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Summary Platinum-based drugs are very useful in cancer therapy but are associated with neurotoxicity in the clinic. To investigate the
mechanism of neurotoxicity, dorsal root ganglia of rats treated with various platinum drugs were studied. Cell body, nuclear and nucleolar
dimensions of dorsal root ganglia sensory nerve cells were measured to determine morphological toxicity. Sensory nerve conduction velocity
was measured to determine functional toxicity. After a single dose of oxaliplatin (10 mg kg–1), no significant change in nuclear and cell body
diameter was seen but decreased nucleolar size was apparent within a few hours of treatment. Changes in nucleolar size were maximal at
24 hours, recovered very slowly and showed a non-linear dependence on oxaliplatin dose (r2 = 0.99). Functional toxicity was delayed in onset
until 14 days after a single dose of oxaliplatin but eventually recovered 3 months after treatment. Multiple doses of cisplatin, carboplatin,
oxaliplatin, R, R-ormaplatin and S, S-ormaplatin were also associated with time-dependent reduction in nucleolar size. A linear correlation
was obtained between the rate of change in nucleolar size during multiple dose treatment with the series of platinum drugs and the time taken
for the development of altered sensory nerve conduction velocity (r2 = 0.86; P < 0.024). Damage to the nucleolus of ganglionic sensory
neurons is therefore linked to the neurotoxicity of platinum-based drugs, possibly through mechanisms resulting in the inhibition of rRNA
synthesis. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Platinum-based drugs are widely used in cancer chemotherapy and
have been associated with improved cure rates and survival-time
of patients with testicular (Einhorn, 1998), cervical (Thomas,
1999) and ovarian cancer (Ozols, 2000). Platinum-based drugs are
also associated with a number of side effects in the clinic that
impede their application in cancer therapy. Considerable progress
has been made in the clinical management of acute emesis, throm-
bocytopenia and nephrotoxicity (reviewed in McKeage, 2000).
Peripheral neurotoxicity remains a significant problem and the
dose-limiting toxicity for cisplatin (Ozols et al, 1988), oxaliplatin
(Extra et al, 1998; Misset, 1998) and ormaplatin (Schilder et al,
1994; O’Rourke et al, 1998). In the form of sensory neuropathy
and ototoxicity, this toxicity remains a major obstacle to the
clinical application of platinum drugs. 

Clinical features of the neurotoxicity suggest that dorsal root
ganglia are a site of toxicity (Thompson et al, 1984). Dorsal root
ganglia are discrete collections of nervous tissue located near the
spine and contain the cell bodies of the peripheral sensory nerve
cells. Dorsal root ganglia have no blood–brain barrier and accumu-
late high levels of platinum drugs compared to tissues such as
brain and spinal cord that are protected by the barrier (Thompson
et al, 1984; Gregg et al, 1992; Screnci et al, 1997, 2000).
Morphological changes have been documented in dorsal root
ganglia after platinum drug treatment involving these sensory
nerve cells (Tomiwa et al, 1986; Muller et al, 1990; Cavaletti et al,
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1992, 1998; Cece et al, 1995a; Stacchiotti et al, 1995; Holmes
et al, 1998). Changes in ganglion-supporting cells appear simply
reactive to the damaged neurons (Cece et al, 1995b). The mecha-
nism of neurotoxicity therefore appears to involve damage to
sensory nerve cells within dorsal root ganglia, but exactly how the
damage comes about is unclear. 

The biological target of platinum drugs involved in their cancer
chemotherapeutic activity is widely regarded to be DNA.
Platinum drugs react with DNA forming intra-strand and inter-
strand cross-links, and distorting the DNA template (Jamieson
and Lippard, 1999). The DNA damage caused by platinum drugs
inhibits the replication of DNA, an effect considered to play a
possible role in their action against replicating tumour cells
(Harder and Rosenberg, 1970). Their mode of action has also
been proposed to involve the generation of cellular signals in
response to the detection of DNA damage, leading to cell cycle
arrest and the induction of programmed cell death (Sorenson et al,
1992; Fink and Howell, 2000). Neither mechanism readily
explains the neurotoxicity of platinum drugs since the sensory
neuron cells contained within dorsal root ganglia are post-mitotic
cells and therefore are not carrying out DNA replication or
moving through the cell cycle. 

