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1 The mathematical model

We assumed that the transmission of infection can occur through contacts between
susceptible and infected individuals, in which mass action incidence is used for sake
of simplicity. Previous work (Arino et al., 2006) shows that this simplification still
provides a good approximation to a more realistic situation in which other incidence
functions may be used. Since the period of a pandemic is expected to be short, we
ignore the effect of birth and natural death rates on the transmission dynamics of
infection. It is assumed that infected individuals under treatment can contribute
to disease transmission only through contacts with their healthcare providers. An-
tiviral treatment is assumed to reduce the infectious period and infectiousness of
a clinical case from when treatment is initiated (Ferguson et al., 2005, 2003). We
considered only susceptible healthcare workers for a prophylactic treatment that
reduces susceptibility, infectiousness if infection occurs, and the probability of de-
veloping clinical symptoms. These assumptions, with the model structure described
in the main paper (Figure 1), lead to the following sets of deterministic equations:

(a) General population:

S′ = −βQS,

E′ = βQS − µEE,

A′ = (1− p)µEE − µAA,

P ′ = pµEE − µP P,

I ′ = µP P − µI I,

I ′
U

= (1− ρ)µI I − (µU + dU )IU ,

I ′
T

= ρµI I − (µT + dT )IT ,

R′ = µAA + µU IU + µT IT ,

(1)
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(b) HCWs without prophylaxis:

S′
H

= −[βQ + βH QH ]SH ,

E′
H

= [βQ + βH QH ]SH − µEEH ,

A′
H

= (1− p)µEEH − µAAH ,

P ′
H

= pµEEH − µP PH ,

I ′
H

= µP PH − µI IH ,

I ′
HU

= (1− ρH )µI IH − (µU + dU )IHU ,

I ′
HT

= ρH µI IH − (µT + dT )IHT ,

R′
H

= µAAH + µU IHU + µT IHT ,

(2)

(c) HCWs with prophylaxis:

S′
HP

= −(1− αS )[βQ + βH QH ]SHP ,

E′
HP

= (1− αS )[βQ + βH QH ]SHP − µEEHP ,

A′
HP

= (1− pP )µEEHP − µAAHP ,

P ′
HP

= pP µEEHP − µP PHP ,

I ′
HP

= µP PHP − µI IHP ,

I ′
HPU

= (1− ρH )µI IHP − (µU + dU )IHPU ,

I ′
HPT

= ρH µI IHP − (µT + dT )IHPT ,

R′
HP

= µAAHP + µU IHPU + µT IHPT ,

(3)

where “ ′ ” denotes the derivative with respect to the time,

Q = δAA + δP P + I + δU IU + δAAH + δP PH + IH + δU IHU

+αP (δAAHP + δP PHP + IHP + δU IHPU ),

QH = δT (IT + IHT + αP IHPT ) + δAAH + δP PH

+αP (δAAHP + δP PHP ),

and the parameters are defined as

β: baseline transmission rate in the general population;
βH : baseline transmission rate within the healthcare setting;
µE : progression rate of exposed to pre-symptomatic infection;
µP : progression rate of pre-symptomatic to symptomatic infection (stage 1);
µI : progression rate of stage 1 to stage 2 symptomatic infection;
µA : recovery rate of asymptomatic infection;
µU : recovery rate of untreated symptomatic infection;
µT : recovery rate of treated symptomatic infection;
dU : death rate of untreated symptomatic infection;
dT : death rate of treated symptomatic infection;
δP : reduction in transmission of pre-symptomatic infection;
δA : reduction in transmission of asymptomatic infection;
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δU : reduction in transmission of untreated symptomatic infection;
δT : reduction in transmission of treated symptomatic infection;
αS : reduction in susceptibility due to prophylaxis;
αP : reduction in infectiousness due to prophylaxis;
p: probability of developing symptoms without prophylaxis;
pP : probability of developing symptoms with prophylaxis;
ρ: treatment level of the general population;
ρH : treatment level of healthcare workers.

