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ATHEROSCLEROSIS is a chronic in� ammatory pro-
cess in the intima of conduit arteries, which
disturbs the endothelium-dependent regulation of
the vascular tone by the labile liposoluble radical
nitric oxide (NO) formed by the constitutive
endothelial nitric oxide synthase (eNOS). This
defect predisposes to coronary vasospasm and
cardiac ischaemia, with anginal pain as the typi-
cal clinical manifestation. It is now appreciated
that endothelial dysfunction is an early event in
atherogenesis and that it may also involve the
microcirculation, in which atherosclerotic lesions
do not develop. On the other hand, the in� amma-
tory environment in atherosclerotic plaques may
result in the expression of the inducible NO
synthase (iNOS) isozyme. Whether the dysfunc-
tion in endothelial NO production is causal to, or
the result of, atherosclerotic lesion formation is
still highly debated. Most evidence supports the
hypothesis that constitutive endothelial NO re-
lease protects against atherogenesis e.g. by pre-
venting smooth muscle cell proliferation and
leukocyte adhesion. Nitric ox ide generated by the
inducible isozyme may be bene� cial by replacing
the failing endothelial production but excessive
release may damage the vascular wall cells, espe-
cially in combination with reactive oxygen inter-
mediates.
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Atherosclerotic Lesion
Development

The intima is the soil for
atherosclerosis

Atherosclerotic lesions develop in the inner
coat (or tunica intima) of the aorta, the large
elastic arteries e.g. the carotid arteries and the
arteries supplying the lower extremities, and
the medium-sized muscular arteries, such as
the coronary arteries. At birth, the intima
consists solely of endothelial cells, but soon
after birth focal and circumferential thickening
occurs.1 This spontaneously developing intima
consists of smooth muscle cells, connective
tissue and isolated macrophages, and is consid-
ered an adaptation to mechanical wall stress.2
Although not pathologic at this stage, the
thickened intima marks locations where athero-
sclerosis tends to develop later in life under the
in�uence of atherogenic stimuli e.g. hyper-
cholesterolaemia.

Features of human atherosclerosis

Early atherosclerotic lesions are characterized
by the deposition of lipids and the appearance
of macrophages and T-lymphocytes in the in-
tima. As macrophages and a few smooth muscle
cells underneath the endothelial cells accumu-
late lipid, they acquire a ‘foamy’ appearance.
Clusters of lipid-laden cells become macroscopi-
cally visible as fatty streaks.3 Progressively, these
�at, fatty lesions transform to raised �brolipid
plaques, as intimal smooth muscle cells prolifer-
ate and deposit extracellular matrix, mainly
collagen. In a subsequent stage, the advanced
lesion has a characteristic microanatomy with a
core of extracellular lipid separated from the
media by smooth muscle cells and covered at
the luminal side by a thick �brous cap. Sur-
rounding the lipid core are lipid-� lled foam
cells. The ischaemia in the necrotic core initi-
ates angiogenesis. This type of plaque may
cause narrowing of the lumen once the com-
pensatory vascular remodelling process which
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increases the external diameter of the vessel
becomes exhausted. Only then, lesions become
angiographically visible. The �nal stage, the
complicated plaque, may arise either from
�ssure of the �brous cap or from intra-plaque
haemorrhage. The thromboembolic events fol-
lowing plaque � ssure are a major cause of
clinically manifest acute ischaemic syndromes.
If the thrombus is not occlusive, it becomes
incorporated into the plaque and is organized
by invading macrophages and smooth muscle
cells, thereby further compromising the lumen
of the vessel. The sequence of � ssure, thrombus
formation, organization and incorporation into
the plaque may occur repeatedly.

Models of atherosclerosis and intimal
thickening

Models o f atheroscleros is
Current knowledge of the initiation of the
atherogenic process is largely based on rabbit
or primate models of hypercholesterolaemia,
which may be diet-induced or genetically deter-
mined as in Watanabe heritable hyperlipidaemic
(WHHL) rabbits. Hypercholesterolaemia pro-
vokes intravascular lipid in� ltration leading to
the formation of fatty streaks, which resemble
early human lesions.3 Protracted cholesterol
feeding eventually results in advanced �brolipid
plaques containing necrotic debris, as in ad-
vanced human disease.

Models o f intim al thickening
Intimal thickening can be induced experimen-
tally by creating a modest mechanical injury of
the smooth muscle cells of the media. The most
extensively investigated model involves balloon
denudation of the intima of the rat carotid
artery with an embolectomy catheter.4 The
discrete mechanical injury of the underlying
media evokes smooth muscle cell proliferation
in the media, followed by migration to the
intima and an extended phase of intimal prolif-
eration. The endothelial cells are completely
removed by the initial insult and regrowth of
the endothelial cells from the lesion edges is
virtually absent. The removal of the endothelial
cells is not essential nor suf�cient for the
process of intimal hyperplasia.

Placing a � exible collar around the rabbit
carotid artery does not create direct endothelial
injury, but induces smooth muscle cell prolifera-
tion in the media, followed by migration and
prolonged proliferation in the intima.5 Both
models illustrate the three wave paradigm for
the involvement of smooth muscle cells in the
formation of intimal cushions.4

The in� ation of an angioplasty balloon in
arteries of rabbits, pigs or other experimental
animals is used to mimic restenosis due to
accelerated intimal thickening after percuta-
neous transluminal coronary angioplasty
(PTCA). The vessel wall distension by the
repeated in�ation of a slightly oversized balloon
creates a much more extensive injury of the
media and the lamina elastica interna than the
gentle passage of an embolectomy catheter.
Unlike balloon denudation, the balloon angio-
plasty thus predisposes to thrombus formation.
In accordance with restenosis after PTCA in
humans, the incorporation and organization of
the non-occlusive thrombus adds to the bulk of
neointima formation.4 A further difference with
balloon denudation is the quick and often
complete recovery of the endothelial cell layer
through outgrowth from patches of cells which
remained present after the angioplasty.

Atherosclerosis is a Chronic
In¯ ammatory Process

The long-standing and continuously re�ned
‘response-to-injury’ hypothesis6 considers the
lesions as the result of an excessive in�amma-
tory-�broproliferative response to various forms
of insults to the endothelium and smooth
muscle. Moreover, the presence of T-lympho-
cytes in atherosclerotic lesions at all stages of
development points to an important immunolo-
gic component in atherogenesis.7 T-lymphocytes
and macrophages are capable of producing
numerous in�ammatory mediators and growth
factors, and have been demonstrated to be in an
activated state in atherosclerotic lesions.

