Appendix 1

Expectations and variances of off-diagonal elements of ¥ in equation (4) are
obtained basically from the distribution of sample correlation coefficients of
bivariate normal sample. We need the following three propositions.

Proposition 1 [An application of Theorem 5.1.5, p.151, p.156-157, [2]] Let &
be distributed as Wha(n, V') the Wishart distribution of degree of freedom n and
parameter V. Then the expectation and the variance of r = o12/\/011022 are

E(ry=p— 7/)(12;/))2 +0(n™?), var(r) = a=r) _np2)2 +0(n™?)

E:[Uu 012}’ V:[l P].
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Proposition 2 [Theorem 3.2.5, p.92, [2]] If & ~ Wy, (n, V) and C is k x m of
rank k then CXCT ~ Wy (n,CVCT).

Proposition 3 [Theorem 3.2.10 (i), p.93, [2]] Suppose ¥ ~ Wy, (n, V') where

_ |:211 212:| V= l:V11 V12:|
B ’ CVar Vao

and put $11.0 = 11 — L1255 Dot and Vizo = Viy — ViaViy Va1 Then
Y110 ~ We(n —m+k, Vi1.2)
where ¥11 and Vi1 are k X k matrices.

Now, let S = Z7Z and W = S~! where Z is an M x'm matrix whose row vec-
tors are generated from N, (0, V') independently and let W7, = (Zj;z ZZ; ) for
some indices 7 and 7, then from Proposition 3 we obtain Wﬁl = S11.0 ~ Wo(M—
m + 2,Vio) and U = (“” ”12> = diag(Vi1.2)~ V2 Wy  diag(Vir.e)~V/2 ~

U21  U22
Wo(M — m + 2, ([1)‘1))) for some p from Proposition 2. Let R = W;;' =

(:11 :12> . Then the following equations hold by simple calculations.
21 T22
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where p;; is the (i,7)-th component of ¥ in equation (3). Therefore, from
Proposition 1,

Y _ p(1—p)® _2
E(\/ﬁ) =P m+0((M—m+2) ),

up  (1=p?)?

var =
(\/U11U22) M*TTL+2

+O((M —m+2)72).



Since V' = L, xm, p = 0 in the simulations, we obtain

Wi -2

——)=0((M -m+2)77),

WiiWyj
1

Wi ): T
VWi W5 M—m+2

E(pij) = E(

var(pij) = var( O((M —m+2)72).

Appendix 2

Figure S1 shows results of FDR estimates of SAM under dependence. In the
figure, the bias patterns of SAM still exist even for large sample size and we
investigate possible reasons for that phenomena based on three distinct factors
of SAM.

To understand these biases of SAM under strong dependence in estimating
FDR, first we considered that SAM uses a test statistic different from the ordi-
nary two sample t-statistic, which incorporates the idea of stabilization of gene-
wise variance. Second, the 7y estimation of SAM was considered. Third, since
null distributions of the SAM statistic are estimated by permutation, we com-
pared the true distribution and the permutational null distribution by the Monte
Carlo method. Additionally, the random variance model [3] which assumes an
inverse gamma distribution for overall gene variance was used to estimate FDR
and was compared with SAM’s gene-wise variance estimation.

We used the same correlation matrices as in the Results section for mg = 0.8.
For the Monte Carlo study, we generated data for B = 1000 times. In particular,
sample sizes are given 10, 25,50 and 100 to see effects of high dimensionality on
the FDR estimation.

First, we considered the fudge factor sqg of SAM which stabilizes gene-wise
variance estimations. Figure S4 shows estimates of the fudge factor decrease
as sample size increases. Hence for sufficient large sample size, we may expect
the SAM statistic behaves similar to the ordinary two group t-statistic and
dependence patterns for FDR estimates of SAM can be similar to those of two
sample t-statistic. Variance modeling approach by [3] also shows that FDR
estimates of their approach become closer to the nominal level 0.1 as sample
size increases. Therefore, for large sample, the random variance model suggested
by [3] performed well on overall FDR estimation while the convergence of the
fudge factor of SAM estimation doesn’t seem to decrease the biases of SAM
FDR estimation.

Second, Figure S3 shows 7 estimates of SAM become closer to true o = 0.8
as sample size increases. Similarly, we can expect that SAM estimates of 7
converge to true mg when sample size is sufficiently large. Also, the performance
of my estimation, likewise the fudge factor of SAM doesn’t seem to improve the
performance of SAM FDR estimation.

