthase-2 in murine 3T3 cells.
Arch Biochem Biophys 1993; 301: 439-444.

50. Morita I, Schindler MS, Regier MK, Otto JC, Hori T, DeWitt DL and
Smith WL. Different intracellular locations for prostaglandin endoper-
oxide H synthase-1 and-2. J Biol Chem 1995; 270: 10902-10908.

51. Ren Y, Walker C, Loose-Mitchell DS, Deng J, Ruan K-H, Kulmacz RJ.
Topology of prostaglandin H synthase-1 in the endoplasmic reticulum
membrane. Arch Biochem Biophys 1995; 323: 205-214.

52. Kennedy TA, Smith CJ, Marnett LJ. Investigation of the role of
cysteines in catalysis by prostaglandin endoperoxide synthase. J Biol
Chem 1994; 269: 27357-27364.

53. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan
receptors. Cell 1995; 83: 841-850.

54. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM.
A prostaglandin J2 metabolite binds peroxisome proliferator-activated
receptor gamma and promotes adipocyte differentiation. Cell 1995;
83: 813-819.

55. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM.
15-Deoxy-delta-12,14-prostaglandin J2 is ligand for the adipocyte
determination factor PPARgamma. Cell 1995; 83: 803-812.

56. Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G,
Brown M and Lazar MA. Differential activation of peroxisome
proliferator-activated receptors by eicosanoids. J Biol Chem 1995;
270: 23975-23983.

57. Negishi M, Koizumi T, Ichikawa A. Biological actions of delta-12-
prostaglandin J2. J Lipid Medlar Cell Signal 1995; 12: 443-448.

58. Fukushima M. Biological activities and mechanisms of action of PGJ2
and related compounds; an update. Prostaglandins Leukotrienes
Essential Fatty Acids 1992; 47: 1-12.

59. Sasaki H, Fukushima M. Prostaglandins in the treatment of cancer.
Anticancer Drugs 1994; 5: 131-138.

60. Negishi M, Odani N, Koizumi T, Takahashi S, Ichikawa A. Involvement
of protein kinase in delta-12-prostaglandin J2-induced expression of
rat heme oxygenase-1 gene. FEBS Lett 1995; 372: 279-282.

61. Koizumi T, Odani N, Okuyama T, Ichikawa A, Negishi M. Identification
of cis-regulatory element for delta 12-prostaglandin J2-induced
expression of the rat heme oxygenase gene. J Biol Chem 1996; 270:
21779-21784.

62. Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase:
novel target for the modulation of the inflammatory response. Nature
Medicine 1996; 2: 87-90.

63. Tsujii M, Dubois RN. Alterations in cellular adhesion and apoptosis in

epithelial cells overexpressing prostaglandin endoperoxide synthase
2. Cell 1995; 83: 493-501.

64. Dinchuk JE, Car BD, Focht RJ, Johnston JJ, Jaffee BD, Covington MB,
Contel NR, Eng VM, Collins RJ, Czerniak PM, Gorry SA and Trzaskos
JM. Renal abnormalities and an altered inflammatory response in mice

lacking cyclooxygenase II. Nature 1995; 378: 406-409.
65. Morham SG, Langenbach R, Loftin CD,Tiano HF, Vouloumanos N,

Jenette JC, Mahler JF, Kluckman KD, Ledford A, Lee CA and Smithies
O. Prostaglandin synthase 2 gene disruption causes severe renal
pathology in the mouse. Cell 1995; 83: 473--482.

66. Langenbach R, Morham SG, Tiano HE Loftin CD, Ghanayem BI,
Chulada PC, Mahler JF, Lee CA, Goulding EH, Kluckman KD, Kim HS
and Smithies O. Prostaglandin synthase gene disruption in mice
reduces arachidonic acid-induced inflammation and indomethacin-
induced gastric ulceration. Cell 1995; 83: 483-492.

67. Whittle BJR. Neuronal and endothelium-derived mediators in the
modulation of the gastric microcirculation: integrity in the balance.
BrJPharmacol 1993; 110: 3-17.

68. Tomlinson A, Appleton I, Moore AR, Gilroy DW, Willis D, Mitchell JA
and Willoughby DA. Cyclo-oxygenase and nitric oxide synthase
isoforms in rat carrageenin-induced pleurisy. Br J Pharmacol 1994;
113: 693-698.

69. Salvemini D, Manning PT, Zweifel BS, Seibert K, Connor J, Currie MG,
Needleman P and Masferrer JL. Dual inhibition of nitric oxide and
prostaglandin production contributes to the antiinflammatory proper-
ties of nitric oxide synthase inhibitors. J Clin Invest 1995; 96: 301-
308.

70. Katori M, Harada Y, Hatanaka K, Majima M, Kawamura M, Ohno T,
Aizawa A and Yamamoto S. Induction of prostaglandin H synthase-2 in
rat carrageenin-induced pleurisy and effect of a selective COX-2
inhibitor. Adv Prostaglandin Thromboxane Leukotrienes Res 1995;
23: 345-347.

71. Harada Y, Hatanaka K, Kawamura M, Saito M, Ogino M, Majima M,
Ohno T, Ogino K, Yamamoto K, Taketani Y, Yamamoto and Katori
M. Role of prostaglandin H synthase-2 in prostaglandin E2 formation
in rat carrageenin-induced pleurisy. Prostaglandins 1996; 51: 19-33.