To investigate the mechanism of neurotoxicity associated with
platinum drugs, we studied the dorsal root ganglia of rats after
treatment with platinum drugs to determine the time course of
histological toxicity and the relationship to functional neurotoxi-
city. Changes to the nucleoli of dorsal root ganglia sensory nerve
cells occurred very early after platinum drug treatment and corre-
lated with the subsequent development of functional neurotoxicity
as determined by changes in nerve conduction. 
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METHODS 

Drugs 

Cisplatin and carboplatin were purchased from Sigma (St Louis,
MO, USA). Oxaliplatin and the R, R-and S, S-enantiomers of
ormaplatin were synthesised as outlined previously (Screnci et al,
1997). 

Animals and treatment 

Age-matched outbred female Wistar rats were used. Animals were
acclimatised to handling for 2 weeks prior to the start of the exper-
iment. The animals were 10 weeks old and weighed between 200
and 250 grams at the start of the experiment. Solutions of platinum
drugs were prepared in 0.9% (w/v) NaCl (Baxter Healthcare, New
Zealand) by vortex mixing and sonication at an injection volume
of 10 ml kg–1 body weight. The platinum drugs were administered
by intraperitoneal injection. Control animals received the drug
vehicle alone. The University of Auckland Animal Ethics
Committee approved the project and the animal ethics meet the
requirements of the UKCCCR guidelines. Animals had continuous
access to food and water. Animals were weighed and checked for
signs of drug toxicity at least twice per week. Any animals
showing signs of distress were immediately and painlessly killed. 

Dorsal root ganglia morphology 

Animals were first deeply anaesthetised with sodium pentobarbi-
tone (Chemostock Animal Health Ltd, Christchurch, New
Zealand) at a dose of 90 mg kg–1. Intra-cardiac paraformaldehyde
perfusion was carried out by giving 60 ml of 0.9% sodium chlo-
ride followed by 60 ml of 4% paraformaldehyde. L5 dorsal root
ganglia were dissected out and placed in 4% paraformaldehyde. To
prepare tissues, dorsal root ganglia (DRG) were washed, dehy-
drated, cleared in xylene and then embedded in paraffin. Dorsal
root ganglia were sectioned into 6 sections, mounted and stained
with haematoxylin and eosin. Typically, between 80 to 100
sections were produced per DRG. Cellular dimensions were
measured using a method adapted from Tomiwa et al. (1986) and
Coggelshall et al (1990). A number was chosen at random between
1 and 9 to indicate the first section of the dorsal root ganglion to
analyse. Perpendicular diameters of the cell body, nucleus and
nucleolus of light-staining large-diameter nerve cells with clearly
visible nucleoli were measured using an ocular micrometer and an
oil immersion lens at 1000 times magnification. Measurements
were then repeated in every tenth section at regular intervals
throughout the dorsal root ganglion. Morphometric parameters
from the 10 largest nerve cells in each dorsal root ganglion were
averaged to provide cell body, nucleus and nucleolus diameter
values for each animal. 

Sensory nerve conduction velocity (SNCV)
determinations 

SNCV was calculated from recordings of evoked H-plantar
responses as previously described (McKeage et al, 1994). Briefly,
animals were first lightly anaesthetised with intramuscular
Hypnorm (Jansen Pharmaceuticals, Sydney, Australia) diluted 1:1
with sterilised water. Responses were evoked by electrically stimu-
lating the sciatic nerve at the sciatic notch and the tibial nerve at the
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ankle of the left hind limb with percutaneous needle electrodes. H-
and M-waves were recorded via a pair of superficial silver–silver
chloride electrodes applied to the plantar and dorsal surfaces of the
left hind limb. SNCV was calculated by dividing the distance
between the stimulation sites at the sciatic notch and ankle by the
difference in H-response latency after stimulation at the 2 sites. 

Statistical analysis 

The statistical significance of differences between means was
assessed using a t-test. The statistical significance of relationships
between experimental parameters was assessed by linear and non-
linear regression analysis using GraphPad Prism Version 3
(GraphPad Software, CA, USA). A two-sided P value of < 0.05
was regarded as indicating statistical significance. 

