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Tins study tests the role of thromboxane in modulating
microvascular permeability in vitro. Cultured
monolayers of bovine aortic endothelial cells were chal-
lenged with the thromboxane (Tx) mimic U46619. This
led to disassembly of actin microfilaments, cell rounding,
border retraction and interendotheHal gap formation.
Pretreatment with the Tx receptor antagonist SQ 29,548
prevented the Tx mimic-induced cytoskeletal changes.
The Tx mimic also altered endothelial cell barrier func-
tion. Increased permeability was indicated by the in-
creased passage of labelled albumin across monolayers
cultured on microcarriers, relative to untreated
endothelial cells (ao < 0.05). Furthermore, electron
microscopy ofendothelial cells cultured on the basement
membrane of human placental amnion indicated in-
creased permeability based on wide, interendotheHal gap
formation and transit of the tracer horseradish
peroxidase. Quantification of interendothelial gaps re-
vealed an eleven-fold increase with the Tx mimic relative
to untreated endothial cells (ao < 0.05) and prevention by
pretreatment with the Tx receptor antagonist (ao < 0.05).
These data indicate that Tx directly modulates the perme-
ability of endothelial cell in vitro.
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Introduction

Thromboxane (Tx)A2, a potent vasoconstrictor
agent is thought to be a significant mediator of the
respiratory failure noted in a variety of clinical and
experimental disorders including those related to
ischaemia and reperfusion, endotoxaemia, comple-
ment activation, microembolization, aspiration and
burns. 1,2 Since TxA has a 30 s half-life, interpretation
of its pathophysiological role has been derived from
measurement of its relatively stable hydrolysis prod-
uct, TxB2, and from effects observed when Tx syn-
thesis was blocked pharmacologically." Conclusions
drawn from these observations are open to potential
error. The presence of increased TxB2 levels in
plasma does not necessarily reflect the involvement
of TxA,. in organ pathology. Further, many Tx inhibi-
tors, such as drugs blocking cyclooxygenase are non-
selective and may inhibit the synthesis, binding or
degradation of other arachidonic acid (AA)
metabolites and possibly oxygen free radicals. Even
relatively selective inhibitors of Tx synthetase may
redirect the endoperoxide precursors away from the
TxA pathway towards prostaglandin (PG) or
leukotriene synthesis. Finally, studies designed to
test whether a pathophysiological effect could be
induced by infusion of an agonist have also been
marred by the use of nonspecific agents such as
AA. Infusion of this precursor can result in the

production of a variety of cyclooxygenase as well as
lipoxygenase products. It is therefore not surprising
that conflicting results have been reported regarding
the effects of Tx on microvascular permeability.

Significant evidence has been obtained indicating
that Wxa may produce vasoconstriction and
bronchospasm and that Tx can induce platelet aggre-
gation and leukocyte adhesion. However, given the
methodological problems, the role of Tx in moderat-
ing microvascular increased permeability is less cer-
tain.2- This study was designed to test the putative
Tx action on the vascular barrier utilizing a stable Tx
mimic and a Tx receptor antagonist.

Materials and Methods

Studies of barrierfunction: The effect of the Tx
mimic on endothelial cell (EC) barrier function was
evaluated using the permeability assay originally
described by Boiadjieva et al. and modified by
Bottaro et al.8 This technique allows the quantitation
of transendothelial solute transport by measuring the
movement of tracer dye bound to albumin through
a monolayer of endothelial cells grown on
microcarrier beads. The movement of the tracer dye
from the medium to the bead matrix is followed
spectrophotometrically.
Bovine aortic EC were obtained as described

previously.1 Endothelial cells were identified by
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their characteristic growth morphology, colony pat-
tern and presence of factor VIII antigen.8,11 Primary
cultures were subcultured a maximum of two times
before seeding onto Cytodex 3 microcarrier beads
(Pharmacia, Inc., Piscataway, NJ). Microcarriers were
kept in suspension using a Techne MCS-104S mag-
netic stirrer (Techne Inc., Needham, MA) operated at
44 rpm inside a conventional tissue culture incuba-
tor. Endothelial cells were seeded onto the
microcarriers at a minimum density of 10 cells per
bead, and allowed to grow for at least 6 days post-
confluency.
Tryplan blue (TB) dye (Fisher Scientific, Pittsburg,