72. Glaser KB, Sung A, Bauer J, Weichmann BA. Regulation of eicosanoid
biosynthesis in the macrophage. Involvement of protein tyrosine
phosphorylation and modulation by selective protein tyrosine kinase
inhibitors. Biochem Pharmacol 1993; 45: 711-721.

73. Akarasereenont P, Bakhle YS, Thiemermann C, Vane JR. Cytokine-
mediated induction of cyclo-oxygenase-2 by activation of tyrosine
kinase in bovine endothelial cells stimulated by bacterial
lipopolysaccharide. BrJ Pharmacol 1995; 115: 401-408.

74. Akarasereenont P, Mitchell JA, Appleton I, Thiemermann C, Vane JR.
Involvement of tyrosine kinase in the induction of cyclo-oxygenase
and nitric oxide synthase by endotoxin in cultured cells. Br J
Pharmacol 1994; 113: 1522-1528.

75. Akarasereenont P, Mitchell JA, Bakhle YS, Thiemermann C, Vane JR.
Comparison of the induction of cyclooxygenase and nitric oxide
synthase by endotoxin in endothelial cells and macrophages. Eur J
Pharmacol 1995; 273: 121-128.

76. Flynn JT, Hoff H. Lipopolysaccharide induces time-dependent in-
creases in prostaglandin H synthase-2- and cytosolic phospholipase A2
mRNA in cultured human microvessel-derived endothelial cells. Shock
1995; 4: 443-440.

77. Pugin J, Schurer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias
PS. Lipopolysaccharide activation of human endothelial and epithelial
cells is mediated by lipopolysaccharide-binding protein and soluble
CD14. Proc Natl Acad Sci USA 1993; 90: 2744-2748.

78. Goldblum SE, Brann TW, Ding X, Pugin J, Tobias PS. Lipopolysacchar-
ide (LPS)-binding protein and soluble CD14 function as accessory
molecules for LPS-induced changes in endothelial barrier function in
vitro. J Clin Invest 1994; 93: 692-702.

79. Yano T, Hopkins HA, Hempel SL, Monick MM, Hunninghake GW.
Interleukin-4 inhibits lipopolysaccharide-induced expression of prosta-
glandin H synthase-2 in human alveolar macrophages. J Cell Physiol
1995; 165: 77-82.

80. Ulevitch RJ, Tobias PS. Recognition of endotoxin by cells leading to
transmembrane signalling. Curt Opin Immunol 1994; 6: 125-130.

81. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mossman TR.
Interleukin-10. Annu Rev Immunol 1993; 11: 165-190.

82. te Velde AA, Huijbens RJE Heije K, de Vries JE, Figdor CG. Interleukin-
4 (IL-4) inhibits secretion of IL-I, tumor necrosis factor- and IL-6 by
human monocytes. Blood 1990; 76: 1392-1397.

83. Mertz PM, DeWitt DL, Stetler-Stevenson WG, Wahl LM. Interleukin 10
suppression of monocyte prostaglandin H synthase-2. Mechanism of
inhibition of prostaglandin-dependent matrix metalloproteinase pro-
duction. J Biol Chem 1994; 269: 21322-21329.

84. Niiro H, Otsuka T, Tanabe T, Hara S, Kuga S, Nemoto Y, Tanaka Y,
Nakashima H, Kitajima S, Abe M and et al. Inhibition by interleukin-10
of inducible cyclooxygenase expression in lipopolysaccharide-stimu-
lated monocytes: its underlying mechanism in comparison with
interleukin-4. Blood 1995; 85: 3736-3745.

85. Murakami M, Penrose JF, Urade Y, Austen KF, Arm JP. Interleukin-4
suppresses c-kit ligand-induced expression of cytosolic phospholipase
A2 and prostaglandin endoperoxide synthase 2 and their roles in

separate pathways of eicosanoid synthesis in mouse bone marrow-
derived mast cells. Proc Natl Acad Sci USA 1995; 92:6107-6111.

86. Murakami M, Austen KF, Arm JP. The immediate phase of c-kit ligand
stimulation of mouse bone marrow derived mast cells elicits rapid

320 Mediators of Inflammation Vol 5 1996



Cyclooxygenase-2 and its regulation in inflammation

leukotriene C4 generation through post-translational activation of
cytosolic phospholipase A2 and 5-1ipoxygenase. J Exp Med 1995; 182:
197-206.

87. Dubois RN, Awad J, Morrow J, Roberts LJ, Bishop PR. Regulation of
eicosanoid production and mitogenesis in rat intestinal epithelial cells
by transforming growth factor-alpha and phorbol ester. J Clin Invest
1994; 93: 493-498.

88. Tahara M, Tasaka K, Masumoto N, Adachi K, Adachi H, Ikebuchi Y,
Kurachi H and Miyake A. Expression of messenger ribonucleic acid
for epidermal growth factor (EGF), transforming growth factor (TGF-
alpha) and EGF receptor in human amnion cells; possible role of
TGFalpha in prostaglandin E2 synthesis and cell proliferation. J Clin
Endocrinol Metab 1995; 80: 138-145.

89. Bry K, Hallman M, Lappalainen U. Cytokines released by granulocytes
and mononuclear cells stimulate amnion cell prostaglandin E2
production. Prostaglandins 1994; 48: 389-399.

90. Harrison JR, Lorenzo JA, Kawaguchi H, Raisz LG, Pilbeam C. Stimula-
tion of prostaglandin E2 production by interleukin-1 alpha and
transforming growth factor alpha in osteoblastic MC3T3-E1 cells.