RESULTS 

DRG morphology 

Changes in DRG morphology have previously been documented
in rats after treatment with multiple doses of cisplatin and other
platinum drugs (Tomiwa et al, 1986; Muller et al, 1990; Cavaletti
et al, 1992, 1998; Cece et al, 1995a, 1995b; Stacchiotti et al, 1995;
Holmes et al, 1998). To determine the effects of a single dose of a
platinum drug, DRG were collected from animals 24 hours after
giving a injection of oxaliplatin of 10 mg kg–1. The large diameter-
light staining DRG nerve cells were the most affected and
shrinkage of the nucleolus and cell body the most obvious changes
(Figure 1). 

Time-course of DRG changes 

To define the time-course of histologic toxicity after a single dose
of oxaliplatin, DRG were collected for morphometry at 0, 2, 5, 8
and 24 hours, and at 2, 4, 7 and 14 days, after a single injection of
10 mg kg–1. Control animals were given drug vehicle alone.
Decreased nucleolar size was apparent within only a few hours of
the treatment (Figure 2A) and nucleoli were maximally affected
24 to 48 hours after a single dose of oxaliplatin. Slow and partial
recovery of nucleolar size began 48 hours after treatment. The
nucleolus diameter was more affected than the nuclear and cell
body dimensions by oxaliplatin (Figure 2B, C). Decreased nucle-
olar size was therefore the major quantitative change in DRG to be
documented following a single dose of oxaliplatin and came on
within a few hours of the treatment. 

Dose-dependence of DRG changes 

To determine the dose-dependence of the DRG toxicity, animals
were either untreated or treated with single doses of oxaliplatin
(0.3, 1, 3, 10 and 30 mg kg–1). DRG were collected 24 and 96
hours after treatment. Nucleolar size showed a non-linear depen-
dence on dose at 24 hours (r2 = 0.99) (Figure 3A) and again at 96
hours (r2 = 0.97) (Figure 3B). Nuclear size showed a linear trend of
dose-dependence at 96 hours (r2 = 0.70, P < 0.0001, Figure 3C) but
not at 24 hours. Cell body size also showed a linear trend of dose-
dependence at 96 hours (r2 = 0.61, P < 0.0006, Figure 3D) but not
at 24 hours. Nucleolar and other DRG changes therefore depended
on the dose of oxaliplatin. 
© 2001 Cancer Research Campaign
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Figure 1 Section of a dorsal root ganglion before (A) and 24 hours after
oxaliplatin (B) 

0 2 4 6 8
Days

10 12 14

3

4

5

6

N
uc

le
ol

us
 d

ia
m

et
er

 (
µ) 7

8

A

0 2 4 6 8
Days

10 12 14

15

20
N

uc
le

us
 d

ia
m

et
er

 (
µ)

25

30

B

0 2 4 6 8
Days

10 12 14

50

60

70

C
el

l b
od

y 
di

am
et

er
 (

µ) 80

90

C

Figure 2 Time-course of histological toxicity in DRG of rats after a single
dose of oxaliplatin at 10 mg kg–1 (25 µmol kg–1). Nucleolar (A), nuclear (B)
and cell body diameters (C) were determined at various times after
oxaliplatin (▲) and drug vehicle alone (■ ). Symbols represent the mean and
standard error of the mean of 3 to 4 animals 
Time-course of SNCV 

To define the time-course of functional neurotoxicity after a single
dose of oxaliplatin, SNCV was measured at 1, 4, 7, 14, 35, 56, 77,
98 and 119 days after a single injection of 10 mg kg–1. The pres-
ence of toxicity was indicated by statistically significant differ-
ences in the mean SNCV values between the treatment and control
groups. SNCV increased from 35 to 45 m s–1 in the control group
as the animals matured during the experiment. The onset of func-
tional neurotoxicity was delayed until 14 days after the time of
© 2001 Cancer Research Campaign
giving the single dose of oxaliplatin (Figure 4, Table 1). SNCV
then slowly recovered so that by 120 days there was no difference
in the mean SNCV values between the treatment and control
groups. The onset of functional neurotoxicity was therefore
delayed until well after the onset of DRG histological changes.
Eventually there was complete recovery of SNCV. 
British Journal of Cancer (2001) 85(8), 1219–1225
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Table 1 Time-course of sensory nerve conduction velocity (SNCV) in rats
after a single dose of oxaliplatin (10 mg kg–1 or 25 µmol kg–1). Control
animals were given drug vehicle alone 

