Depolymerization-driven Flow in Nematode Spermatozoa

Relates Crawling Speed to Size and Shape
Supplemental Material

The relation of the model to mass conservation

In this Supplemental Material section, we derive the two-phase model that
we use by starting from a three-phase model that takes into account the
cytosol and the MSP in dimer and polymer form. We work in terms of mass
conservation and show that the equations written in terms of volume fraction,
as shown in the body of the paper, are equivalent to the equations that track
the mass of each phase. We assume that the cell membrane is impermeable
to MSP, but that fluid is driven into or out of the cell by pressure gradients.
The fluid velocity in our two-phase model is shown to account for both the
movement of the fluid and the diffusion of the soluble MSP dimer.

In any given volume element inside the cell, a fraction of the space is filled
by the fluid cytosol. We denote this volume fraction as ¢;. The remaining
space is filled by either MSP polymer or soluble MSP dimer. The volume
fractions for these two phases are ¢, and ¢4, respectively. (The s denotes
that the polymer component is treated as a solid.) If these three phases are
the only phases present in the cytoplasm, then

b5 + ¢s + pa =1 (S1)

The density of the cytosol is p; and the density of the MSP is p;. We also
define the velocity of the fluid and the velocity of the polymer as V¢ and Vj,
respectively. Conservation of the mass in each phase leads to three continuity

equations,
%(Pf¢f) = =V (prosVy) (82)
O () = V- (V) — kapet (83)
%Wﬁd) = V- (0s0dVs — DapsVa) + kupsts (S4)

where kg is the disassembly rate for the polymer. Based on experimental
evidence, we have assumed here that polymerization of MSP only occurs at
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the membrane, and, therefore, polymerization comes in as a boundary con-
dition. Disassembly is assumed to occur everywhere. We have also used that
the MSP dimer is adevected with the fluid velocity and that it also diffuses
with diffusion coefficient, Dy. If the cytosol and MSP are incompressible, the
densities in these phases are constant, and we can divide them out, leading
to three equations for the volume fractions,

96,
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0ps

5 = V- (6.V) ko, (S6)
Do~ V- (9uVy — DaVu) + ki, (S7)

Eq. S6 is the continuity equation that we will use to solve for the dynamics
of the MSP polymer (Eq. 5 in the main text). By adding Eqs. S5- S7, we get
a conservation equation for the total volume in a given volume element,

V- (¢;Vi+ sV + ¢aVa— DiVey) =0 (S8)

We are interested in deriving a model that treats the cytosolic fluid and the
MSP dimer as a single phase. To do this, we use that ¢ + ¢4 = 1 — ¢, and
define the effective fluid velocity as V; = V; — DyVy/(1 — ¢5). Eq. S8
becomes

which is the effective two-phase conservation equation (Eq. 4 in the main
text).

At the cell membrane, we assume that the membrane is impermeable to
MSP. Therefore, the normal component of the mass flux of MSP (for both the
polymer and the dimer) at the boundary must move with the cell membrane.
If the membrane is permeable to fluid, then there is a discrepency between
the fluid mass flux and the motion of the cell membrane that is proportional
to the pressure difference across the membrane. Assuming steady crawling
with velocity Vi, we get the boundary conditions for all three phases,
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0 (ps0aVy— DapsVa) — J(x3) = psdpaVo-h (S11)
n-(profVy) = pposVo-fi+keps(p—po) (S12)



Here J(x) is a spatially dependent polymerization rate that converts MSP
dimer into polymer. x; denotes the coordinates of the boundary. k¢ is the
filtration coefficient, p is the pressure inside the cell, and pg is the external
pressure. Dividing out the densities and adding these three equations, leads
to the boundary condition on the total volume flux (Eq. 11 in the main text),

i (0, Vo+ (1= 0y) V)) = Vo -+ ks (p — po) (S13)

Therefore, the equations in the main body of the paper for the dynamics of
the volume fraction, ¢, (Eq. 5), the conservation equation (Eq. 4), and the
boundary condition on the volume flux (Eq. 11) are equivalent to equations
derived from mass conservation (Egs. S6, S9, & S13). Note that here ¢, and
V} correspond to ¢ and V, respectively, in the main text. Force balance in
the bulk and on the boundary leads to equations for the velocities as well as
a boundary condition on ¢, which close the system of equations (See main
text).