J Bone Miner Res 1994; 9: 817-823.
91. Bry K. Epidermal growth factor and transforming growth factor-alpha

enhance the interleuMn-1 and tumor necrosis factor stimulated
prostaglandin E2 production and the interleukin-1 specific binding on
amnion cells. Prostaglandins Leukotrienes Essential Fatty Acids
1993; 49: 923-928.

92. Reddy ST, Herschman HR. Ligand-induced prostaglandin synthesis
requires expression of the TISIO/PGS-2 prostaglandin synthase gene
in murine fibroblasts and macrophages. J Biol Chem 1994; 269:
15473-15480.

93. Gilbert RS, Reddy ST, Kujubu DA, Xie W, Luner S, Herschman HR.
Transforming growth factor beta augments mitogen-induced prosta-
glandin synthesis and expression of the TIS10/prostaglandin synthase

gene both in Swiss 3T3 cells and in murine embryo fibroblasts.

J Cell Physiol 1994; 159: 67-75.
94. Reddy ST, Gilbert RS, Xie W, Luner S, Herschman HR. TGF-beta

inhibits both endotoxin-induced prostaglandin synthesis and expres-
sion of the TISlO/prostaglandin synthase 2 gene in murine macro-
phages. J Leuk Biol 1994; 55: 192-200.

95. Vodovotz Y, Bogdan C. Control of nitric oxide synthase expression by
transforming growth factor-beta; implications for homeostasis. Prog
Growth Factor Res 1994; 5: 341-351.

96. Takahashi Y, Taketani Y, Endo T, Yamamoto S, Kumegawa M. Studies
on the induction of cyclooxygenase isozymes by various prostaglan-
dins in mouse osteoblastic cell line with reference to signal transduc-
tion pathways. Biochim BiophysActa 1994; 1212: 217-224.

97. Pilbeam CC, Raisz LG, Voznesensky O, Alander CB, Delman BN and
Kawaguchi H. Autoregulation of inducible prostaglandin G/H synthase
in osteoblastic cells by prostaglandins. J Bone Miner Res 1995; 10:
406-414.

98. Kawaguchi H, Raisz LG, Voznesensky OS, Alander CB, Hakeda Y,
Pilbeam CC. Regulation of the two prostaglandin G/H synthases by
parathyroid hormone, interleukin-1, cortisol, and prostaglandin E2 in
cultured neonatal mouse calvariae. Endocrinology 1994; 135: 1157-
1164.

99. Weithmann KU, Jeske S, Schlotte V. Effect of leflunomide on
constitutive and inducible pathways of cellular eicosanoid generation.
Agents Actions 1994; 41:164-170.

100. Kawaguchi H, Pilbeam CC, Gronowicz G, Abreu C, Fletcher BS,
Herschman HR, Raisz LG and Hurley MM. Transcriptional induction of
prostaglandin G/H synthase-2 by basic fibroblast growth factor. J Clin
Invest 1995; 96: 923-930.

101. Tordjman C, Coge E Andre N, Rique H, Spedding M, Bonnet J.
Characterisation of cyclooxygenase and 2 expression in mouse
resident peritoneal macrophages in vitro; interactions of non steroidal
anti-inflammatory drugs with COX-2. Biochim Biophys Acta 1995;
1256: 249-256.

102. Mohr C, Davis GS, Graebner C, Hemenway DR, Gemsa D. Enhanced
release of prostaglandin E2 from macrophages of rats with silicosis.

AmJ Respir Cell Mol Biol 1992; 6: 390-396.
103. Renz H, Gong J-H, Schmidt A, Nain M, Gemsa D. Release of tumor

necrosis factor- from macrophages. Enhancement and suppression
are dose-dependently regulated by prostaglandin E2 and cyclic
nucleotides. J Immunol 1995; 141: 2388-2393.

104. Haynes DR, Whitehouse MW, Vernon-Roberts B. The prostaglandin E1
analogue, Misoprostol, regulates inflammatory cytokines and immune

functions in vitro like the natural prostaglandins E, E2 and E..
Immunology 1995; 76: 251-257.

105. Willoughby DA, Colville-Nash PR, Seed MP. Inflammation, prostaglan-
dins and loss of function. JLipidMediat Cell Signal 1993; 6: 287-293.

106. Huskisson EC, Berry H, Gishen P, Jubb RW, Whitehead J. Effects of
antiinflammatory drugs on the progression of osteoarthritis of the
knee. JRheumatol 1995; 22: 1941-1946.

107. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB. Involvement of
reactive oxygen intermediates in cyclooxygenase-2 expression in-
duced by interleukin-1, tumor necrosis factor-c and lipopoly-
saccharide. J Clin Invest 1995; 95: 1669-1675.

108. Hempel SL, Monick MM, He B, Yano T, Hunninghake GW. Synthesis of
prostaglandin H synthase-2 by human alveolar macrophages in

response to lipopolysaccharide is inhibited by decreased cell oxidant
tone. J Biol Chem 1994; 269: 32979-32984.

109. Shreck R, Bauerle PA. A role for oxygen radicals second
messengers. Trends in Cell Biology 1991; 1: 39-42.

110. Brennan P, O’Neill LAJ. Effects of oxidants and antioxidants on nuclear
factor kB activation in three different cell lines: evidence against
universal hypothesis involving oxygen radicals. Biochim Biophys Acta
1995; 1260: 167-175.

111. Davidge ST, Baker PN, McLaughlin MK, Roberts JM. Nitric oxide
produced by endothelial cells increases production of eicosanoids
through activation of prostaglandin H synthase. Circ Res 1995; 77:
274-283.