An average incubation period (1/µE ) of 1.25 days (within the estimated range
1.48 ± 0.48 days) is associated with exposed cases (Ferguson et al., 2003), after
which infected individuals either develop clinical symptoms or undergo an asymp-
tomatic phase for the entire course of infection. Since influenza can be transmitted
before symptoms appear, we considered a relatively short pre-symptomatic infec-
tion (1/µP ) as an extension to previous work (Arino et al., 2006). This is consistent
with the assumption made in a recent modeling study for a 0.25-day delay since
the onset of clinical symptoms until diagnosis of the infected case (Ferguson et al.,
2003). Based on the infectiousness profile (Ferguson et al., 2003), we divided the
symptomatic infection into two stages including 1-day period (1/µI ) for high viral
shedding and a period (1/µU ) of 2.85 days for low viral shedding. This corresponds
to a mean infectiousness period of 4.1 days (including pre-symptomatic stage) for
the clinical infection (Ferguson et al., 2005, 2003; Longini et al., 2004, 2005). We
used the same infectious period (1/µA) for the asymptomatic infection. It is as-
sumed that stage 1 symptomatic infection provides the window of opportunity for
an effective treatment with maximum response of infected individuals to antiviral
drugs. Antiviral treatment is assumed to reduce the infectious period (1/µT ) by
1.5 days, and infectiousness by 60% from when treatment is initiated (Ferguson et
al., 2005, 2003). Prophylactic treatment of healthcare workers is assumed to reduce
susceptibility to infection by 30%, infectiousness if infection occurs by 60%, and the
probability of developing clinical symptoms by 65% (Ferguson et al., 2005, 2003).

Since the transmission rate within healthcare settings is influenced by the pres-
ence of asymptomatically (or even clinically) infected HCWs, susceptible HCWs may
be exposed to even higher level of exposure (Low & Wilder-Smith, 2005; Nguyen-
Van-Tam et al., 1999). This explains the appearance of the terms AH , PH , AHP

and PHP in the force of infection QH . Parameters for the level of treatment, as
explained in the main paper, depend on the availability of HCWs at time t. Let ν

and νH represent the fractions of clinical cases in the GP and HCWs, respectively,
which are effectively treated within a näıve healthcare system. We define ρ = θν

and ρH = θνH where θ is given by the expression (4) in the main paper. The pa-
rameter θ(t) represents the proportion of HCWs who provide care at time t during
a pandemic (including susceptible, exposed, asymptomatic, pre-symptomatic, and
recovered individuals), except those who are infected and clinically recognizable.
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Thus, at the onset of epidemic, θ = 1 and the treatment parameters reduce to ρ = ν

and ρH = νH . For the purpose of simulations, we assumed that 90% of clinical cases
in the GP (60% of infections) and 100% of those among HCWs are detected and
effectively treated (Ferguson et al., 2003), corresponding to ν = 0.9 and νH = 1,
when infection is introduced into the population.

2 Control reproduction number

Here, we will treat parameters ρ and ρH as constants by considering θ = 1, which
is sufficient for the calculation of the control reproduction number. This calcula-
tion involves the linearization of the model at the disease free equilibrium, which
coincides with the original model when ρ = ν and ρH = νH are constants. Also,
our need for the final size equation is to establish a relationship between the basic
(or control) reproduction number and the final size of the susceptible population
when the epidemic dies out. For this purpose, it again suffices to assume constant
treatment levels.

We may follow a previous approach (van den Driessche & Watmough, 2002) to
calculate the control reproduction number (Rc). We first simplify the model by
introducing new change of variables as follows:

x =




S

SH

SHP


 , y =




E

EH

EHP


 , zP =




P

PH

PHP


 , zA =




A

AH

AHP


 ,

i =




I

IH

IHP


 , iU =




IU

IHU

IHPU


 , iT =




IT

IHT

IHPT


 ,

and

f(x, y, zP , zA , i, iU , iT ) =




βQS

(βQ + βH QH )SH

αS (βQ + βH QH )SHP


 .