Pathogenetic mechanisms in
hypercholesterolaemia-induced
atherogenesis

Several different sources of injury to the en-
dothelium can lead to endothelial dysfunction
and initiate the disease process.6 In hyperchol-
esterolaemia-induced atherosclerosis, the major
causal agent is now assumed to be oxidized LDL
(oxLDL).8, 9 Oxidation of lipoproteins �ooding
the intima may result from the production of
reactive oxygen intermediates or 15-lipoxygen-
ase activity in the endothelial cells (Fig. 1).
OxLDL in turn is cytotoxic to endothelial cells
by the metal-catalysed production of free radi-
cals from lipid hydroperoxides contained in the
modi�ed lipoprotein particle.10 Furthermore,
oxLDL is chemotactic for monocytes and T-
lymphocytes. Newly formed epitopes in oxLDL
elicit cell-mediated and humoral immune re-
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sponses.7 Minimally oxidized LDL stimulates the
endothelial cells and smooth muscle cells to
secrete monocyte chemotactic protein-1 (MCP-
1) and growth factors involved in the differen-
tiation and proliferation of monocytes, and
oxLDL may, synergistically with cytokines, pro-
mote mononuclear leukocyte adhesion to the
endothelium through the induction of vascular
cell adhesion molecule-1 (VCAM-1).11,12 The
oxidative stress-sensitive nuclear transcription
factor B (NF- B) may be a crucial intermediate
in the in�ammatory activation of the endo-
thelium.13 Monocyte-derived macrophages inter-
nalize oxLDL through scavenger receptors. As
these receptors are not down-regulated by the
intracellular cholesterol level, massive cholester-
ol accumulation occurs and the macrophages
transform to foam cells.

Thus, it appears that endothelial cells,
through the oxidation of LDL, recruit macro-
phages to remove the invaded lipoprotein
particles. This attractive hypothesis also implies
that a chronic in�ammatory response will devel-
op if the macrophages are unable to eliminate
oxLDL suf�ciently.

Atherosclerosis and Nitric Oxide
Signalling

The nitric oxide signalling pathway in
normal arteries

A major step forward in the understanding of
blood vessel physiology was the discovery by
Furchgott and Zawadzki14 of a factor released
by the endothelium that relaxed the underlying
smooth muscle. This endothelium-derived relax-
ing factor (EDRF) was later identi�ed as nitric
oxide (NO)15 17 or a related nitrosylated com-
pound e.g. S-nitrosocysteine.18,19 Nitric oxide is
formed by a �ve-electron oxidation of a terminal
guanidino nitrogen atom of the amino acid L-
arginine, with concomitant formation of L-citrul-
line, by an enzyme known as nitric oxide
synthase (NOS).20 There are two major classes
of NO synthases: constitutive and inducible
(iNOS) enzymes. Constitutive isoforms are ex-
pressed in endothelial cells (eNOS), in neuronal
cells (nNOS) and in certain other cell types.
The activity of these isoforms is strictly calcium-
calmodulin dependent and is present both in
the cytosol and associated with membranes.
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monocyte T-lymphocyte

VCAM-1

MCP-1
GM-CSF, M-CSF

oxLDL

foam cell

activated
macrophage

activated
T-lymphocytes

oxLDL and atherosclerosis

FIG. 1. Lipoproteins ¯ ooding the intima become oxidized. Oxidized LDL (oxLDL) is chemotactic for monocytes and T-
lymphocytes. OxLDL promotes mononuclear cell adhesion, in® ltration and proliferation by stimulating the endothelial cells
to express adhesion molecules, e.g. VCAM-1, and to produce chemotactic factors, e.g. MCP-1, and growth factors. Uptake of
oxLDL by macrophages leads to foam cell formation.
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Stimulation of the appropriate receptors on the
endothelial cell by physical (shear stress result-
ing from increased �ow, mechanical deforma-
tion) or chemical (acetylcholine, bradykinin,
substance P, ATP) stimuli raises the cytoplasmic
calcium levels, with concomitant eNOS activa-
tion and formation of NO.21 Serotonin (5-hy-
droxytryptamine, 5-HT), although a potent
vasoconstrictor through activation of 5-HT2
receptors on the vascular smooth muscle cells,
also mediates dilatation by the EDRF/NO-depen-
dent mechanism, through activation of 5-HT1-
like receptors on the endothelium.22 In bio-
logical systems, the dominant reactions of NO
will be with another free radical such as super-
oxide anion, transition metals such as haem
iron, or oxygen.20 In the vessel wall, NO
diffuses into the underlying smooth muscle cells
to react with the haem group of a cytoplasmic
guanylate cyclase. The formation of cyclic GMP
then causes vasodilatation.23 25

Nitric oxide also raises cyclic GMP in the
endothelial cells themselves, which inhibits
the production of the potent endothelium-
derived contracting factor endothelin.26,27 Inhi-
bitors of NOS and guanylyl cyclase revealed an
inhibitory role of NO but not of cyclic GMP in
endothelin secretion by porcine aortic endo-
thelial cells.28

Nitric oxide signalling in
atherosclerosis

It has been recognized for a long time that
atherosclerotic blood vessels are very suscept-
ible to the development of vasospasm in
vivo29 32 and are hyperreactive to contractile
agonists in vitro .32 35 Because coronary vaso-
spasm can be provoked by several stimuli with
different mechanisms of action, it has been
proposed that dysfunction or denudation of the
endothelium in atherosclerosis may contribute
to that phenomenon by leaving constrictor
responses unopposed.36 38 Even before it was
realized that NO accounts for the biological
activity of endothelium-derived relaxing factor,
it was indeed demonstrated that artery seg-
ments obtained from atherosclerotic animals
showed a loss of endothelium-dependent relaxa-
tion in organ bath experiments.35,39 42 From
then on, numerous in vitro studies con�rmed
the defect in the NO signalling pathway in
isolated atherosclerotic blood vessels in
rabbits,43 49 pigs,50 53 rats,54 primates55 and
humans.43,56 58 Basal as well as stimulated NO
release appeared to be affected.58 60

Urinary nitrate, an index metabolite for NO

formation in vivo,61,62 is decreased in cholester-
ol-fed rabbits.63 Catheterization-based studies in
patients with coronary artery disease also
demonstrated the impairment of endothelium-
dependent coronary vasodilatation to acetyl-
choline64 69 or increased �ow,70 72 particularly
at atherosclerosis-prone branch points.73 The
deterioration of endothelium-dependent vasodi-
latation is an early event, as it can be observed
in patients with typical angina or cardiac risk
factors but with angiographically smooth coron-
ary arteries.73 80 The current weight of evi-
dence suggests that impaired endothelium-
dependent vasodilatation is the predominant
mechanism underlying inappropriate constric-
tion leading to ischaemic manifestations.75,81,82

The instantaneous relief of the ischaemic at-
tacks by the NO donor nitroglycerin points to a
defect in the endogenous NO pathway. Unop-
posed vasoconstrictor responses in general, but
also the loss of the EDRF-component in the net
reaction to some agonists, e.g. serotonin and
norepinephrine in the pig and dog,37 and in-
creased endothelin release in the absence of
EDRF may contribute to the occurrence of
vasospastic events in atherosclerotic vessels.