112. Salvemini D, Seibert K, Masferrer JL, Misko TP, Currie MG, Needleman
P. Endogenous nitric oxide enhances prostaglandin production in a
model of renal inflammation. J Clin Invest 1994; 93: 1940-1947.

113. Salvemini D, Settle SL, Masferrer JL, Seibert K, Currie MG, Needleman
P. Regulation of prostaglandin production by nitric oxide; an in vivo

analysis. BrJ Pharmacol 1995; 114:1171-1178.
114. Sautebin L, Di Rosa M. Nitric oxide modulates prostacyclin biosynth-

esis in the lung of endotoxin-treated rats. Eur J Pharmacol 1994;
262: 193-196.

115. Sautebin L, Ialenti A, Ianaro A, Di Rosa M. Modulation by nitric oxide
of prostaglandin biosynthesis in the rat. BrJ Pharmacol 1995; 114:
323-328.

116. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman
P. Nitric oxide activities cyclooxygenase enzymes. Proc Natl Acad Sci
USA 1993; 90: 7240-7244.

117. Tsai A. How does NO activate hemeproteins? FEBS Lett 1994; 341:
141-145.

118. Hajjar DP, Lander HM, Pearce SFA, Upmacis RK, Pomerantz KB. Nitric
oxide enhances prostaglandin-h synthase-1 activity by berne-inde-
pendent mechanism: evidence implicating nitrosothiols. J Am Chem
Soc 1995; 117: 3340-3346.

119. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR. Co-
induction of nitric oxide synthase and cyclo-oxygenase: interactions
between nitric oxide and prostanoids. Br J Pharmacol 1995; 114:
1335-1342.

120. Tetsuka T, Daphna-Ikcn D, Srivastava SK, Baier LD, DuMaine J,
Morrison AR. Cross-talk between cyclooxygenase and nitric oxide
pathways: prostaglandin E2 negatively modulates induction of nitric

oxide synthase by interleukin 1. Proc Natl Acad Sci USA 1994; 91:
12168-12172.

121. Astin M, Stjcrnschantz J, Selen G. Role of nitric oxide in PGF2-
induced ocular hyperemia. Exp Eye Res 1994; 59: 401-407.

.122. Sowa G, Przewlocki R. cAMP analogues and cholera toxin stimulate
the accumulation of nitrite in peritoneal macrophage cultures. Eur J
Pharmacol Mol Pharm Section 1994; 266: 125-129.

123. Imai T, Hirata Y, Kanno K, Marumo E Induction of nitric oxide

synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin
Invest 1994; 93: 543-549.

124. Hirokawa K, O’Shaughnessy K, Moore K, Ramrakha P, Wilkins MR.
Induction of nitric oxide synthase in cultured vascular smooth muscle
cells: the role of cyclic AMP. BrJ Pharmacol 1994; 112: 396-402.

125. Barker JE, Bakhle YS, Anderson J, Treasure T, Piper PJ. Reciprocal
inhibition of nitric oxide and prostacyclin synthesis in human
saphenous vein. BrJPharmacol 1996; 118: 643-648.

126. Angel J, Berenbaum E Le Denmat C, Nevalainen T, Masliah J, Fournier
C. Interleukin-l-induced prostaglandin E2 biosynthesis in human
synovial cells involves the activation of cytosolic phospholipase A2
and cyclooxygenase-2. EurJBiochem 1994; 226: 125-131.

127. Hulkower KI, Wertheimer SJ, Levin W, Coffey JW, Anderson. CM, Chen
T, DeWitt DL, Crowl RM, Hope WC and Morgan DW. Interleukin-1
beta induces cytosolic phospholipase A2 and prostaglandin H
synthase in rheumatoid synovial fibroblasts. Evidence for their roles in
the production of prostaglandin E2. Arth Rheumatism 1994; 37:
653-661.

128. Doerfler ME, Weiss J, Clark JD, Elsbach P. Bacterial lipopolysaccharide
primes human neutrophils for enhanced release of arachidonic acid
and causes phosphorylation of an 85-kD cytosolic phospholipase A2.

J Clin Invest 1994; 93: 1583-1591.
129. Forehand JR, Johnston RBJ, Bomalaski JS. Phospholipase A2 activity in

human neutrophils. Stimulation by lipopolysaccharide and possible
involvement in priming for an enhanced respiratory burst. J Immunol
1993; 151: 4918-4925.

130. Roshak A, Sathe G, Marshall LA. Suppression of monocyte 85-kDa
phospholipase A2 by antisense and effects on endotoxin-induced
prostaglandin biosynthesis. J Biol Chem 1994; 269: 25999-26005.

131. Jackson BA, Goldstein RH, Roy R, Cozzani M, Taylor L, Polgar P.
Effects of transforming growth factor- and interleukin-l on expres-
sion of cyclooxygenase and 2 and phospholipase A2 mRNA in lung
fibroblasts and endothelial cells in culture. Biochem Biophys Res
Commun 1993; 197: 1465-1474.

132. Lin LL, Lin AY, DeWitt DL. Interleukin 1 induces the accumulation of
cytosolic phospholipase A2 and the release of prostaglandin E2 in

Mediators of Inflammation Vol 5 1996 321



Y. S. Bakhle and R. M. Botting

human fibroblasts. J Biol Chem 1992; 267: 23451-23454.
133. Chepenik KP, Diaz A, Jimenez SA. Epidermal growth factor coordi-

nately regulates the expression of prostaglandin G/H synthase and
cytosolic phospholipase A2 genes in embryonic mouse cells. J Biol
Chem 1994; 269: 21786-21792.