Then the model (1)-(3) can be written as the following system of equations

x′ =− f(x, y, zP , zA , i, iU , iT ),

y′ =f(x, y, zP , zA , i, iU , iT )− VEy,

z′
P

=VEP y − VP zP ,

z′
A

=VEAy − VAzA ,

i′ =VP zP − VI i,

i′
U

=VU i− VIU iU ,

i′T =VT i− VIT iT ,

(4)
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where

VE = µE I; VP = µP I; VA = µAI; VI = µI I; VIU = (µU + dU )I;
VIT = (µT + dT )I; VEP = VE − VEA ; VU = VI − VT ;

VEA = µE




1− p 0 0
0 1− p 0
0 0 1− pP ,


 ; VT = µI




ρ 0 0
0 ρH 0
0 0 ρH


 ,

and I is the identity matrix of size 3 × 3. Let X = [S, SH , αSSHP ]t and Y =
[0, SH , αSSHP ]t. We now define square matrices F and V as

F =




FE FP FA FI FIU FIT

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, V =




VE 0 0 0 0 0
−VEP VP 0 0 0 0
−VEA 0 VA 0 0 0

0 −VP 0 VI 0 0
0 0 0 −VU VIU 0
0 0 0 −VT 0 VIT




,

where FE = O3×3 zero matrix, and

FP = βX
[
1 1 αP

]
δP + βH Y

[
0 1 αP

]
δP ,

FA = βX
[
1 1 αP

]
δA + βH Y

[
0 1 αP

]
δA ,

FI = βX
[
1 1 αP

]
,

FIU = βX
[
1 1 αP

]
δU ,

FIT = βH Y
[
1 1 αP

]
δT .

Then, the control reproduction number is the spectral radius of the matrix FV −1

(van den Driessche & Watmough, 2002). Without prophylactic treatment, and con-
sidering HCWs in the general population, we have

F = βS0




0 δP δA 1 δU 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

V =




µE 0 0 0 0 0
−pµE µP 0 0 0 0

−(1− p)µE 0 µA 0 0 0
0 −µP 0 µI 0 0
0 0 0 −(1− ρ)µI µU + dU 0
0 0 0 −ρµI 0 µT + dT




.
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A simple calculation yields the following expression

Rc = βS0

((1− p)δA

µA

+
pδP

µP

+
p

µI

+
p(1− ρ)δU

µU + dU

)
. (5)

In the absence of antiviral treatment (ρ = 0), Rc reduces to the expression (5) in
the main paper for the basic reproduction number.

3 Final size relation

At the beginning of the epidemic, we assume that

S(0) + SH (0) + SHP (0) + I(0) + IH (0) + IHP (0) = C,

and other variables are zero, leading to

y(0) = zP (0) = zA(0) = iU (0) = iT (0) = 0.

For simplicity, we denote limt→∞ g(t) and
∫∞
0 g(s)ds by g(∞) and ĝ, respectively,

for any non-negative integrable function g defined on the interval 0 ≤ t ≤ ∞. It can
be easily shown that all compartments of exposed, pre-symptomatic, symptomatic
(treated or untreated), and asymptomatic infection tend to 0 as t →∞. Integrating
i′
T
, i′

U
, i′, z′

A
and z′

P
of the model (4) leads to

îT = V −1
IT

VT î, (6)

îU = V −1
IU

VU î, (7)

î = V −1
I

VP ẑP + V −1
I

i(0), (8)

ẑA = V −1
A

VEA ŷ, (9)

ẑP = V −1
P

VEP ŷ, (10)

Also, integrating the sum of x′ and y′ gives ŷ = V −1
E

(x(0)− x(∞)), and hence

ẑP = V −1
P

VEP V −1
E

(x(0)− x(∞)), (11)

ẑA = V −1
A

VEAV −1
E

(x(0)− x(∞)), (12)

î = V −1
I

VEP V −1
E

(x(0)− x(∞)) + V −1
I

i(0), (13)