PA) and bovine serum albumin (BSA) (Sigma, St.
Louis, MO) were added to DMEM so that the final
concentrations of TB and BSA were 0.2% and 0.45%
respectively. The molecular weight of this TB-BSA
complex was 100000. Five ml samples of
microcarrier suspension, with a concentration of
40 000 microcarrier beads/ml were placed in a plastic
vial. The growth medium was replaced by DMEM
plus the TB-BSA dye solution to which the Tx mimic

U46619 (9,11-dideoxy-M, 9-epoxymethano-PGE,)
(Upjohn, Kalamazoo, MI) at 10-4 M or 10-5 M or the
Tx receptor antagonist at 10-4 M, or both mimic and
antagonist at 10-4 M respectively had been added.
Five sets of experiments were performed. Non-cell
coated microcarriers (naked beads) were included in
every experiment to provide a maximum for the rate
of TB-BSA uptake into the microcarrier matrix. The
vehicles of either Tx mimic or the Tx receptor antago-
nist SQ 29,548 (Squibb, Princeton, NJ) were also
added in two experiments. The vials were placed in
a 37C water bath and agitated gently. At 5 and 15
min 150 l.tl of beads and dye solution were removed
from the vials and placed on an oil cushion of
dibutyl:dioctylphthalate in a ratio of 3:1. The aliquots
were then centrifuged for 30 s at 1500 x g. This
effectively separated the microcarriers from the me-
dium and terminated the dye uptake by the
microcarrier beads. Dye concentration in the
supernatant was then assayed by mixing a 50 btl
aliquot of supernatant with 950 btl of distilled water.
Absorbance was read at 580 nm with a Beckman DU-
50 spectrophotometer. All samples were analysed in
triplicate. Results are expressed as the reciprocal of
the supernatant absorbance.

Endothelial cell morphology and cytoskeleton: EC
were seeded onto 1.2 cm, 1.5% gelatin coated
coverslips. At 3 days post confluency, cell
monolayers were exposed to the Tx mimic or Tx
receptor antagonist or their combination in DMEM at
concentrations of 10-4 to 10-5 M for up to 4 h. At 5
min following incubation, monolayers were washed
with phosphate buffered formaldehyde (Fisher Sci-
entific) for 15 min at 25C. Monolayers were washed
free of fixative and permeabilized using Triton X-100

detergent (Fisher Scientific) in PBS for 5 min.
Endothelial cell cytoskeleton was visualized by stain-
ing with the F-actin fluorescent stain rhodamine-
phalloidin1 (Molecular Probes, Junction City, OR),
1 U/coverslip for 30 min, washed 3x in PBS and
mounted and sealed in PBS/glycerol (1:1). Cells were
illuminated for fluorescent photomicrography using
a Zeiss universal microscope. Three sets of experi-
ments were performed.

Electron microscopy: Post-confluent EC cultured
on the basement membrane of human placental
amnion2 were treated with the Tx mimic or the Tx
receptor antagonist or their combination at concen-
trations of 10-5 M respectively in DMEM for 5 min at

37C. After brief rinsing of the EC, the tracer horse-
radish peroxidase (HRP) (Sigma) 0.5 mg/ml was
added for 10 min at 37C. Monolayers were then
fixed and processed for HRP localization. 13 Thin
90 mm sections were examined on a Phillips 410
electron microscope. Thick 2.5 mm sections were
mounted on glass slides and viewed under an in-
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FIG. 1. Dye-albumin concentration in the supematant varied inversely with
the passage of the dye-albumin conjugate across the endothelial cell (EC)
rnonolayer grown on the microcarrier beads. Untreated EC had a measur-
able barrier and decreased the passage of albumin relative to naked beads.
Incubation with the Tx mimic increased the passage of dye labelled albumin
across the EC monolayer indicating decreased barrier function.
Pretreatment with the Tx receptor antagonist SQ 2g,548 prevented the Tx
induced increase in permeability. Treatment of unstimulated EC with the Tx
antagonist alone decreased the passage of albumin relative to untreated
EC indicating enhanced barrier function. Asterisks refer to significance
relative to untreated EC, and daggers indicate significant differences be-
tween EC treated with Tx mimic alone and the combination of Tx mimic and
antagonist. I--I, untreated; , Tx mimic (10 M); lil, Tx mimic (10 M);,
Tx antagonist (10 M); I, Tx mimic + antagonist (both at 10 M).
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verted Zeiss microscope (x 400). Changes in perme-
ability were assessed by following the passage of
HRP through the EC monolayer. In addition, the
number of interendothelial leakage sites and en-
larged gaps were counted in ten randomly selected
microscopic fields.