134. Shimokawa T, Smith WL. Prostaglandin endoperoxide synthase. The
aspirin acetylation region. J Biol Chem 1992; 267: 12387-12392.

135. Flower RJ. Lipocortin and the mechanism of action of the
glucocorticoids. BrJ Pharmacol 1988; 94: 987-1015.

136. Flower RJ, Rothwell NJ. Lipocortin-1; cellular mechanisms and clinical
relevance. Trends in Pharmacological Sciences 1994; 15: 71-76.

137. Blackwell GJ, Flower RJ, Nijkamp FP, Vane JR. Phospholipase A2
activity of guinea-pig isolated perfused lungs: stimulation and inhibi-
tion by anti-inflammatory steroids. BrJ Pharmacol 1978; 62: 79-89.

138. O’Banion MK, Winn YD, Young DA. eDNA cloning and functional
activity of glucocorticoid-regulated inflammatory cyclooxygenase.
Proc Natl Acad Sci USA 1992; 89: 4888-4892.

139. Szczepanski A, Moatter T, Carley WW, Gerritsen ME. Induction of
cyclooxygenase II in human synovial microvessel endothelial cells by
interleukin-1. Inhibition by glucocorticoids. Arth Rheumatism 1994;
37: 495-503.

140. Yamagata K, Andreasson KI, Kaufman WE, Barnes CA, Worley PE
Expression of mitogen-inducible cyclooxygenase in brain neurons;
regulation by synaptic activity and glucocorticoids. Neuron 1993; 11:
371-386.

141. Kujubu DA, Herschman HR. Dexamethasone inhibits mitogen induc-
tion of the TISIO prostaglandin synthase cyclooxygenase gene. J Biol
Chem 1992; 267: 7991-7994.

142. Zakar T, Hirst JJ, Mijovic JE, Olson DM. Glucocorticoids stimulate the
expression of prostaglandin endoperoxide H synthase-2 in amnion
cells. Endocrinology 1995; 136: 1610-1619.

143. Ishihara O, Matsuoka K, Kinoshita K, Sullivan MH, Elder MG.
Interleukin-1 beta-stimulated PGE2 production from early first tri-
mester human decidual cells is inhibited by dexamethasone and
progesterone. Prostaglandins 1995; 49:15-26.

144. Xie W, Fletcher BS, Andersen RD, Herschman HR. v-src induction of
the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/
CRE transcription response element. Mol Cell Biol 1994; 14: 6531-
6539.

145. Chanmugam P, Feng L, Liou S, Jang BC, Boudreau M, Yu G, Lee JH,
Kwon HJ, Beppu T, Yoshida M and et al. Radicicol, protein tyrosine
kinase inhibitor, suppresses the expression of mitogen-inducible
cyclooxygenase in macrophages stimulated with lipopolysaccharide
and in experimental glomerulonephritis. J Biol Chem 1995; 270:
5418-5426.

146. Shibata Y. Prostaglandin E2 release triggered by phagocytosis of latex
particles. A distinct association with prostaglandin synthase isozymes
in bone marrow macrophages. J Immunol 1995; 154: 2878-2887.

147. Hamasaki Y, Eling TE. EGF and TPA stimulate de novo synthesis of
PGHS-1 and PGHS-2 through different signal transduction pathways.
Prostaglandins Leukotrienes Essential Fatty Acids 1995; 53: 225-
229.

148. Blanco A, Habib A, Levy-Toledano S, Maclouf J. Involvement of
tyrosine kinases in the induction of cyclo-oxygenase-2 in human
endothelial cells. BiochemJ 1995; 312: 419-423.

149. Stroebel M, Goppclt-Struebe M. Signal transduction pathways respon-
sible for serotonin-mediated prostaglandin G/H synthase expression in
rat mesangial cells. J Biol Chem 1994; 269: 22952-22957.

150. Kester M, Coroneos E, Thomas PJ, Dunn MJ. Endothelin stimulates
prostaglandin endoperoxide synthase-2 mRNA expression and protein
synthesis through tyrosine kinase-signaling pathway in rat mesangial
cells. J Biol Chem 1994; 269: 22574-22580.

151. Rzymkiewicz DM, DuMaine J, Morrison AR. IL-1 beta regulates rat
mesangial cyclooxygenase II gene expression by tyrosine phos-
phorylation. Kidney International 1995; 47:1354-1363.

152. Marczin N, Papapetropoulos A, Catravas JD. Tyrosine kinase inhibitors
suppress endotoxin and IL-lbeta-induced NO synthesis in aortic
smooth muscle cells. AmJPhysiol 1993; 265: HlO14-HlO18.

153. Kurtz ES, Bailey SC, Arshad E Lee AA, Przekop PA. Leflunomide: an
active anti-inflammatory and anti-proliferative agent in models of
dermatologic disease. Inflamm Res 1995; 44: S187-S188.

154. Mattar T, Kochhar K, Bartlett R, Bremer EG, Finnegan A. Inhibition of
the epidermal growth factor receptor tyrosine kinase activity by
leflunomide. FEBS Lett 1993; 334: 161-164.

155. Xu X, Williams JW, Bremer EG, Finnegan A, Chong AS. Inhibition of
protein tyrosine phosphorylation in T cells by novel immuno-

suppressive agent, leflunomide. J Biol Chem 1995; 270: 12398-
12403.

