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Summary Antiangiogenic and antivascular agents provide new approaches to treating tumours. These may avoid many of the problems
experienced with current approaches such as inherent and acquired resistance to treatment. Tumours do not grow beyond 1–2 mm3 in size
without the development of new vessels (Folkman, 1971). Such neo-vascularization (angiogenesis) allows tumour cells to increase their
nutrient supply, survive and proliferate despite the new vessels often having structural and functional differences compared to normal tissue
vasculature. Treatments targeted at tumour vasculature have produced impressive results in animal models (Lindsay et al, 1996; Watson et al,
1996; O’Reilly, 1997; Horsman et al, 1998). These therapies are now entering clinical trials. However, the successful introduction of these
therapies into clinical practice will require the development of reliable ways to assess angiogenesis and its modification or inhibition in vivo.
Here we discuss some of the emerging imaging techniques that may be useful. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Tumour blood supply is complex. The tumour phenotype does not
have the normal arteriole/capillary/venule complex. Significant
shunting via anastomotic vessels and deranged vasculature are
common features. The capillary bed responsible for nutrient
supply in normal tissue comprises only about 5% of the total tissue
vasculature (Jain, 1988). In tumours this can be less and in addi-
tion, not all the capillary bed functions efficiently. Thus, in
tumours despite apparently good blood supply, the all-important
capillary bed is often deficient, leading to tumour hypoxia and
necrosis. 

Antiangiogenesis therapy is aimed at inhibiting new endothelial
cell development to prevent tumour growth and metastasis.
Antivascular therapy directly targets existing endothelial cells
leading to destruction of the tumour vasculature, which will then
result in tumour cell death. 

The effects of antivascular agents may be the easier to define.
The direct consequence of destroying a tumours vascular supply
would be a reduction in the blood flow. Combretastatin A4
Phosphate an antivascular agent in animal models has been shown
to acutely reduce the blood flow to tumours in vivo (Anderson 
et al, 2000). The accurate and reproducible measurement of blood
flow seems a reasonable measure for this type of agent. Indirect
measures of the effects of vascular shutdown may also be useful in
assessing the more chronic effects of these agents, for example,
changes in extent or degree of hypoxia. 

The effects of antiangiogenic agents may be more difficult to
determine. Most antiangiogenic agents have an inhibitory effect
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i.e. they work by preventing the formation of new blood vessels.
They do this by a wide range of mechanisms that may produce
different effects in the tumour at different time points. For
example, an anti-VEGF agent may produce early changes in
vascular permeability, followed by changes in the interstitial pres-
sure of a tumour with later reduction in the number of new blood
vessels formed. The exact pathophysiological endpoints of the
various antiangiogenic approaches and how they are best assessed
needs to be identified. In vivo animal data prior to clinical assess-
ment may provide a guide to the anticipated physiological
changes. 

CURRENT ASSESSMENT METHODS 

At present the most widely used static, invasive method to assess
human solid tumour angiogenesis is quantification of intratumoral
microvessel density (IMD) in biopsy material. Antibodies binding
to endothelial cell markers are quantitated by immunohistochem-
ical techniques. The degree of IMD is thought to reflect the inten-
sity of tumour angiogenesis. A correlation between IMD and
angiogenic factor expression, tumour growth, the occurrence of
distant metastasis and prognosis have been reported (Gasparini,
1996). IMD is currently considered the gold standard for histolog-
ical assessment of the degree of angiogenesis within a tumour.
Measuring change in IMD in response to therapy requires repeat
biopsy. Other surrogate markers for changes in angiogenesis have
been suggested, such as changes in plasma/urinary levels of VEGF
or changes in endothelial proliferation markers such as CD105
(endoglin), a receptor for transforming growth factor (TGF) in
vascular endothelial cells which is highly up-regulated in blood
vessels of tissues where neovascularisation occurs (Crew et al,
1999; Davies et al, 2000). 
1085



1086 H Anderson et al
Current clinical trials of the new antiangiogenesis therapies
have incorporated a number of endpoints in an attempt to look for
a correlation of various measures of endothelial cell damage/turnover
with a suggestion of activity. For example, Wamil et al (1997) used
soluble E selectin levels to measure the effects of CM101, an anti-
neovascular agent as proof of endothelial engagement in an inflam-
matory process. 

However, there is as yet no one definitive measure of the effect
of antiangiogenic or antivascular agents in man. 

One emerging approach to measure therapy-induced changes is
to use repeatable, non-invasive methods of assessment. Magnetic
resonance imaging (MRI), Doppler ultrasound (U/S), computed
tomography (CT), positron emission tomography (PET), angiog-
raphy and spectroscopy are being explored to measure a variety of
relevant parameters: vascular density, blood flow, blood volume,
permeability and combinations of these parameters. This paper
will discuss the relative merits of each and future direction of
imaging angiogenesis and vascular parameters. 