Results are expressed in the text and figures as
mean _+ standard error. Differences between means
were tested by an analysis of variance, paired and
non-paired t-test. When multiple time points were
compared the Bonferroni test was applied. TM Signifi-
cance was accepted if p < 0.05.

Results

Bovine aortic EC grown to confluence on
microcarrier beads formed a measurable barrier to

FIG. 2. Compared to untreated EC (A), in which the actin microfilament
elements of the cytoskeleton are apparent, cells incubated for 5 rain with Tx
mimic at 10-" M (B) or at 10 M (C) showed disassembly of actin
microfilaments, border retraction, cell rounding and interendothelial gap
formation (x 1150).

FIG. 3. The electron micrograph (x 5400) depicts a large interendothelial
gap junction, 2.3 in width in a representative field of 10 M Tx mimic treated
EC monolayer grown on amnion (A). The HRP tracer is seen in the gap and
underneath the monolayer (arrows). Untreated EC appear with tight
interendothelial junctions (B).

the passage of the TB-BSA conjugate into the
microcarrier matrix and the amount of TB-BSA taken
up by the EC covered microcarriers was significantly
less than the amount taken up by ’naked’
microcarriers (Fig. 1). Treatment of EC with the Tx
mimic at concentrations of 10-4 M and 10-5 M in-
creased TB-BSA passage across the EC into the
microcarrier matrix after 5 and 15 min, relative to
untreated cells (p< 0.01) (Fig. 1). This effect was
more pronounced for the higher concentration of
10-4 M. The Tx antagonist SQ 29,548 enhanced the
barrier function as indicated by reduced passage of
the tracer relative to untreated EC (p < 0.01) (Fig. 1).
Incubation of EC with SQ 29,548 10.4 M for 5 min
prior to their exposure to Tx mimic, at 10-4 M pre-
vented the increased TB-BSA passage across the EC
induced by Tx mimic alone (Fig. 1). The vehicles of
either Tx mimic or SQ 29,548 did not affect barrier
function relative to untreated EC (data not shown).
Compared with untreated EC, cells challenged

with the Tx mimic for 5 min showed border retrac-

tion, cell rounding, disassembly of EC actin
microfilaments and interendothelial gap formation
(Fig. 2). These changes were not quantified but were
more pronounced with Tx mimic at 10-4 M compared
to a concentration of 10-5 M. The latter however
induced cytoskeletal changes that were apparent
relative to untreated EC. Pretreatment with SQ 29,548
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FIG. 4. Tx mimic, 10 M led to an 11.4-fold increase in the number of open
interendothelial gap junctions relative to untreated EC. Pretreatment with
the Tx receptor antagonist. (10 M) prevented Tx induced gap formation.
Asterisk indicates significance relative to untreated EC.

prevented the Tx mimic induced cytoskeletal
changes.

Electron microscopy indicated increased perme-
ability based on wide interendothelial gap formation
and the transit of HRP (Fig. 3). EC monolayers in thin
sections treated with the Tx mimic at a concentration
of 10-5 M for 5 min revealed 287 leakage sites per 576
cells (50%), compared with 194 leakage sites per 925
cells (21%) for untreated EC (p < 0.05). The Tx mimic
treated EC monolayers in thick sections showed large
interendothelial gaps (Fig. 3) Quantification of
interendothelial gaps in these sections revealed an
11.1-fold increase in the number of open gaps in EC
treated with 10-5 M Tx mimic relative to untreated EC
(p < 0.05) (Fig. 4). The Tx mimic induced gap forma-
tion was prevented by pretreatment with the Tx
receptor antagonist (Fig. 4).

Discussion

The chemically stable endoperoxide analogue
used in these studies is believed to act as a biological
mimic of TxA2. This is indicated by its ability to
constrict smooth muscle and, in higher dosage, to
aggregate platelets and increase white blood cell
chemotaxis. 1,2,15,16 Further, U46619 and TxA display
the same pattern of agonist responses on lung strips
and vascular preparations from several species. 1,"

Finally, the ability of the Tx receptor antagonist to
inhibit the effects of native TxA as well as the effects
of the mimic1,2,16 indicate identical receptor sites and
actions for native TxA and the Tx mimic.