156. Morris JK, Richards JS. Lutcinizing hormone induces prostaglandin
endopcroxide synthase-2 and luteinization in vitro by A-kinase and C-
kinase pathways. Endocrinology 1995; 136:1549-1558.

157. Crofford LJ, Wilder RL, Ristimaki AP, Sano H, Remmers EF, Epps HR
and Hla T. Cyclooxygenase-1 and -2 expression in rheumatoid synovial
tissues. Effects of interleukin-1 beta, phorbol ester, and cortico-
steroids. J Clin Invest 1994; 93: 1095-1101.

158. Nusing RM, Ullrich V. Regulation of cyclooxygenase and thromboxane

synthase in human monocytes. EurJ Biochem 1992; 206:131-136.
159. Moon CK, Lee SH, Kim JY, Kim MJ, Lee JY, Moon CH. Staurosporine

induces de novo synthesis of prostaglandin H synthase-2 in rat
alveolar macrophages. Life Sciences 1995; 57: 571-578.

160. Warnock LJ, Hunninghake G. Multiple second messenger pathways
regulate IL-l-induced expression of PGHS-2 mRNA in normal human
skin fibroblasts. J Cell Physiol 1995; 163: 172-178.

161. Irvine RE How is the level of free arachidonic acid controlled in
mammalian cells? BiochemJ 1982; 204: 3-16.

162. Chilton FH, Fonteh AN, Surette ME, Triggiani M, Winkler JD. Control
of arachidonate levels within inflammatory cells. Biochim Biophys
Acta 1996; 1299: 1-15.

163. Bakhle YS, Ferreira SH. Lung metabolism of eicosanoids. In: Fishman
A, Fisher AB, eds. Handbook of Physiology. Bethesda, MD: American

Physiological Society, 1985; 365-386.
164. Murakami M, Matsumoto R, Austen KE Arm JP. Prostaglandin endoper-

oxide synthase-1 and -2 couple to different transmembrane stimuli to

generate prostaglandin D2 in mouse bone marrow-derived mast cells.

J Biol Chem 1994; 269: 22269-22275.
165. Mitchell JA, Belvisi MG, Akarasereenont P, Robbins RA, Kwon OJ,

Croxtall J, Barnes PJ and Vane JR. Induction of cyclo-oxygenase-2 by
cytokines in human pulmonary epithelial cells: regulation by
dexamethasone. BrJPharmacol 1994; 113: 1008-1014.

166. Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S,
Simmons DL and Hwang D. Selective expression of mitogen-inducible
cyclooxygenase in macrophages stimulated with lipopolysaccharide.
J Biol Chem 1992; 267: 25934-25938.

167. Karim S, Habib A, Levy-Toledano S, Maclouf J. Cyclooxygenases-1 and
-2 of endothelial cells utilize exogenous or endogenous arachidonic
acid for transcellular production of thromboxane. J Biol Chem 1996;
271:12042-12048.

168. Murakami M, Bingham CO, Matsumoto R, Austen KF, Arm JP. IgE-
dependent activation of cytokine-primed mouse cultured mast cells
induces delayed phase of prostaglandin D2 generation via prosta-
glandin endoperoxide synthase-2. J Immuno11995; 155: 4445-4453.

169. Barnes PJ, Adcock IM. Transcription factors. Clin Exp Allergy 1995;
25: 46-49.

170. Grossman CJ, Wiseman J, Lucas FS, Trevethick MA, Birch PJ. Inhibition
of constitutive and inducible cyclooxygenase activity in human
platelets and mononuclear cells by NSAIDs and Cox 2 inhibitors.

Inflamm Res 1995; 44: 253-257.
171. Klein T, Nusing RM, Pfeilschifter J, Ullrich V. Selective inhibition of

cyclooxygenase 2. Biochem Pharmacol 1994; 48: 1605-1610.
172. Laneuville O, Breuer DK, DeWitt DL, Hla T, Funk CD, Smith WL.

Differential inhibition of human prostaglandin endoperoxide H
synthases-1 and -2 by nonsteroidal anti-inflammatory drugs. J. Pharm
Exp Therap 1994; 271: 927-934.

173. Battistini B, Botting RM, Bakhle YS. COX-1 and COX-2: toward the
development of more selective NSAIDs. Drug News and Perspectives
1994; 7: 501-512.

174. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR.
Selectivity of non-steroidal anti-inflammatory drugs as inhibitors of
constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA
1993; 90: 11693-11697.

175. Langman MJS, Well J, Wainwright P, Lawson DH, Rawlins MD, Logan
RFA, Murphy M, Vessey, MP and Colin-Jones DG. Risks of bleeding
peptic ulcer associated with individual non-steroidal anti-inflammatory
drugs. Lancet 1994; 343: 1075-1078.

176. Bennett A, Berti F, Ferreira SH. Nimesulide; multifactorial therapeu-
tic approach to the inflammatory process?; 7-year clinical exp-
erience. Drugs 1993; 46: 1-283.

177. Wiesenberg-Boettcher I, Schweizer A, Muller K. The pharmacological
profile of CGP 28238, a highly potent anti-inflammatory compound.
Agents Actions 1989; 26: 240-242.

178. Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S. NS-
398, new anti-inflammatory agent, selectively inhibits prostaglandin
G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglan-
dins 1994; 47: 55-59.