The systemic nature of the defect in
NO signalling

The EDRF/NO pathway is also active in the
small vessels determining the resistance of the
vascular tree,83,84 thus contributing to blood
pressure regulation.85 Several studies (reviewed
by Anderson et al.86) demonstrated that
atherosclerosis in conduit vessels is accompa-
nied by impaired endothelium-dependent
vasodilatation in the microcirculation e.g. in
the coronary76,87 89 and peripheral resistance
vessels.90 93 Also the mere presence of cardio-
vascular risk factors was associated with dys-
functional microvascular endothelium.94,95

While the expected hypertensive effect might
contribute to the progression of cardiovascular
disease, this also implies that, besides a dysfunc-
tional endothelial NO pathway, other factors are
involved in the initiation and progression of
atherosclerotic plaques, since lesions do not
develop in these microvessels. The systemic
nature of the endothelial dysfunction could be
of use in the non-invasive evaluation of endothe-
lial function in readily accessible arteries.96

In summary, established atherosclerosis or the
presence of risk factors e.g. hypertension,
hypercholesterolaemia, and even male gen-
der,97,98 decrease the activity of the EDRF/NO
pathway. Endothelium-dependent dilatation is
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lost progressively as atherogenesis continues.
Conduit vessels with lesions as well as resis-
tance vessels in which lesions do not develop
are affected, the latter apparently to a lesser
extent.65,93

Explanations for the Defective NO
Signalling Pathway

The mechanisms underlying the dysfunctional
endothelial NO signalling pathway in athero-
sclerosis and hypercholesterolaemia are multi-
factorial (reviewed in Refs 99 and 100).
Atherosclerotic arteries demonstrating disturbed
endothelium-dependent relaxation are still cap-
able of dilating to the NO donor nitroglycerin
which provides the smooth muscle with NO
upon enzymatic or thiol-dependent bioconver-
sion.101 As this demonstrates that the smooth
muscle is still responsive to the dilatory action
of NO, defective endothelial EDRF/NO release
or increased NO inactivation after release ap-
pear to be involved. This is supported by the
decreased release of bioactive NO from isolated
perfused atherosclerotic arteries as assessed by
a superfusion bioassay.41,44,50,102,103

Endothelial receptor dysfunction

Endothelium-dependent dilatation is lost in a
progressive, hierarchical fashion.82 Vasodilator
responses to acetylcholine and serotonin are
lost early, before impairment of the dilatation to
other receptor agonists e.g. substance P, to the
receptor-independent stimulus calcium iono-
phore A-23178 or to mechanical stimuli. The
agonist speci� city of the early dysfunction
suggests that it is not caused by a nonspeci� c
impairment of the ability of the endothelial cells
to produce NO, but points to selective altera-
tions in endothelial receptor function or post-
receptor effector pathways. This view is
strengthened by the observation that the recep-
tor-induced release of other endothelial pro-
ducts, such as prostacyclin, is attenuated as
well.104,105 In this respect, it has been demon-
strated that the pertussis toxin-sensitive Gi
protein signalling pathway, which is employed
by serotonin to elicit endothelium-dependent
relaxation in the pig coronary artery, is impaired
in the early stages of the atherosclerotic
process.106 Several studies have demonstrated
that incubation of vessel segments with lipopro-
teins, and in particular with oxLDL, inhibited
endothelium-dependent relaxation in a way
similar to hypercholesterolaemia in vivo (re-
viewed by Flavahan99). Lysophosphatidylcho-

line, a component of oxLDL, mimicked the
effects of the whole particle,107 109 inhibited
agonist-stimulated calcium signalling in cultured
endothelial cells110 and selectively inhibited Gi
protein-dependent signalling in porcine endo-
thelial cells.111

Expression of eNOS activity

The receptor selectivity (see above) argues
against a reduced expression of eNOS activity
in endothelial cells overlying atherosclerotic
lesions. This assumption has recently been
con�rmed by in s itu hybridization of eNOS
mRNA and immunohistochemistry of eNOS
protein in the aorta of hypercholesterolaemic
rabbits. The results suggested that the expres-
sion of eNOS mRNA and protein was even
increased in endothelial cells overlying �bro-
fatty plaques.112 Studies of the expression and
the activity of eNOS after in vitro exposure of
endothelial cells to LDL, oxLDL or cholesterol
yielded contradictory results, ranging from ini-
tial upregulation, via no effect to downregula-
tion of eNOS expression. After acute exposure
of the isolated rabbit carotid artery to cholester-
ol-rich liposomes, acetylcholine-induced release
of EDRF/NO was evaluated functionally in a
superfusion bioassay and appeared to be en-
hanced.113 This could be due to augmentation
of the release and/or prolongation of the half-
life of NO. Exposure of endothelial cell mem-
branes to liposomal cholesterol raised the activ-
ity of plasma membrane bound eNOS at low
cholesterol concentrations, but had the oppo-
site effect at higher concentrations.114 The
effects were attributed to modulations of the
lipid environment of the membrane bound
eNOS. Cholesterol was without effect on the
activity of eNOS in the cytosol of endothelial
cells. Interestingly, the increased activity of
particulate eNOS was accompanied by a con-
centration-dependent increase in superoxide
anion production, but the authors did not
investigate whether eNOS was the source (see
below). Low concentrations of oxLDL have
been reported both to increase115 and to de-
crease116 the expression of mRNA, protein and
activity of eNOS in cultured endothelial cells.
The upregulation of eNOS mRNA was mimicked
by lysophosphatidylcholine, one of the many
constituents of oxLDL. This discrepancy be-
tween both reports could be due to large
variability among different preparations of
oxLDL with respect to biological activities.
Downregulation of the expression of mRNA of
eNOS by higher concentrations of oxLDL ap-
pears to be a more consistent �nding.115,116
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Native LDL was without effect on eNOS mRNA
levels and eNOS activity,115,116 although expo-
sure of cultured endothelial cells to LDL may
promote superoxide anion formation by
eNOS117 (see below).

Arginine availability

Although arginine availability seems to be suf� -
cient initially in view of the receptor-selectivity
of the endothelial dysfunction (see above), stud-
ies on endothelium-dependent vasodilatation
suggest that L-arginine depletion may occur. It
should be noted, however, that the studies
addressing the effect of the NO precursor show
discordant results. In this respect, the behaviour
of conduit arteries with overt atherosclerosis
appears to be different from arterioles in the
microcirculation, in which atherosclerosis does
not develop.

Conduit arteries with atheroscleros is
Most authors agree that in vitro L-arginine
addition fails to restore the endothelium-depen-
dent relaxations in the aorta118 120 or femoral
artery121 with cholesterol-induced atherosclero-
tic lesions. One report showed that acute in
vivo L-arginine administration to hypercholes-
terolaemic rabbits improved the endothelium-
dependent relaxations in isolated large vessels
in vitro, but it should be noted that responses
to nitroglycerin were affected to a very similar
extent.122 Also prolonged in vivo L-arginine
treatment ameliorated endothelium-dependent
relaxations of isolated segments only margin-
ally.123 As the endothelial dysfunction is strictly
dependent on the size of the lesions in rabbit
conduit arteries,35,49,124,125 the marked anti-
atherogenic effect of prolonged L-arginine sup-
plementation123 (see below) most likely explains
the improved endothelium-dependent relaxa-
tions. In patients with coronary or peripheral
artery occlusive disease, a positive effect of L-
arginine on endothelium-dependent dilatation
of the conduit arteries was lacking.126,127

Conduit arteries without overt atheroscleros is
Although the rabbit basilar artery develops
neither atherosclerotic lesions nor a clear en-
dothelial dysfunction after prolonged hyper-
cholesterolaemia,49 an improvement of the
endothelium-dependent relaxations has been
reported after in vitro exposure to L-arginine.128