The permeability changes required Tx mimic con-
centrations that were very high compared to other in
vitro systems. Nevertheless, the suppression by the
Tx receptor antagonist makes a nonspecific effect on
endothelial cytoskeleton and permeability rather
unlikely.
We believe that Tx acts to moderate microvascular

permeability by altering the EC cytoskeleton. Certain
cytoskeletal elements, especially actin micro-fila-
ments, appear to regulate EC mobility, structural
relationship to adjacent cells and therefore
interendothelial junctions and barrier function, m,17-2

Agents such as phalloidin promote microfilament
assembly, thereby tightening interend-othelial junc-
tions and enhancing barrier function.21 Similar to
native TxA2, the Tx mimic as well as other permeabil-
ity promoting agents such as histamine, lead to a
reversible disassembly of cytoskeletal actin
microfilaments, events associated with widening of
interendothelial junctions and increased permeability
tO protein. 1,17,19,2 Despite the uniformity of these
observations, in vivo studies by others have failed to
demonstrate increased lung permeability with agents
such as histamine, arachidonic acid metabolites, and
platelet activating factor, despite the ability of these
agents to affect EC cytoskeleton in vitro.6’22’23

The application of aortic EC cultures as models of
in vivo lung permeability is limited and interpreta-
tions must be made cautiously. Our results do not
preclude the possibility that Tx may affect aortic EC
cytoskeleton and barrier function differently than
pulmonary microvessels. In fact, Maron’s"" observa-
tion suggests that intrinsic differences in the regula-
tion of microvascular permeability exist between the
systemic and pulmonary vasculature; histamine in-
duced increased permeability of canine systemic
blood vessels but failed to affect the barrier function
in the dog and rabbit lung.22 However, other studies
indicate that histamine24 as well as other agents, that
is leukotrienes, interleukin-1 and interleukin-2 and
platelet activating factor, increase the permeability
of both the systemic and the pulmonary
vasculature. 7,8,23,25 These conflicting results may re-
late to different methodologies and species. For ex-
ample, the sheep lung may be especially susceptible
to changes in permeability because of its rich popu-
lation of intravascular macrophages.2,2 These cells
can respond to a permeability promoting agent by
further release of inflammatory mediators that may
themselves affect the vascular integrity in the lung.2

Despite these considerations, aortic EC and pulmo-
nary microvessel EC have been found to be quanti-
tatively comparable with regard to the passage of
albumin suggesting that data from aortic EC may be
extrapolated to pulmonary EC.
Thromboxane A is thought to have additional

indirect permeability effects via its interaction with
circulating WBC and perhaps macrophages. Thus,
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TxA2 can enhance neutrophil endothelial adhesion,7

and promote neutrophil diapedesis through EC
monolayers.15 The Tx mimic has identical actions on
WBC-EC interaction when tested in vitro. 15 Further,
infusion of the Tx mimic in swine led to neutrophil
sequestration in the lungs. 28 Activation of these se-
questered neutrophils may lead to increased perme-
ability. Although neutrophils may enhance Tx in-
duced permeability they are not necessary for its
expression. In other studies oedema has been re-
ported in isolated lungs, free of white blood cells,
challenged with nicotine29 or alphathrombin.3 These
agents stimulate Tx synthesis and lead to Tx depend-
ent increases in permeability.

Concentrations of TxBz are elevated in a number of
clinical and experimental settings of increased per-
meability. This does not document a casual relation-
ship. Thus, the increased plasma Tx concentrations
during endotoxaemia are not as important as other
mediators of permeability since Tx inhibition is not
preventative.TM On the other hand, in other settings
Tx appears central in mediating microvascular per-
meability. For example, inhibition of Tx prevents
increased microvascular permeability in the
ischaemic reperfused dog hind limb;32 in sheep lungs
following microembolization,3 or lower torso
ischaemia with reperfusion;33 and in rat lungs chal-
lenged with inhaled nicotine.29

In summary, these data suggest that thromboxane
A). directly moderates microvascular permeability in
vitro.
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