179. Gans KR, Galbraith W, Roman RJ, Haber SB, Kerr JS, Schmidt WK,
Smith C, Hewes WE and Ackerman NR. Anti-inflammatory and safety
profile of DuP 697, a novel orally effective prostaglandin synthesis
inhibitor. J Pharm Exp Therap 1990; 254: 180-187.

180. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee
and Isakson P. Pharmacological and biochemical demonstration of the
role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad
Sci USA 1994; 91: 12013-12017.

181. Chan C-C, Boyce S, Brideau C, Ford-Hutchinson AW, Gordon R, Guay
D, Hill RG, Li C-S, Mancini JA, Penneton M, Prasit P, Rasori R,
Riendeau D, Roy P, Tagari P, Wong E and Rodger IW. Pharmacology of
selective cyclooxygenase-2 inhibitor, L-745,337: novel nonsteroidal

anti-inflammatory agent with an ulcerogenic sparing effect in rat and
non-human primate stomach. J Pharm Exp Therap 1995; 274: 1531-
1537.

182. Huff R, Collins P, Kramer S, Seibert K, Koboldt C, Gregory and
Isakson P. A structural feature of N-[2-(cyclohexyloxy)-4-nitrophenyl]
methanesulfonamide (NS-398) that governs its selectivity and affinity

322 Mediators of Inflammation Vol 5 1996



Cyclooxygenase-2 and its regulation in inflammation

for cyclooxygenase 2 (COX2). Inflamm Res 1995; 44 (suppl 2):
S145-S146.

183. Reitz DB, Li JJ, Norton MB, Reinhard EJ, Collins JT, Anderson GD,
Gregory SA, Koboldt CM, Perkins WE, Seibert K and Isakson PC.
Selective cyclooxygenase inhibitors: novel 1,2-diarylcyclopentenes are
potent and orally active COX-2 inhibitors. J Med Chem 1994; 37:
3878-3881.

184. Leblanc Y, Gauthier J, Ethier D, Guay J, Mancini JA, Riendeau D, Tagari
P, Vickers PJ, Wong E and Prasit P. Synthesis and biological evaluation
of 2,3-diarylthiophenes selective Cox-2 and Cox-1 inhibitors.
Bioorg Med Chem Lett 1995; 5: 2123-2128.

185. Tanaka K, Kawasaki H, Kurata K, Aikawa Y, Tsukamoto Y, Inaba T. T-
614, novel anti-rheumatic drug, inhibits both the activity and
induction of cyclooxygenase-2 (COX-2) in cultured fibroblasts. Jpn
JPharmacol 1995; 67: 305-314.

186. Eberhart CE, Dubois RN. Eicosanoids and the gastrointestinal tract.

Gastroenterology 1995; 109: 285-301.
187. Giovanucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett

WC and Speizer FE. Aspirin and the risk of colorectal cancer in
women. New EnglJMed 1995; 333: 609-614.

188. Muller-Decker K, Scholz K, Marks F, Furstenberger G. Differential
expression of prostaglandin H synthase isozymes during multistage
carcinogenesis in mouse epidermis. Mol Carcinog 1995; 12: 31-41.

189. Kargman SL, O’Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S.
Expression of prostaglandin G/H synthase-1 and -2 protein in human
colon cancer. Cancer Res 1995; 55: 2556-2559.

190. Lu X, Xie W, Reed D, Bradshaw WS, Simmons DL. Nonsteroidal
antiinflammatory drugs cause apoptosis and induce cyclooxygenases
in chicken embryo fibroblasts. Proc Natl Acad Sci USA 1995; 92:
7961-7965.

191. Hempel SL, Monick MM, Hunninghake GW. Lipopolysaccharide
induces prostaglandin H synthase-2 protein and mRNA in human
alveolar macrophages and blood monocytes. J Clin Invest 1994; 93:
391-396.

192. Gu W, Rice GE, Brennecke SP. Effects of lipopolysaccharide on human
placental prostaglandin F2 alpha production in vitro. Prostaglandins
Leukotrienes Essential Fatty Acids 1994; 50:311-315.

193. Arias-Negrete S, Keller K, Chadee K. Proinflammatory cytokines
regulate cyclooxygenase-2 mRNA expression in human macrophages.
Biochem Biophys Res Commun 1995; 208: 582-589.

194. Topley N, Petersen MM, Mackenzie R, Neubauer A, Stylianou E,
Kaever V, Davies M, Coles GA, Jorres A and Williams JD. Human
peritoneal mesothelial cell prostaglandin synthesis: induction of cyclo-
oxygenase mRNA by peritoneal macrophage-dcrived cytokines. Kid-

hey Int 1994; 46: 900-909.
195. Knott I, Dieu M, Burton M, Houbion A, Remacle J, Raes M. Induction

of cyclooxygenase by interleukin 1: comparative study between
human synovial cells and chondrocytes. J Rheumatol 1994; 21: 462-
466.

196. Endo T, Oguslai E Sone S, Ogura T, Taketani Y, Hayashi Y, Ueda N and
Yamamoto S. Induction of cyclooxygenase-2 is responsible for
interleukin-1 beta-dependent prostaglandin E2 synthesis by human
lung fibroblasts. AmJ Respir Cell Mol Biol 1995; 12: 358-365.

197. Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive
eicosanoids by human endothelial cell-leukocyte interactions. Proc
Natl Acad Sci USA 1995; 92: 9475-9479.

198. Lonchampt MO, Schulz J, Mabille K, Chabrier PE, Braquet P.
Interleukin-1 activates preferentially cyclooxygenase rather than NO
synthase pathway in human smooth muscle cells. Agents Actions
1994; 41 (special conference issue): C164-C165.