In addition, L-arginine also attenuated the aug-
mented vasoconstrictor responses to potassium
chloride, serotonin and endothelin. The authors
suggested that the normalization by L-arginine
of both the endothelium-dependent relaxation

and the constrictor responses was the result of
increased EDRF production. However, as cyclic
GMP-mediated relaxation induced by endothe-
lium-independent agonists was not studied, and
as the contraction to a depolarizing potassium
chloride solution is not affected by basal EDRF
release,37 it is not entirely clear whether the
actions of L-arginine can be attributed solely to
enhanced endothelial NO production. Lefer and
Ma measured constrictions evoked by the NOS
inhibitor L-NAME as an index of basal NO
release by the endothelial cells of rabbit coron-
ary arteries isolated after three weeks of choles-
terol diet.60 A reciprocal relationship existed
between L-NAME evoked contractions and plas-
ma cholesterol, suggesting that basal NO release
by the segments became compromised in the
absence of overt atherosclerosis. In vitro addi-
tion of L-arginine almost totally restored this
index of basal NO production. However, as non-
endothelial iNOS may be induced in arteries of
cholesterol-fed rabbits,129 it cannot be excluded
that the vasoconstrictor responses to L-NAME
resulted from inhibition of iNOS rather than
eNOS.

Arterioles without overt atheroscleros is
The results obtained in conduit arteries suggest
that L-arginine may upregulate the impaired
eNOS activity only if the cholesterol-exposed
arteries are still lesion-free. Accordingly, all stud-
ies, except one,130 reported that L-arginine
infusion resulted in marked improvement to
complete restoration of endothelium-dependent
vasodilatation in the coronary and peripheral
microcirculation in hypercholesterolaemic
rabbits,131 pigs88 and humans.126,132

The mechanism of the amelioration of endo-
thelium-dependent relaxations by L-arginine is
not yet clear, and could be due to an interaction
with smooth muscle cells or other effects. In
view of plasma levels of L-arginine in the range
of 150 to 250 mM and a Km of 5 to 10 mM for
NOS isoforms, it is indeed surprising that L-
arginine availability can ever limit NO
biosynthesis.20 L-arginine enters cells by facili-
tated diffusion via the y transporter.133 As
exogenous L-arginine addition neither induces
endothelium-dependent relaxations by itself,
nor enhances agonist-induced endothelium-de-
pendent relaxations in normal isolated vessel
rings,120,129,134 the intracellular stores appear to
be suf�cient for maximal eNOS activity in
physiological circumstances. The increase in
membrane cholesterol associated with hyper-
cholesterolaemia might impair endothelial L-
arginine transport, thus eventually depleting the
intracellular stores. The latter may also result
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from the increased output of inactive nitrogen
oxides, as demonstrated in hypercholesterolae-
mic rabbit aorta.103 However, reversal by L-
arginine of hypercholesterolaemic endothelial
dysfunction may not simply re�ect the replen-
ishment of the substrate for NO production.
The observation that the effect of L-arginine
administration to hypercholesterolaemic rabbits
is not sustained and depends on the anatomic
site and sex135 indeed supports a more complex
mechanism of action.
As the best results are obtained in the micro-

circulation after L-arginine treatment in vivo ,
other less well characterized systemic effects of
the amino acid e.g. its secretagogue effects on
the adrenals and pituitary gland, may prevail.133

This is illustrated by observations in healthy
persons, where L-arginine infusion stimulated
basal and acetylcholine-induced relaxation in
the peripheral circulation130,136,137 and de-
creased the systemic blood pressure.127,138 The
concomitant increase in urinary nitrate and
cyclic GMP could not simply be attributed to a
direct stimulating effect of L-arginine on eNOS,
as prostaglandin E1-induced dilatation also in-
creased these parameters in the urine.127

Furthermore, intravenous L-arginine administra-
tion increased urinary �ow, which by itself
resulted in enhanced excretion of nitrate and
CGMP, in the absence of elevated nitrate plasma
levels.138

Endothelial NO synthase inhibition

L-arginine may be effective in conditions where
endogenous NOS inhibitors are formed. NG,NG

dimethylarginine (DMA) has been found in the
urine and plasma of humans and inhibited
macrophage and vascular NO synthesis in vitro
and in vivo in animals and humans,139 suggest-
ing the existence of endogenous mechanisms
to regulate NO synthesis. Recently, DMA was
reported to be increased in the serum of
cholesterol-fed rabbits.140,141All classes of NO
synthases are liable to feedback inhibition by
NO,142 probably by the interaction of NO with
the haem prosthetic group.143 Hence, high out-
put NO production by iNOS (see below) might
downregulate eNOS activity. This is supported
by the observation that chronic in vivo admin-
istration of large doses of an NO donor to
rabbits depressed the ex vivo output of EDRF/
NO in response to acetylcholine, as assessed by
means of bioassay.135 Endothelial NOS may also
be suppressed by other locally produced in�am-
matory mediators e.g. the T-lymphocyte-derived
mediator interferon-c.144

Inactivation of NO by superoxide
anion

Superoxide anion is known to inactivate EDRF/
NO.145,146 Generation of superoxide anion in
situ in normal vessels reduced endothelium-
dependent relaxation.147,148 Under normal con-
ditions, inactivation of EDRF by superoxide
radicals is prevented by cytosolic CuZn super-
oxide dismutase (SOD)149 and by extracellular
SOD type C associated with heparan sulphate
proteoglycans on the endothelial cell surface
and in the interstitium.148

Hypercholesterolaemia in the rabbit increased
the intimal103,150 production of reactive oxygen
species, resulting in increased degradation of
NO (reviewed by Harrison and Ohara100). The
tunica media beneath the atheromatous plaque
in WHHL rabbits also inactivated EDRF/NO by
an SOD-sensitive mechanism.44 Increased vascu-
lar production of reactive oxygen species may
result from enhanced xanthine oxidase activity
in the endothelium150 or from production by
in� ltrated monocytes.151 In addition to direct
inactivation of EDRF/NO by oxLDL and
lysophosphatidylcholine,152 oxLDL has been
shown to stimulate the respiratory burst in
neutrophils,153 and lysophosphatidylcholine in-
duced superoxide production in vascular
smooth muscle cells via protein kinase C
activation.154 Endothelial NADPH oxidase sys-
tems,155 activated by protein kinase C,156 may
also be involved. Protracted endothelial cell
exposure to atherogenic native LDL concentra-
tions increased superoxide anion production by
three independent oxidative systems—cyclo-
oxygenase, P450 isozyme and eNOS—of which
the latter appeared to be the greatest source.117

Nitrotyrosines, hallmarks of peroxynitrite forma-
tion from superoxide and NO, were detected
intracellularly.