Time SNCV (Mean ± SD, n = 23–25) 

(days) Control Oxaliplatin P

0 37.0 ± 4.05 35.3 ± 3.17 0.1009 
1 36.4 ± 5.39 34.9 ± 3.30 0.2340 
4 37.6 ± 3.05 36.3 ± 3.78 0.2085 
7 38.8 ± 4.82 36.8 ± 5.75 0.1453 

14 41.3 ± 3.66 38.0 ± 3.88 0.0035 
35 46.4 ± 3.31 43.1 ± 3.65 0.0021 
56 46.4 ± 4.38 43.7 ± 3.70 0.0343 
77 48.3 ± 3.72 46.4 ± 3.51 0.08 
98 48.4 ± 3.94 44.8 ± 3.15 0.0045 

119 48.4 ± 4.04 47.8 ± 4.31 0.42 
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Figure 3 Dose-dependent changes in DRG morphology. Nucleolar diameters were measured at 24 hours (A) and 96 hours (B) after single doses of
oxaliplatin. Nuclear (C) and cell body (D) diameters were measured at 96 hours 
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Figure 4 Time-course of sensory nerve conduction velocity in rats given a
single dose of oxaliplatin ((▲), 10 mg kg–1 or 25 µmol kg–1). Control animals
were given drug vehicle alone (■ ). Symbols represent the mean and
standard error of the mean (n = 23–25). **, P < 0.005; *, P < 0.05 
DRG changes during repeated-dose treatment 

To determine the effect of multiple doses of different platinum
drugs on DRG nucleolar size, animals were treated twice per week
for 8 weeks with cisplatin, carboplatin, oxaliplatin, R,R-ormaplatin
and S,S-ormaplatin at the maximum tolerated dose. DRG were
collected after 14, 24, 36, 48 and 56 days of treatment. Time-
dependent reductions in nucleolar size occurred with each of the
different platinum treatments (Figure 5). The rate of change in
nucleolar size varied (by 3-fold) among the different platinum
drugs from –0.0169 to –0.0454 µ day–1 (Table 2). Oxaliplatin
caused a significantly faster rate of change in nucleolar size, and
carboplatin caused a significantly slower rate of change, than
cisplatin, carboplatin or S,S-ormaplatin (Table 3). Slower changes
British Journal of Cancer (2001) 85(8), 1219–1225
in the DRG nucleolus with carboplatin correspond with lower clin-
ical neurotoxicity compared to other platinum drugs (Screnci et al,
2000). Repeated dose treatments of oxaliplatin and other platinum
drugs were therefore associated with DRG nucleolar changes. 

Relationship between histological and functional
toxicity 

We have previously measured SNCV after 7, 14, 21, 28, 35, 42, 49
and 56 days of repeated dose treatment given twice per week for 8
© 2001 Cancer Research Campaign
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Table 3 Statistical significance (two-tailed P values) of differences in regression slopes for
nucleolar change 

Cisplatin Carboplatin Oxaliplatin R,R-ormaplatin S,S-ormaplatin 

Cisplatin – 0.0007 < 0.0001 0.0429 0.6131 
Carboplatin – < 0.0001 < 0.0001 0.0001 
Oxaliplatin – 0.0705 < 0.0001 
R,R-ormaplatin – 0.096 
S,S-ormaplatin –
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Figure 5 Time-course of changes in nucleolar diameter of dorsal root
ganglia of rats during administration of cisplatin 3.33 µmol kg–1 (■ ),
carboplatin 21.6 µmol kg–1 (● ), oxaliplatin 2.5 µmol kg–1 (▲), R, R-ormaplatin
2.6 µmol kg–1 (❏ ) and S,S-ormaplatin 2.6 µmol kg–1 (●● ) repeated twice per
week for 8 weeks. Error bars represent the standard error of the mean 

Table 2 Linear regression parameters of time-dependent changes in nucleolus size in dorsal root ganglia neurons 