199. Kennard EA, Zimmerman PD, Friedman CI, Kniss DA. Interleukin-l
induces cyclooxygenase-2 in cultured human decidual cells. Am J
Reprod Immunol 1995; 34: 65-71.

200. Yang CY, Meng CL. Regulation of PG synthase by EGF and PDGF in
human oral, breast, stomach, and fibrosarcoma cancer cell lines.

JDent Res 1994; 73: 1407-1415.
201. Kelner MJ, Uglik SE Mechanism of prostaglandin E2 release and

increase in PGH2/PGE2 isomerase activity by PDGF: involvement of
nitric oxide. Arch Biochem Biophys 1994; 312: 240-243.

202. Hoff T, Kaever V, Resch K, DeWitt DL, Goppelt-Struebe M. Prostaglan-

din endoperoxide synthase-1 and synthase-2 expression in differentiat-
ing human monocytic cells. Agents Actions 1994; 41 (special
conference issue): C159-C161.

203. Zakar T, Teixeira FJ, Hirst JJ, Guo F, MacLeod EA, Olson DM,
Regulation of prostaglandin endoperoxide H synthase by glucocorti-
colds and activators of protein kinase C in the human amnion.

JReprod Fertil 1994; 100: 43-50.
204. Matijevic-Aleksic N, Sanduja SK, Wang LH, Wu KK. Differential

expression of thromboxane A synthase and prostaglandin H synthase
in megakaryocytic cell line. Biochim Biophys Acta 1995; 1269: 167-
175.

205. Slater D, Berger L, Newton R, Moore G, Bennett P. The relative
abundance of type to type 2 cyclo-oxygenase mRNA in human
amnion at term. Biochem Biophys Res Commun 1994; 198: 304-
3O8.

206. Johnson RD, Walsh SW, Everson WV, Nelson DM. Differentiation and
growth on fibrin matrix modulate the cyclooxygenase expression
and thromboxane production by cultured human placental
trophoblasts. Prostaglandins Leukotrienes Essential Fatty Acids
1995; 52: 21-27.

207. Hirst JJ, Teixeira FJ, Zakar T, Olson DM. Prostaglandin endoperoxide-H
synthase-1 and -2 messenger ribonucleic acid levels in human amnion

with spontaneous labor onset. J Clin Endocrinol Metab 1995; 80:
517-523.

208. Slater DM, Berger LC, Newton R, Moore GE, Bennett PR. Expression
of cyclooxygenase types and 2 in human fetal membranes at term.

AmJ Obstet Gynecol 1995; 172: 77-82.
209. Zuo J, Lei ZM, Rao CV, Pietrantoni M, Cook VD. Differential cyclooxy-

genase-1 and -2 gene expression in human myometria from preterm
and term deliveries. J Clin Endocrinol Metab 1994; 79: 894-899.

210. Teixeira FJ, Zakar T, Hirst JJ, Guo F, Sadowsky DW, Machin G,
Demianczuk N, Resch B and Olson DM. Prostaglandin endoperoxide-
H synthase (PGHS) activity and immunoreactive PGHS-1 and PGHS-2
levels in human amnion throughout gestation, at term, and during
labor. J Clin Endocrinol Metab 1994; 78: 1396-1402.

211. Divers MJ, Lilford RJ, Miller D, Bulmer JN. Cyclo-oxygenase distribu-
tion in human placenta and decidua does not change with labour
after term preterm delivery. Gynecol Obstet Invest 1995; 39: 157-
161.

212. Freed KA, Aitken MA, Brennecke SP, Rice GE. Prostaglandin G/H
synthase-1 messenger RNA relative abundance in human amnion,
choriodecidua and placenta before, during and after spontaneous-
onset labour at term. Gynecol Obstet Invest 1995; 39: 73-78.

213. Warner TD, Amirmansour C, Vane JR. Nimesulide: selectivity for
cyclo-oxygenase 2 over cyclo-oxygenase 1. Inflamm Res 1995; 44:
274S.

214. Bottcher I, Schweizer A, Glatt M, Werner H. A sulphonamido-indanone
CGP 28237 (ZK 34228), novel non-steroidal anti-inflammatory agent
without gastrointestinal ulcerogenicity in rats. Drugs Under Experi-
mental and Clinical Research 1987; 13: 237-245.

215. Futaki N, Yoshikawa K, Hamasaka Y, Arai I, Higuchi S, Iizuka H and
Otomo S. NS-398, a novel non-steroidal anti-inflammatory drug with
potent analgesic and antipyretic effects which causes minimal
stomach lesions. General Pharmacology 1993; 24: 105-110.

216. Engelhardt G, Bogel R, Schnitzler C, Utzmann R. Meloxicam: influence
on arachidonic acid metabolism; in vitro findings. Biochem Pharma-
col 1995; 51: 21-28.

217. Engelhardt G, Homma D, Schlegel K, Utzmann R, Schnitzler C. Anti-

inflammatory, analgesic, antipyretic and related properties of melox-
icam, a new non-steroidal anti-inflammatory agent with favourable
gastrointestinal tolerance. Inflamm Res 1995; 44: 423-433.

ACKNOWLEDGEMENTS. The William Harvey Research Institute is sup-
ported by grants from the ONO Pharmaceutical Company, Schwarz Pharma
Ltd, and the Servier International Research Institute.

Received 5 July 1996;
accepted 16 July 1996

Mediators of Inflammation Vol 5 1996 323