Third, we considered distributions of permutational null model implemented
in SAM. Since FDR estimation mainly concerns tail distributions of test sta-
tistics, we computed average 5th and 95th quantiles under permutational null
hypothesis for B = 1000 times. Figure S5, S6 and S7 show that the spread of



5th and 95th quantiles of true distribution of dependence case (edge density is
0.2) is wider than that of independence case (edge density is 0.0). Considering
the following SAM FDR estimation equation, we may conclude that since the
tail quantiles of true distribution are wider, more false positives are rejected
in the numerator of the equation and that causes SAM FDR estimation to be
larger than those of the SAM permutational null distribution. Comparing Fig-
ure S6 with S7, we observe that this phenomena do not disappear even when we
increase the number of permutation from 200 to 1000. Therefore SAM’s biases
under dependence circumstance as in the Results section seem to be caused by
the high-dimensionality and insufficient performance of permutation under that
situation. Note SAM FDR estimation equation is

g erays
FDR(A) = fo i € T(A))

where I'(A) = [cutiow(A), cuty,(A)]° and d; = Z;/(s; + so). For detailed ex-
planation of the above equation, see the Users guide and technical document of
SAM.
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Figure S1: FDR estimation using SAM when sample size are 10 (solid 1), 25
(dashed 2), 50 (dotted 3), 100 (dash-dotted 4).
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Figure S2: FDR estimation using random variance model when sample size

are 10 (solid 1), 25 (dashed 2), 50 (dotted 3), 100 (dash-dotted 4).
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Figure S3: 7 estimation using SAM when sample size are 10 (solid 1), 25
(dashed 2), 50 (dotted 3), 100 (dash-dotted 4).
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Figure S4: sp estimation using SAM when sample size are 10 (solid 1), 25
(dashed 2), 50 (dotted 3), 100 (dash-dotted 4).
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Figure S5: 5th and 95th quantiles for permutation distribution (blue line),
estimated true distribution (red line) and A cut-offs (dashed line) for SAM when
internal SAM permutation number is 200 and 1000 generated sample based on
the Monte Carlo method. Edge density of this plot is 0.0.
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Figure S6: 5th and 95th quantiles for permutation distribution (blue line),
estimated true distribution (red line) and A cut-offs (dashed line) for SAM when
internal SAM permutation number is 200 and 1000 generated sample based on
the Monte Carlo method. Edge density of this plot is 0.2.
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Figure S7:  5th and 95th quantiles for permutation distribution (blue line),
estimated true distribution (red line) and A cut-offs (dashed line) for SAM
when internal SAM permutation number is 1000 and 1000 generated sample
based on the Monte Carlo method. Edge density of this plot is 0.2.
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FDR under dependence
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Figure S8: Average FDR results under dependence when true difference is dis-
tributed as standard normal and w9 = 0.8, BH(1, dashed black), BY(2, dashed
red), SAM(3, dotted green), Qvalue(4, dot-dashed blue), ABH(5, dashed cyan).
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T estimation under dependence
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Figure S9: Average my estimates under dependence when true difference is
distributed as standard normal and 7y = 0.8, SAM(1, solid black), Qvalue(2,
dashed red), ABH(3, dot-dotted green), Convex(4, dotted blue).
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FDR under dependence
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Figure S10: Average FDR results under dependence when my = 0.99 and fixed
true difference, BH(1, dashed black), BY (2, dashed red), SAM(3, dotted green),
Qvalue(4, dot-dashed blue), ABH(5, dashed cyan).
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T estimation under dependence
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Figure S11:

Average Ty estimates under dependence when 7y = 0.99 and fixed
true difference, SAM(1, solid black), Qvalue(2, dashed red), ABH(3, dot-dotted
green), Convex(4, dotted blue).
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FNR under dependence
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Figure S12: Average FNR results under dependence when my = 0.95. BH
(dashed red), BY (dotted green), SAM (dot-dashed blue), Qvalue (dashed cyan),
ABH (purple), the upper limit RBH (dashed black), the point RBH (dotted red).
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T estimation under dependence
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Figure S13: Average 7 estimates under dependence when my = 0.95. SAM
(solid black), Qvalue (dashed red), ABH (dotted green) and the convex estima-
tor of Langaas et al[1] (dot-dashed).
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Figure S14: Variances of correlations and FDR(c¢g 1) when 7y = 0.95. The solid
line represents variance of correlations and the dashed line represents FDR(c).
For comparison, we transform var(p;;) to var(p;;)/10+0.1 so that two quantities
have same scale.
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