Furthermore, a striking feature of NOS is its
ability to generate superoxide anion when
either L-arginine or the cofactor tetra-
hydrobiopterin is limiting.20 Under these cir-
cumstances, NADPH oxidation is uncoupled
from synthesis of NO, and oxygen becomes the
electron acceptor, resulting in superoxide for-
mation. This has been demonstrated to occur in
the constitutive NOS of the brain. Whether the
low arginine levels needed for superoxide
biosynthesis occur in intact endothelial cells in
vivo is unclear. Arginine depletion of eNOS
might occur from high local L-arginine con-
sumption by iNOS (see below). Arginine avail-
ability may also be reduced by impediment of
cellular uptake or delivery to eNOS, as has been
suggested to occur in endothelial cell cultures
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treated with native LDL.117 In the latter experi-
ments, LDL-exposed cells produced signi�cantly
more superoxide anion than untreated cells,
which was reversed by arginine supplementa-
tion. Inducible NOS did not seem to be
involved, as Ca2 -independent arginine-to-citrul-
line conversion under apparent Vmax conditions
was low. Nevertheless, in conditions where
iNOS, which is much more demanding for
substrate then eNOS, is induced, insuf�cient L-
arginine might result in superoxide anion re-
lease. This would also explain the bene� t of
providing L-arginine, i.e. to promote re-coup-
ling, thus reducing vascular superoxide produc-
tion and prolonging the half-life of EDRF/NO.
These �ndings provide new insight into the
mechanisms by which hypercholesterolaemia
might both stimulate superoxide production
and decrease functional NO levels.

The disturbed balance between vascular
superoxide and endothelial nitric oxide produc-
tion, resulting in the loss of functional NO, may
be compensated for by iNOS activity in the
vascular wall (see below) and/or by upregula-
tion of endogenous SOD.157 159 Addition in the
organ bath of CuZn SOD, which does not
penetrate cells, or preincubation with extracel-
lular SOD type C, which binds extracellularly to
vascular structures, also protected against the
detrimental effects of superoxide radicals on
endothelium-dependent relaxation.148 Conver-
sely, exhaustion of these protective mechan-
isms, which may be time-, species-, or vessel-
dependent, may tip over the balance towards a
net decrease in functional EDRF/NO.

In rabbits, but not in pigs, hypercholesterolae-
mia alone did not impair the endothelial dilator
function in large vessels, but only occurred in
arteries with intimal plaques,35,44,46,48,49,125 with
the exception of the coronary arteries.60,160

Apparently, the rabbit is capable of keeping the
superoxide and nitric oxide production in
balance, as long as lesions do not develop.
Superoxide production in the media beneath
the plaque44 or the presence of fatty streaks
containing large amounts of macrophages and
lipids, may disturb the balance by the high local
superoxide production and the trapping of the
lipophilic NO molecule.

Raising the antioxidant capacity in the vessel
wall by the administration of CuZn superoxide
dismutase, polyethylene-glycolated161 or lipo-
some-entrapped121 to ensure cell entrance, partly
restored the endothelium-dependent relaxation
in the isolated aorta of the cholesterol-fed
rabbit.121,161 In keeping with these �ndings, it
has been shown that addition of antioxidant
vitamins in the diet of cholesterol-fed rabbits

preserved the endothelium-dependent dilatation
in the absence of an effect on lesion for-
mation.162,163 Also, dietary correction of hy-
percholesterolaemia in the rabbit normalized
both the endothelial superoxide production and
dramatically improved the vasodilator response
to acetylcholine.164 Oral administration of 2 g
ascorbic acid produced marked improvement in
the forearm vascular response to hyperaemia in
patients with coronary artery disease.165 How-
ever, short-term treatment with antioxidants of
patients with hypercholesterolaemia did not
improve the forearm vascular responses to
acetylcholine.166,167

Eventually, atherosclerotic plaques, in particu-
lar when lipid-rich, may trap NO and may also
mechanically disturb the normal dilatation of
the medial smooth muscle. At this stage, the
relaxation to exogenous NO donors e.g. nitro-
glycerin, and to endothelium-independent dila-
tor substances e.g. atrial natriuretic peptide also
becomes impaired.102

Atherosclerosis and Inducible
Nitric Oxide Synthase Expression

Animal and human macrophages,168,169 smooth
muscle cells170 172 and endothelial cells173,174

are capable of expressing iNOS after stimulation
with endotoxin or cytokines. In contrast to
eNOS, iNOS produces high amounts of NO for a
sustained period.20 In early reports, the pre-
sence of a constitutive NOS in vascular smooth
muscle cells has been suggested,175,176 but these
observations were probably related to the in-
duction of iNOS during the isolation and mani-
pulation of the cells or tissue.172,177,178

Atherosclerosis and iNOS

Only recently, functional and biochemical evi-
dence suggested that cholesterol feeding of
rabbits induced iNOS expression in the aorta129

and in the lungs.179 The addition of NOS
inhibiting L-arginine analogues caused endothe-
lium-independent contractions in the isolated
atherosclerotic rabbit aorta, pointing to the
continuous formation of NO by subendothelial
iNOS.129 The observation that the NOS inhibi-
tors nitro-L-arginine methyl ester (L-NAME) and
monomethyl-L-arginine (L-NMMA) were equi-
potent in this respect further supported the
involvement of iNOS.129 The expression of iNOS
may account for the increased output of nitro-
gen oxides in arteries of cholesterol-fed
rabbits.103 Histochemical studies in WHHL rab-
bits con�rmed the expression of iNOS in medial
and intimal smooth muscle cells, and showed
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signi�cant enhancement of endotoxin-induced
iNOS expression in atherosclerotic rabbits com-
pared with normal New Zealand White
rabbits.180 In a chronic rejection model of trans-
plant atherosclerosis in the rat, both macro-
phages and smooth muscle cells stained
positive for iNOS.181 More recently, it has been
reported that iNOS is present within human
atherosclerotic lesions and co-localizes with
nitrotyrosine in macrophages and smooth mus-
cle cells.182 Induction of iNOS was also ob-
served in the endothelium and smooth muscle
of intramyocardial vessels of patients with
ischaemic heart disease.183

The observation that iNOS induction in vascu-
lar smooth muscle cells, as in macrophages, is
accompanied by upregulation of L-arginine
transport,184 may contribute to the stimulating
effect of L-arginine on vessel relaxation in some
experimental settings.

Mechanical injury and iNOS

The hypocontractility to several agonists ob-
served after balloon denudation of rat185,186 or
balloon angioplasty of rabbit arteries187 was also
attributed to the induction of iNOS in the vessel
wall and was already noticeable 6 h post-
injury.186 Unlike the case in normal arteries, L-
arginine evoked signi�cant relaxation in deen-
dothelialized balloon-injured vessel segments,
which was reversed by the NOS inhibitor L-
NAME.187 In the balloon-injured rat carotid
artery, reverse transcription and polymerase
chain reaction ampli�cation showed the appear-
ance of iNOS mRNA already 24 h post surgery,
and in s itu hybridization located iNOS mRNA in
neointimal smooth muscle cells, particularly at
the luminal side of the vessel, conferring a
nonthrombogenic surface.188

Cytokines introduced in the affected vessel by
in� ltrating monocytes and T-lymphocytes may
provide the stimulus for iNOS induction in the
smooth muscle cells. Also, oxLDL189 and
LDL190,191 have been shown to upregulate iNOS
activity in macrophages and vascular smooth
muscle cells under certain conditions. On the
other hand, mediators that inhibit iNOS induc-
tion e.g. heat shock proteins192 or NO itself,193

may determine the �nal output of NO.