MRI 

A number of MRI techniques are being developed that could be
used to measure tumour vascular changes. 

Dynamic contrast-enhanced MRI 
Here, i.v. injected contrast is used to image capillary function (see
Figure 1). MR contrast agents principally use gadolinium chelates,
such as DTPA, which provide good contrast between malignant
tumours and surrounding tissues. The strongly paramagnetic
gadolinium is not observed directly, but it has the property of
relaxing or restoring the intrinsic MR signal of the water mole-
cules that continually approach the gadolinium. This provides a
very large amplification effect, as one molecule can affect very
many water molecules. The higher uptake of DTPA in tumours
compared with normal tissues and many benign lesions results
from vascular factors (increased perfusion, permeability) and
frequently a higher extracellular volume. 

During the last 7 years there has been considerable interest in
dynamic imaging techniques, using examination of contrast
uptake and washout parameters. The method has high sensitivity
and combining patterns and the shape of the uptake curve
increases the diagnostic specificity (Heywang et al, 1989;
Flickinger et al, 1993; Kaiser, 1993, 1994; Boetes et al, 1994; 
Orel et al, 1994; Fobben et al, 1995; Kerslake et al, 1995; Perman
et al, 1996). Typical measurements include the maximum 
signal increase, rate of signal increase and time to maximum signal
(Konig et al, 1990; Verstraete et al, 1994; Hawighorst et al, 1998). 

Quantitative imaging sequences and modelling approaches have
been developed to calculate uptake parameters, transfer rates, and
extracellular volume (Tofts and Kermode, 1991; Su et al, 1994;
Hoffmann et al, 1995; Parker et al, 1997; Hawighorst et al, 1998;
Weissleder et al, 1998) The MR community is currently working
to standardise such parameters (Tofts et al, 1999). The interpreta-
tion of these values requires validation. We need to know if these
surrogate measures using gadolinium uptake into tissue directly
relate to physiological processes. Preliminary preclinical and clin-
ical work suggests that they do. Correlative studies have compared
these parameters with histopathological findings (Hulka et al,
1997; Hawighorst et al, 1998; Postema et al, 1998) and with clin-
ical outcomes such as response to radiotherapy (Mayr et al, 1996)
or prognosis (Hawighorst et al, 1998; Weissleder et al, 1998).
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From these studies it is becoming clear that the enhancement para-
meters measured are composite and represent a combination of (1)
vessel density, (2) permeability, (3) character of the extravascular
space and (4) perfusion. Correlation with specific physiological
factors is now required. 

The next step needed is assessing how changes in these parame-
ters reflect changes in vascular physiology in response to therapy.
There are 2 major methodological problems. First, the entry of
gadolinium into tissue is not linearly related to blood flow and
perfusion. Secondly, as yet, no methodology exists to measure the
input function (the measure of gadolinium delivery to the region of
interest). A ‘standard’ input function is often included for model-
ling purposes, but for repeat measurements this may be totally
inadequate, particularly if the antivascular therapy itself changes
the input function, e.g. by changing the cardiac output. Until
methodology can measure this input function the technique can
only be semiquantitative and changes in measurements in response
to therapy must be interpreted with caution. 

Macromolecular contrast media 
The rapid diffusion of low molecular weight contrast agents such
as gadolinium DTPA complicates interpretation of their uptake
kinetics. One attempt to simplify the analysis has been the devel-
opment of macromolecular MR contrast media (MMCM). Agents
such as polylysine-Gd-DTPA and albumin-gadolinium DTPA
have been used. These agents diffuse very slowly, if at all, through
normal endothelial barriers and are well suited to define the hyper-
vascularity and hyperpermeability inherent in tumour microvascu-
lature (Brasch et al, 1997). MMCM can provide a quantitative
measurement of blood volume and permeability, expressed as the
permeability surface area product (PS) (Kuwatsuru et al, 1993;
Shames et al, 1993; Brasch et al, 1997). Brasch et al (1997) have
used this technique to monitor the effects of antiVEGF antibody
on athymic rats grafted with a human breast carcinoma. These
agents are not yet approved for clinical use due to incomplete
elimination and potential immunogenicity (Roberts, 1997),
limiting this promising technique to animal studies. 

Perfusion and diffusion imaging 
When a bolus of paramagnetic contrast (such as Gd-DTPA) passes
through the capillary network, there is a marked magnetic suscep-
tibility mismatch between the blood and the surrounding extracel-
lular space, resulting in a pronounced drop in signal seen on
gradient echo images. The signal drop depends on the density of
small capillaries and the concentration of contrast in the capillary
bed, providing the basis for measuring regional blood volume
(rBV) (Villringer et al, 1988; Rosen et al, 1990; Aronen et al,
1994; Boxerman et al, 1995). In the brain, echo planar imaging
techniques are commonly employed, with sensitivity to capillary
dimensions above 3 µm radius, and thus include contributions
from major vessels. Spin echo sequences are only sensitive to
small capillaries, with response peaking between 3 and 7 µm
(Fisel et al, 1991; Boxerman et al, 1995), providing a better assess-
ment of microvascular volume and nutritive perfusion. These
approaches have largely been confined to cerebral measurements
and in the absence of measured input functions provide relative
measures rather than absolute perfusion. 