Letting

W1 =
[
1 0 0

] (
δ

P
V −1

P
V

EP
+ δ

A
V −1

A
V

EA
+ V −1

I
V

EP
+ δ

U
V −1

IU
V

U
V −1

I
V

EP

)
V −1

E
,

W2 =
[
0 1 α

P

] (
δ

P
V −1

P
V

EP
+ δ

A
V −1

A
V

EA
+ V −1

I
V

EP
+ δ

U
V −1

IU
V

U
V −1

I
V

EP

)
V −1

E
,

W3 =
[
1 0 0

] (
1 + δU V −1

IU
VU

)
V −1

I
i(0),

W4 =
[
0 1 αP

] (
1 + δU V −1

IU
VU

)
V −1

I
i(0),

W5 =
[
0 1 αP

] (
δ

P
V −1

P
V

EP
+ δ

A
V −1

A
V

EA
+ δ

T
V −1

IT
V

T
V −1

I
V

EP

)
V −1

E
,

W6 =
[
1 1 α

P

]
δ

T
V −1

IT
V

T
V −1

I
i(0),
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it follows from (6)-(13) that

Q̂ = (W1 + W2)(x(0)− x(∞)) + W3 + W4,

Q̂H = W5(x(0)− x(∞)) + W6,

Integrating the equations for S′, S′
H

and S′
HP

gives

log S(0)− log S(∞) =
∫ ∞

0
βQ(t)dt = βQ̂, (14)

log SH (0)− log SH (∞) =
∫ ∞

0
βQ(t)dt +

∫ ∞

0
βH QH dt = βQ̂ + βH Q̂H , (15)

and

log SHP (0)− log SHP (∞) =
∫ ∞

0
βαSQ(t)dt +

∫ ∞

0
βH αSQH dt (16)

= αS

(
log SH (0)− log SH (∞)

)
, (17)

which lead to a relationship between the initial and final sizes of the susceptible
HCWs with and without prophylaxis as

SHP (∞)
SHP (0)

=
(SH (∞)

SH (0)

)(1−α
S

)
. (18)

The above equations in (14), (15) and (18) can be used to evaluate S(∞), SH (∞)
and SHP (∞) in terms of the model parameters, and determine the values of ŷ, ẑP ,
ẑA , î, îU and îT .

In the general population, assuming that W3 is small enough to be neglected,
the final size relation is given by

log
S0

S∞
=

Rc

S0
(S0 − S∞), (19)

where Rc is defined in (5) and S∞ is the size of susceptible population when the
epidemic dies out (Arino et al., 2006). In the absence of antiviral treatment, this
relation reduces to (6) in the main paper, which allows us to calculate R0 from
the assumed attack rate p(1 − S∞/S0). For the particular case of 30% clinical
attack rate in the general population, it follows that S∞/S0 = 0.5522, assuming
that 67% of infected individuals develops clinical symptoms. Taking into account
equation (6) in the main paper, we obtain the value of R0 = 1.3261. Thus, with the
parameter values given in Table 1 of the main paper, the expression for R0 provides
an estimation of β = 1.2214/S0 for the baseline transmission rate of infection. We
used the final size relation to estimate a range of β according to a range of 25%−35%
clinical attack rate in the GP. To determine the transmission rate in the healthcare
setting, we ran the simulations (given β for the GP) in the absence of treatment
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and prophylaxis, in order to estimate values of βH that correspond to a range of
attack rates among HCWs given by the relation p(1 − S∞/S0). Using S∞ and
S0 for HCWs, and assuming attack rates of 30% and 45% in the GP and HCWs,
respectively, simulations provide an estimation of βH = 4.9845/

(
SH (0) + SHP (0)

)
.

We used the estimated ranges of β and βH for performing an uncertainty analysis
of the model with a range of 25% − 35% for the reduction in susceptibility due to
prophylaxis (αS ). With the parameter values given in Table 1, we run the simulations
for samples generated by the LHS technique to calculate 1000 values of the averaged
control reproduction number (Ra) using the final size relation (19), as prophylaxis
coverage of HCWs increases. Box plots in Figure 3 of the main paper provide a
range of variations in Ra according to the changes in the clinical attack rates and
susceptibility of HCWs with prophylaxis. Figure 4 in the main paper shows the
ranges of variations in the total number of clinical infections and deaths during
the entire course of an outbreak. Our analysis shows that the predicted outbreak
dynamics is substantially affected by transmission rates; and the effectiveness of
healthcare worker prophylaxis reduces as these rates increase.
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