NO: A Radical with Anti-
atherogenic Properties

Since the impairment in the EDRF/NO pathway
occurs early or even precedes the development
of visible lesions in the process of atherosclero-
sis, many authors have speculated on a causal

role of this functional defect. This view is
supported by a number of in vitro studies
demonstrating the suppression by NO, pro-
duced endogenously or derived from NO
donors, of several key processes involved in
atherogenesis (Table 1).

In vitro studies

Interference with oxid ative proces ses
Since superoxide anion contributes to oxidative
stress, LDL modi�cation194 and in�ammatory
gene transcription via the activation of NF- B,13

the decreased formation or inactivation of
superoxide by NO may be considered protec-
tive. In this respect, it has been shown that the
NO derived from iNOS inhibits xanthine oxi-
dase in interferon-c-stimulated macrophages195

and that authentic exogenous NO inhibits
xanthine oxidase in a cell-free system,196 possi-
bly by reversible alteration of the �avin prosthe-
tic site.197 Nitric oxide also inhibits neutrophil
superoxide anion production via a direct action
on the NADPH oxidase.196 The NO donors
known as NONOates abrogate the cytotoxic
effects of superoxide on Chinese hamster lung
�broblasts.198 Moreover, NO also protected
against cellular damage by other reactive oxy-
gen species e.g. hydrogen peroxide and alkyl
peroxides, by several mechanisms such as pre-
vention of haem oxidation, inhibition of Fenton-
type oxidation of DNA, and abatement of lipid

Table 1. Anti-atherogenic properties of nitric oxide in vitro

Reference

Interference with oxidative processes
Cytoprotection against oxidative stress 198 200
Inhibition of cell-mediated LDL oxidation 201 205,

210
Inhibition of lipoxygenase activity 207
Inhibition of oxLDL cytotoxicity 211
Inactivation of xanthine oxidase 195 197
Inhibition of NADPH oxidase 196
Reduction of endothelial hyperpermeability 212

Interference with leukocyte recruitment
Suppression endothelial adhesion molecules 214, 217
Inhibition of monocyte chemotaxis 219
Inhibition of monocyte adhesion 217, 219,

220
Inhibition of neutrophil adhesion 60,

213 216
Inhibition of MCP-1 expression 218
Inhibition of NF- B activation 217, 218

Antiproliferative actions
Inhibition of smooth muscle cell proliferation 221 227
Inhibition of smooth muscle cell migration 228, 229
Inhibition of T-cell proliferation 230 232
Stimulation of endothelial repair 233

Inhibition of platelet activation 234 236
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peroxidation.199 Activation of the stress protein
haem oxygenase by NO may contribute to its
cytoprotective effect.200 Furthermore, NO re-
duced the oxidative modi�cation of LDL by
macrophages,201 204 endothelial cells205 and
lipoxygenase206 by acting as a potent terminator
of radical chain propagation reactions.206 Also,
as 15-lipoxygenase has been implicated in LDL
oxidation,8 NO might protect LDL by inhibiting
lipoxygenase activity.207 Conversely, the de-
creased expression of iNOS activity in oxLDL-
laden foam cells208,209 has been implicated in
the accelerated oxidation of LDL by these
macrophages.210 Furthermore, NO released by
donor compounds inhibited the cellular toxicity
of the lipid hydroperoxides contained in oxLDL,
presumably by scavenging the propagatory free
radicals generated during peroxidation of the
endothelial cell membranes.211 NO donors also
blocked the hydrogen peroxide-related increase
in endothelial permeability by a cyclic GMP-
mediated mechanism.212

Interference with leukocyte recruitment
Inhibition of NO synthase in endothelial cells
by L-NAME increased the intracellular oxidative
stress, resulting in enhanced adhesion of neutro-
phils via CD18/ICAM-1 interaction213 or the
upregulation of P-selectin on the endothe-
lium.214 Neutrophil adhesion to the endothelium
was augmented by hypercholesterolaemia60,215

and this increase was prevented by the NO
donor SPM 5185.216 Inhibition of NO biosynth-
esis also induced the expression of VCAM-1217

and upregulated MCP-1 mRNA and protein in
cultured human endothelial cells, whereas addi-
tion of the NO donor SIN-1 dose-dependently
decreased MCP-1 mRNA expression and secre-
tion, presumably by suppressing a NF- B-like
transcriptional regulator.218 Authentic NO gas
inhibited monocyte adhesion and chemotaxis219

and exposure to shear stress inhibited mono-
cyte adhesion by an NO-dependent mechan-
ism.220 Furthermore, NO donors decreased the
cytokine-induced expression of the endothelial
adhesion molecules VCAM-1, ICAM-1 and E-
selectin.217

Antiprolifer ative action of nitric oxide
As the proliferation of vascular smooth muscle
cells, macrophages and T-lymphocytes contri-
butes to the progression of intimal lesions, cell
growth inhibition by NO could signi�cantly
reduce lesion formation. Nitric oxide has been
shown by several investigators to inhibit smooth
muscle cell proliferation221 227 as well as migra-
tion228,229 in vitro . Both effects were cyclic

GMP-mediated. T-cell proliferation is also re-
duced by NO.230 232

Interestingly, the effect of NO appeared to be
quite different in endothelial cells, in that it
induced endothelial cell growth and motility in
vitro and mediated the mitogenic effect of
vascular endothelial growth factor.233

Antiplatelet effects o f nitric oxide
Although the inhibitory effect of NO on platelet
adhesion and aggregation234,235 (reviewed by
Bassenge236) is often considered an anti-athero-
genic effect of NO, platelets are minimally
involved during the early stages of the athero-
genic process. However, the endothelial surface
over advanced human plaques often shows
focal loss of cells15 and platelet adhesion may
promote the progression of those lesions, even-
tually leading to plaque � ssuring and thrombo-
sis. Also following gross mechanical injury
evoked by balloon angioplasty, platelet-derived
products have been proposed to contribute to
neointima formation.4

Inhibition of atherosclerosis by NO in
vivo

Several in vivo studies (Table 2) support the
concept that NO may suppress both athero-
sclerosis and intimal thickening. Oral L-arginine

Table 2. Anti-atherogenic properties of nitric oxide in vivo

Reference

Modulation of leukocyte-endothelial interaction
attenuation by L-arginine 238
attenuation by NO donors 240, 241
increase by NOS inhibitors 239

Modulation of fatty streak formation in cholesterol-fed
rabbits

reduction by L-arginine 123, 237
reduction by NO donor 242
increase by NOS inhibitors 243, 244

Modulation of intimal thickening evoked by different
stimuli

balloon denudation
reduction by L-arginine 134, 250,

251
reduction by EDRF/NO 252 254
reduction by eNOS transfection 259
reduction by exogenous NO 255, 256,

258
increase by NOS inhibitors 134, 250,

251

balloon angioplasty
reduction by L-arginine 134

collar
reduction by NO donors 260

vein graft
reduction by L-arginine 249
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supplementation caused a striking inhibition of
fatty streak formation in hypercholesterolaemic
rabbits.237 Since the adhesion of monocytes to
endothelial cells is imperative to lesion forma-
tion in this model, the authors further addressed
the effects of the NO precursor on the adhesion
of a murine monocytic cell line to the aortic
endothelium of cholesterol-fed rabbits ex
vivo.238 The enhanced endothelial adhesiveness
for monocytes in hypercholesterolaemic aortas
was signi�cantly reduced if the rabbits had
received supplemental dietary arginine and sig-
ni�cantly increased in rabbits treated with L-
NAME. This was associated with, respectively,
increased or decreased elaboration of vascular
nitrogen oxides as measured by chemilumin-
escence. The observation that hypercholestero-
laemia-induced impairment in endothelium-
dependent relaxation was only marginally im-
proved by L-arginine treatment while lesion
formation was signi�cantly reduced,123 suggests
that the bene�cial effect of L-arginine may
primarily infer from the increased activity of
iNOS. However, it should be noted again that
arginine and other basic amino acids are potent
hormonal secretagogues in adrenals and many
other endocrine organs.133 Hence, part of the
anti-atherosclerotic effect of systemic arginine
administration might be related to the release of
glucocorticoids or other immunosuppressive
hormones which are known to suppress intimal
thickening and experimental atherosclerosis.