Oxygen-dependent MR imaging 
Blood-oxygenation-level-dependent (BOLD) MRI was originally
developed for use in brain activation studies (Ogawa et al, 1990;
© 2001 Cancer Research Campaign
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Figure 1 Illustration of a segment of tumour vasculature showing how various imaging techniques, Doppler ultrasound (U/S), computerised tomography (CT),
magnetic resonance imaging (MRI) and positron emission tomography (PET) use aspects of tracer and physiological behaviour to derive their measured
parameters 
van Zijl et al, 1998). Changes in the concentration of deoxyhaemo-
globin change the T2-weighted signal, acting as an intravascular
contrast agent for MRI. This is the basis of functional MRI (fMRI)
© 2001 Cancer Research Campaign
for use in brain activation studies. Physiological change such as
blood flow modification, or other mechanisms affecting the degree
of desaturation of oxygen in the blood within the tissue can thus be
British Journal of Cancer (2001) 85(8), 1085–1093
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imaged. BOLD-type MRI changes have now been reported
following changes in blood flow and oxygenation in the heart
(Reeder et al, 1996) and in tumours (Karczmar et al, 1994;
Robinson et al, 1995). The signal will depend on a combination of
vessel density, blood oxygenation, blood volume and flow, but
changes have not been directly correlated with basic physiological
parameters (van Zijl et al, 1998). 

MR angiography 

Techniques used in MR angiography are based on phase contrast
methods (Wedeen et al, 1985; Dumoulin and Hart, 1986), time of
flight (1994; Axel, 1986; Atkinson et al) or contrast enhanced
methods (Kouwenhoven, 1997). The first 2 techniques image
larger vessels, but the latter technique is also able to demonstrate
general contrast changes arising from uptake in the capillary bed.
They are associated with the use of subtraction techniques (for
contrast or spin-labelled studies), 3D-imaging techniques and 3D
display using maximum intensity projections. Their main role
would be in evaluating the tumour’s supporting vasculature, but
contrast-enhanced measurements may also provide qualitative
information on change in the capillary bed. There is no work yet
published on this technique being used to assess response to
antiangiogenic or antivascular therapy. 

Magnetic resonance spectroscopy (MRS) 

MRS is able to assess tumour vasculature indirectly by evaluating
the molecular composition of tissue and changes therein. The
various techniques of 1H, 13C and 31P NMR measure the distribu-
tion and proportion of molecules within the tissue reflecting 
such factors as tissue bioenergetics, pH, phospholipid membrane
turnover, oxygenation and lactate levels within the tumour
(Stubbs, 1999). These factors can be semi-quantitated and
followed serially allowing the effects of therapeutic manipulations
to be monitored. The technique has been used extensively in
animal models looking at the effects of blood flow modifiers such
as nicotinamide and carbogen (Robinson et al, 2000), hydralazine
(Nielsen et al, 1999) and vascular occlusion (McCoy et al, 1995).
One of the major problems of MRS is lack of sensitivity especially
in deep-seated human tumours. Despite the promising results in
animal models this technique has not yet been developed to assess
vascular therapy in man. 

MR methodology developments required 

For MRI techniques to be able to measure physiological changes
in response to antiangiogenic/antivascular effects several develop-
ments are needed. 

1. Correlation of measurements with underlying pathophysiology
is required. More work is needed to validate the biological
interpretation of many of the parameters being measured. 

2. Standardised evaluation and modelling techniques are
required. Approaches used to evaluate permeability and blood
flow vary widely, using different measurement methods and
analysis techniques. Generally, input functions are not
employed, and bias introduced by departure from the model’s
assumptions are not explored or corrected for. There is a need
to establish a consensus as to the appropriate methodology,
with the necessary quality assurance and validation proce-
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dures. The importance of methodology for measuring the 
arterial input function needs to be established. 

3. Reproducibility studies are required. Studies assessing the
reproducibility of the measurements, serial monitoring of
changes and correlating change in MR phenomena with
change in pathophysiology are needed. Without test/retest
data, interpretation is unreliable. 

4. Co-registration. Co-registration of images for comparison of
signal before and after therapy is difficult. Current techniques
can only provide high-quality dynamic information from a
small number of sections e.g. 3 per tumour. These sections
have to be identically placed on repeat studies in order for the
qualitative comparison to be enacted on a pixel by pixel basis.
Increasing speed of instrumentation is leading to the ability 
to perform full volume 3D studies with acceptable temporal
resolution. 