Cisplatin Carboplatin Oxaliplatin R,R-ormaplatin S,S-ormaplatin 

Slope (µ day–1) – 0.02929 – 0.016909 – 0.04538 – 0.03791 – 0.03097 
Y-intercept (µ) 4.73 4.82 4.69 4.61 4.69 
r2 0.8785 0.5886 0.9441 0.8513 0.8929 
P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
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Figure 6 Linear correlation between change in DRG nucleolar size and
functional neurotoxicity (r2 = 0.858; P = 0.0237). Symbols represent cisplatin
(■ ), carboplatin (● ), oxaliplatin (▲), R,R-ormaplatin (❏ ) and S,S-ormaplatin
●● . Error bars are the standard error of the regression coefficient 
weeks with cisplatin, carboplatin, oxaliplatin, R,R-ormaplatin and
S,S-ormaplatin at the same doses as used above (Screnci et al,
2000). To determine whether histological changes were related to
functional neurotoxicity, SNCV determinations were correlated
with DRG nucleolar size. A linear correlation was obtained
between the rate of change in nucleolar size and the amount of
treatment time taken for the development of altered SNCV (r2 =
0.86; P = 0.02) (Figure 6). Platinum treatments causing faster
changes in nucleoli size caused were more functional neurotoxi-
city than those causing slower nucleolar disturbance. Changes in
nucleolar size were therefore linked with the functional neurotoxi-
city of platinum drugs. 

DISCUSSION 

Oxaliplatin was a particular focus of our study because of the well-
documented prominent neurotoxicity associated with the use of
this platinum drug in the clinic (Extra et al, 1998; Misset, 1998).
Acute neurotoxicity symptoms (distal paraesthesias and cold-
related dysaesthesias) are common, appearing within a few hours
of a single dose of oxaliplatin and lasting for up to 7 days. In the
© 2001 Cancer Research Campaign
experiments described here, we demonstrate oxaliplatin-induced
morphological changes in DRG with a similar time of onset.
Following a single dose of oxaliplatin, changes in nucleolar size
appeared within 2 hours. Nucleolar changes also showed a non-
linear dependence on the dose of the platinum drug. Early nucle-
olar changes in DRG sensory nerve cells could possibly be the
basis for the acute neurotoxicity symptoms that occur within a few
hours of clinical infusions of oxaliplatin. 

A peripheral sensory neuropathy may also develop clinically
following repeated doses of oxaliplatin, and depend upon the
cumulative dose (Extra et al, 1998; Misset, 1998). Neurotoxicity
signs and symptoms are generally reversible and disappear over
several months after the treatment has been completed. In the rat
model, the changes in DRG morphology are only slowly
reversible, suggesting that repeated dosing would give rise to
cumulative toxicity. This is evident in the changes in SNCV, which
were delayed in onset until at least 14 days after treatment.
Functional neurotoxicity induced by oxaliplatin eventually recov-
ered several months after a single dose of the drug while morpho-
logical changes persisted. The pattern of experimental toxicity
therefore appears to reflect the various manifestations of the
British Journal of Cancer (2001) 85(8), 1219–1225
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neurotoxicity associated with oxaliplatin in the clinical setting,
particularly its acute onset, development of cumulative sensory
neuropathy and functional reversibility. 

Previous studies of DRG morphology have consistently
described the nucleolus of sensory nerve cells as being among the
most frequently and severely affected structures in the peripheral
nervous system by platinum drugs (Tomiwa et al, 1986; Muller
et al, 1990; Cavaletti et al, 1992, 1998; Cece et al, 1995a, 1995b;
Stacchiotti et al, 1995; Holmes et al, 1998). The present findings
strengthen the association between nucleolar changes in DRG
sensory nerve cells and the neurotoxicity for a series of platinum
drugs with differing degrees of associated neurotoxicity. When
different platinum drugs were given repeatedly over several
weeks, their neurotoxicity correlated with the rapidity of change in
nucleolar size. Thus, the findings presented above provide further
evidence that the nucleolus of the DRG sensory nerve cell is both
an initial and critical target within the peripheral nervous system
for platinum drugs. 