The ambiguity of results obtained with L-
arginine is avoided in studies with NO donor
compounds or NOS inhibitors. L-NMMA and L-
NAME increased leukocyte adhesion in vivo by
a CD11/CD18-dependent mechanism.239 Con-
versely, the NO donor SIN-1 prevented leuko-
cyte adhesion. The observation that both SOD
and SIN-1 inhibited leukocyte adhesion only
under conditions associated with superoxide
formation suggests that the anti-adhesive pro-
perties of NO may relate to its ability to
inactivate the superoxide anion.240 Another NO
donor attenuated leukocyte endothelial inter-
action in an in vivo model of ischaemia-reperfu-
sion, and this appeared to be in part mediated
through a decreased expression of endothelial
P-selectin.241 Pentaerythrityl tetranitrate, an or-
ganic nitrate, has been documented to inhibit
cholesterol-induced fatty streak formation in
rabbits, but the bene�cial effect was not seen
with isosorbide mononitrate, another organic
nitrate.242 This could be due to differences with
respect to the development of tolerance or the
NO releasing capacity between the two organic
nitrates. Conversely, treatment with molsido-
mine, whose active metabolite is the sponta-

neous NO donor SIN-1, actually enhanced
lesion formation in the hypercholesterolaemic
rabbit.125 This may relate to the generation of
superoxide anion from SIN-1, which could
abrogate the bene�cial effects of the simulta-
neously released NO.

Moreover, oral or parenteral treatment with
the NO synthase inhibitor L-NAME for 4 to 12
weeks243,244 enhanced fatty streak formation
signi�cantly. Therefore, the data suggest that
vascular NO, produced by eNOS or iNOS,
inhibits de novo formation of intimal lesions.
However, this conclusion is somewhat con-
founded by the observation that L-NAME aug-
mented plasma cholesterol levels in these
rabbits, particularly after prolonged treatment.
Since hypercholesterolaemia is the ultimate
driving force for the lesions in this model, it is
conceivable that this contributed to the acceler-
ated atherosclerosis.

The inhibitory effect of NO on atherosclerosis
may result from the above described in vitro
actions, but NO-mediated decrease of endothe-
lin production28,245 may also be involved. En-
dothelin is a potent mitogen246 and inducer of
collagen synthesis247 in vascular smooth muscle
cell cultures, and its production may be in-
creased in atherosclerosis.248

Inhibition of intimal thickening by NO

The interferences with cholesterol absorption
or metabolism are circumvented in studies of
intimal thickening in animals with normal plas-
ma cholesterol levels. Oral L-arginine supple-
mentation suppressed intimal hyperplasia in
experimental vein grafts249 and after balloon
denudation of the rat carotid artery.250,251 The
NOS inhibitor L-NAME reversed the effect of
arginine,250 indicating that the attenuation of
the intimal hyperplasia was mediated by NO.
The NO is presumably formed by iNOS,185,186,188

since regrowth of the endothelial cells is vir-
tually absent, and eNOS activity does not re-
cover. Moreover, the endogenous biosynthesis
of NO appears to modulate the process, since
systemic250 or local, perivascular251 administra-
tion of L-NAME aggravated intimal thickening in
response to balloon denudation. Increasing the
�ow in the injured carotid artery by ligating the
contralateral artery signi�cantly reduced intimal
thickening, and this effect was in part mediated
by endogenous NO.252 Likewise, the protective
effect of angiotensin converting enzyme (ACE)
inhibitors, which also block kinin degradation,
may be mediated in part by stimulation of the
endogenous production of NO by brady-
kinin.253,254
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Conversely, treatments with exogenous NO
by oral administration of the cysteine-containing
NO donor SPM-5185255 or by chronic inhalation
of NO256 were effective in reducing the size of
intimal lesions after injury of the rat carotid
artery. Nitroglycerin treatment only decreased
the initial medial smooth muscle cell prolifera-
tion without affecting the thickness of the
neointima after 3 weeks.257 This may be due to
insuf�cient NO formation as a result of the well
known development of tolerance associated
with this class of nitrovasodilators.101 A single
local treatment of the denuded rabbit femoral
artery with a protein adduct of NO inhibited
platelet deposition and neointimal proliferation
in the injured rabbit femoral artery.258 In vivo
eNOS gene transfer in the vessel wall after
denudation of the rat carotid artery provided
further evidence for the inhibition of smooth
muscle cell accumulation by NO. Transfection
of the eNOS gene in the media not only
restored the calcium-dependent NO production
and concomitant relaxations of the denuded
artery, it also inhibited neointima formation at
day 14 after balloon injury by 70%.259 This
experiment provides direct evidence that NO
is an endogenous inhibitor of vascular lesion
formation in vivo. Furthermore, these experi-
ments suggest the possibility of eNOS transfec-
tion or local delivery of long-lived NO adducts
as potential therapeutic approaches to treat
neointimal hyperplasia.

The inhibition of intimal thickening by NO is
not restricted to models characterized by en-
dothelial denudation, but is also seen when
intimal thickening is induced in rabbit arteries
by the perivascular placement of a collar. Oral
treatment with the NO-donor SPM-5185 re-
duced the collar-induced intimal thickening,
whereas only a tendency towards inhibition
was observed by treatment with molsidomine,
whose active metabolite is the NO donor SIN-
1.260 It is not clear whether the difference
between the two drugs was related to the dose,
or different characteristics of the NO donors,
i.e. the presence of sulphydryl groups in SPM-
5185 or the release of superoxide anion from
SIN-1.

Finally, there are indications that NO inhibits
neointima formation induced by balloon angio-
plasty of lesion-free animal arteries. The vessel
wall distension by the balloon creates a much
more extensive injury of the media, predisposi-
tion to thrombus formation and accelerated
intimal thickening. Although the endothelial
cells regenerate quickly, vascular reactivity stud-
ies show that the eNOS pathway remains
dysfunctional,134,261 whereas iNOS is induced in

non-endothelial vascular cells.187 Oral L-arginine
supplementation improved the endothelium-
dependent vasorelaxation and suppressed the
intimal hyperplasia after balloon angioplasty of
rabbit iliac arteries.134 In accordance with the
�nding in the collar model, treatment with the
NO donor SIN-1 did not in�uence intimal thick-
ening following porcine carotid angioplasty,
although the compound was effective in inhibit-
ing medial smooth muscle cell proliferation.262

Also in two other models of intimal thicken-
ing a clear relationship between inhibition of
smooth muscle cell mitosis and neointima
formation is lacking. Smooth muscle cell mitosis
was in�uenced less than intimal thickening after
eNOS gene transfer in denuded rat arteries259

and after NO donor treatment of rabbit collared
arteries.260 This suggests that NO exerts its
major effect on smooth muscle cell migra-
tion,228,229 which is a crucial event in intimal
thickening. Whether inhibition of migration is
of importance to human atherosclerosis remains
to be determined, as atherosclerosis develops in
an existing intima1,3 and migration of smooth
muscle cells from media to intima is not consid-
ered a major determinant in atherogenesis.4

NO: A Radical Promoter of
Atherosclerosis (Table 3)

LDL oxidation

Nitric oxide is a nitrogen-free radical and can
initiate lipid peroxidation in LDL in the ab-
sence204,263 or presence201,264 266 of superoxide
anion. In the former case, LDL modi�cation
appeared to be restricted to an increase in lipid
hydroperoxide content201 without further evolu-
tion to a high-uptake form recognized by the
scavenger receptor.264 Nitrite- and NO-oxidized
LDL demonstrated the biological properties of
minimally oxidized LDL.263 More extensive LDL
oxidation occurred if superoxide anion was
present e.g. during the decomposition of
SIN-1.264 Superoxide combines with nitric oxide
to form the stronger oxidants peroxynitrite and
its decomposition product the hydroxyl radi-
cal.267 269

Table 3. Pro-atherogenic properties of NO

Reference

Oxidation of LDL 201, 204, 263 267
Cytotoxic effects 20, 268, 272 274
Induction of apoptosis 276, 277, 286
Increased matrix breakdown 282 284
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Cytotoxic effects

The concept that peroxynitrite formation oc-
curs in atherosclerosis is strongly supported by
the immunohistochemical demonstration of ex-
tensive nitration of protein tyrosines in ad-
vanced human lesions.270 The presence of 3-
nitro-L-tyrosine, quanti�ed in the human brain
by high-performance liquid chromatography, is
also considered indicative of oxidative stress
induced by reactive oxygen intermediates and
nitric oxide.271 Excessive NO synthesis and
peroxynitrite formation have been implicated in
cytotoxic effects in endothelial cells,268,272

smooth muscle cells273 and macrophages.274

Cell damage results from the inhibition of
mitochondrial respiration, aconitase activity and
DNA synthesis, as well as from iron loss.20 On
the other hand, nitric oxide-induced p53 accu-
mulation safeguarded against DNA damage
through p53-mediated suppression of iNOS
gene expression, thus reducing the potential for
NO-induced DNA damage.275 The release of
basic �broblast growth factor from damaged
vascular smooth muscle cells may counteract
the toxic effects on the endothelium by stimu-
lating endothelial cell proliferation.273 In view of
these �ndings, the protective effects of antiox-
idants in several models of atherosclerosis may
in part derive from the prevention of NO
breakdown by oxygen radicals.

Induction of apoptosis

Nitric oxide has also been reported to cause
apoptosis or programmed cell death in macro-
phages276,277 and smooth muscle cells.278 Apop-
tosis participates in the regulation of the
cellularity of intimal lesions in balloon-injured
arteries279 and human atherosclerosis.280 Theo-
retically, augmentation of apoptosis by NO
could retard plaque growth, which may be
considered bene�cial. However, an imbalance
between proliferation and apoptosis has been
suggested to underlie the development of the
cell-poor, necrotic core.281 The size of the core
determines the stability of the plaque. Stimula-
tion of apoptotic cell death by NO or other
molecules may thus increase the risk of plaque
� ssure and thromboembolic complications.

Matrix breakdown

Enhanced matrix breakdown by the activation
of matrix metalloproteinases by NO282,283 or the
inactivation of the tissue inhibitor of metallopro-
teinase-1 by peroxynitrite284 may contribute to
the destabilization of the lesions and may

promote the development of a necrotic core in
advanced plaques.

In summary, it has been known for a decade
that the loss of endothelial NO production
impairs endothelium-dependent dilatation and
promotes vasospasm in atherosclerotic arteries.
More recent evidence indicates that dysfunction
of the endothelial NO pathway may promote
atherosclerosis in view of the described protec-
tive effects of NO against leukocyte adhesion,
oxidative processes, smooth muscle cell migra-
tion and proliferation. On the other hand, there
is ample evidence to consider NO as a molecu-
lar aggressor in chronic in� ammatory processes
like atherosclerosis.285
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118. Mügge A, Harrison DG. L-arginine does not restore endothelial
dysfunction in atherosclerotic rabbit aorta in vitro. Blood Ve s sels
1991; 28: 354 ± 357.

119. Caparotta L, Pandolfo L, Chinellato A, Ragazzi E, Froldi G, Aliev G,
Fassina G. L-arginin does not improve endothelium-dependent relaxa-
tion in in vitro Watanabe rabbit thoracic aorta. Amino Acids 1993; 5:
403 ± 411.

Mediators of In¯ ammation ´ Vol 6 ´ 1997 17

NO and atheroscleros is



120. Bult H, Buyssens N, De Meyer GRY, Jordaens FH, Herman AG. Effects of
chronic treatment with a source of exogenous nitric oxide on EDRF
release by aortae from normal and hypercholesterolemic rabbits .
In: Moncada S, Higgs EA, eds. Nitric Oxide from L-arg inine : A
Bioregulato ry Sy s tem. Amsterdam: Elsevier Science, 1990; 101 ± 106.

121. White CR, Brock TA, Chang L-Y, Crapo J, Briscoe P, Ku D, Bradley WA,
Gianturco SH, Gore J, Freeman BA, e t al. Superoxide and peroxy-
nitrite in atherosclerosis. Proc Natl Ac ad Sc i USA 1994; 91: 1044 ±
1048.

122. Cooke JP, Andon NA, Girerd XJ, Hirsch AT, Creager MA. Arginine
restores cholinergic relaxation of hypercholesterolemic rabbit thoracic
aorta. Circulation 1991; 83: 1057-1062.

123. Singer AH, Tsao PS, Wang B-Y, Bloch DA, Cooke JP. Discordant
effects of dietary L-arginine on vascular structure and reactivity in
hypercholesterolemic rabbits . J Cardiov asc Pharm aco l 1995; 25:
710 ± 716.

124. Kaski JC, Crea F, Meran D, Rodriguez L, Araujo L, Chierchia S, Davies
G, Maseri A. Local coronary supersensitivity to diverse vasoconstric-
tive stimuli in patients w ith variant angina. Circulation 1986; 74:
1255 ± 1265.

125. Bult H, De Meyer GRY, Herman AG. In�uence of chronic treatment
with a nitric ox ide donor on fatty streak development and reactivity
of the rabbit aorta. Br J Ph arm aco l 1995; 114: 1371 ± 1382.

126. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial
dysfunction in coronary microcirculation of hypercholesterolaemic
patients by L-arginine. Lancet 1991; 338: 1546 ± 1550.
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