Nucleolar changes have also been associated with other forms
of platinum toxicity. Nucleoli of renal tubular epithelial cells of
rats become highly condensed and segregated into fibrillary and
granular components prior to the onset of many of the other struc-
tural and functional changes that accompany cisplatin-induced
renal toxicity (Lehane et al, 1979; Jones et al, 1985). In primary
cultures of rat renal proximal tubule cells, exposure to cisplatin
results in nucleolar disintegration, disruption of the rough endo-
plasmic reticulum and inhibition of protein synthesis (Leibbrandt
et al, 1995). Interference with nucleolar function may therefore be
the basis for several of the side effects associated with the clinical
use of platinum drugs. 

Nucleolar shrinkage and disintegration are recognised as typical
changes occurring as a result of transcriptional arrest (Brasch,
1990). The nucleolus is normally a very prominent structure in
DRG sensory nerve cells (Schwatz, 1991), presumably because of
the substantial amounts of rRNA and protein synthesis occurring
within these cells (Shaw and Jordan, 1995). 

Changes in nucleolar size induced by platinum drugs in DRG
sensory nerve cells could therefore be accounted for by the inhibi-
tion of rRNA synthesis, which is a known effect of platinum-based
antitumour drugs (Jordon and Carmo-Fonseca, 1998). 

The mechanism of such inhibition is not yet clearly established.
DNA-adducts formed by cisplatin can cause premature termina-
tion of transcription at sites of 1,2-intrastrand d(GG) and d(AG)
cross-links, thus directly blocking the progress of RNA poly-
merase I along the DNA template (Lemaire et al, 1991). An alter-
native mechanism (Treiber et al, 1994; Vichi et al, 1997; Zhai et al,
1998) is that 1,2-intrastrand d(GG) adducts sequester nucleolar
transcription factors human upstream binding factor (hUBF) and
TATA box-binding protein (TBP), thereby reducing the amount of
transcription factors available for initiation of rDNA transcription
HeLa cells exposed to cisplatin exhibit a redistribution of nucle-
olar transcription factors (Jordan and Carmo-Fonseca, 1998).
However, although such effects can be demonstrated in vitro, the
number of platinum DNA adducts associated with clinical treat-
ment is of the order of 400 per genome (Poirer et al, 1992). The
frequency of adducts (about one adduct per 15 million base pairs)
may not be sufficient to block rDNA transcription directly.
Furthermore, since there are a number of copies of tandemly
repeated rDNA and presumably an even higher number of tran-
scription factors, it is questionable whether the decoy mechanism
could account for the magnitude of the effects observed.
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Furthermore, if both cytotoxicity and neurotoxicity are the result
of the same types of DNA adduct, a mechanism must be provided
for the apparent dissociation of antitumour and neurotoxic effects. 

Our previous study (Screnci et al, 2000), using a similar series
of drugs, demonstrated that neurotoxicity did not correlate with
peripheral nerve accumulation, nor with drug lipophilicity.
However, serum protein reactivity correlated with neurotoxicity, in
both rats (r = 0.89; P = 0.0005) and patients (r = 0.99; P = 0.0002).
Consideration might therefore be given to the possibility that reac-
tion with intracellular proteins is important for inhibition of rRNA
synthesis. Cisplatin is known to react with unusual sites in proteins
(Ivanov et al, 1998) and could, for example, affect rRNA synthesis
through binding directly to transcription factors. Whatever the
exact mechanism, disruption of rRNA synthesis could be the basis
for the changes in nucleolar structure in DRG sensory nerve cells
of rats treated with platinum drug described here and elsewhere. 

In summary, reduction in nucleolar size is the major quantitative
histological change in DRG sensory nerve cells of rats after treat-
ment with platinum drugs. Changes in the size of the nucleoli of
DRG sensory nerve cells are also dose-related, occur early after
treatment and correlate with the development of functional neuro-
toxicity as measured by altered SNCV. Measurement of DRG
nucleolar size may therefore have utility in assessing the neuro-
toxic potential of new platinum drugs. The method could also be
applied ex vivo using short-term cultures of DRG but validation of
the in vitro system will first be required. Nucleolar dimensions
could also be a useful endpoint for studies of strategies to lessen
neurotoxicity. The results of this study are consistent with a model
of neurotoxicity where the arrest of rRNA synthesis leads to
reduced protein synthesis and reduced function of DRG sensory
nerve cells. 
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