Summary 

The potential strength of dynamic contrast-enhanced MRI may 
lie in its ability to provide a composite high-resolution snapshot 
of the microvasculature. Tumour vasculature is characterised 
by a dynamic and heterogeneous pathophysiology with changes 
in vessel density, permeability and interstitial pressures. Anti-
angiogenic and antivascular therapies are likely to have effects on
several aspects of the vasculature. MRI is available in many
centres. However, validation of the physiological correlates and
methodology developments is still required. It is likely that MR
techniques will be used in the future as a general broad measure of
the changes in vasculature. 

Doppler ultrasound 

Doppler U/S techniques can determine the presence of blood flow,
its velocity and in certain circumstances estimate intratumoral
flow resistance (Delorme and Knopp, 1998) (see Figure 1). Colour
Doppler has overtaken earlier Spectral Doppler scanning in
tumour imaging. The frequency shift is proportional to the velocity
of the red blood cells within the measured vessels after allowing
for differences in the angle of the ultrasound and vessel. The
velocity of the red blood cells within the measured vessels deter-
mines the frequency. Power Doppler is a form of colour Doppler
that encodes the power in the Doppler signal in colour. The power
it detects depends on the amount of blood present (Martinoli et al,
1998). Power Doppler has advantages over colour Doppler,
including increased sensitivity to flow detection and improved
detail. A number of different Doppler parameters can be measured
by the various Doppler methods. These include pulsatile index,
resistive index (RI), acceleration index (AI) and peak systolic flow
velocity (Vmax). As well as differentiating different patterns of flow
e.g. pulsatile flow, constant flow, and triphasic flow. Recently,
complex computer-assisted image analysis methods are attempting
to quantify information from colour Doppler studies (Delorme and
Knopp, 1998). 

The patterns of Doppler signal have been correlated with a diag-
nosis of malignancy in some tumours (Wells et al, 1977; White
and Cledgett, 1978; Mountford and Atkinson, 1979; Burns et al,
1982). 

Validation studies to correlate U/S parameters with physiology
have been undertaken. U/S parameters are higher in some tumours
© 2001 Cancer Research Campaign
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and correlated with histological assessment of vascularity as
measured by IMD but this was not found in all studies (Sterns 
et al, 1996; Emoto et al, 1997; Peters-Engl et al, 1998). 

Development of microbubble contrast agents which can be
given intravascularly to enhance signals from vessels and may also
have tissue specific properties. Microbubbles increase both grey-
scale and Doppler signals from vessels both by increasing
backscatter but at higher acoustic powers by resonating and
producing harmonic microbubble-specific signals (Harvey et al,
2000). At even higher power bubble disruption and destruction
occurs. Small studies suggest that the use of such microbubbles
can increase the sensitivity of detection of liver metastases
(Harvey et al, 2000). In addition, the latter property of the bubbles
i.e. their destruction is being manipulated in attempts to measure
tissue blood flow: their subsequent reappearance and concentra-
tion in tissue allows the calculation of blood flow and potentially
could be used as a measure of tumour blood flow (Aronson et al,
1993; Wei et al, 1998). 

Limitations 
1. Doppler methods are not able to assess the microvasculature.

Macrovasculature may correlate with microvasculature in
some instances; tumours well endowed with larger vessels
have corresponding rich small vessel supply, but U/S does not
as yet provide an accurate measure of the microvasculature.
New developments with microbubble techniques have the
ability to increase the sensitivity to capillary blood flow but
are in the early stages of development. 

2. Flow velocities under 1 cm s–1 are difficult to detect due to 
artefacts caused by tissue movement (Delorme and Knopp,
1998). 

3. U/S results depend on the exact positioning of the probe.
Reproducible measurements of the same slice of tissue are
difficult. 

4. Attenuation is exponential while ultrasound displays are
inherently nonlinear.

These limitations mean that although simple and convenient, it
may not be the best technique to assess changes after anti-
angiogenic/antivascular therapies. 

Positron emission tomography (PET) 

Blood flow and volume techniques 
Positron emission tomography is a powerful tool in the area of
vascular research. In the 1970s and 1980s techniques were devel-
oped utilizing 15O-labelled H2

15O and C15O to quantitate regional
blood flow and volume, and also oxygen utilization in the brain
and heart (Lammertsma et al, 1990; Araujo et al, 1991). It has
subsequently been modified and used to measure blood flow and
exchanging water space in breast tumours (Wilson et al, 1992). In
a perfusion scan, H2

15O is administered by an i.v. infusion to a
patient centred in the PET scanner. To calculate flow, 2 measure-
ments need to be made: 1. tissue time concentrations which can be
determined quantitatively from the PET signal and 2. arterial
concentration which is measured by arterial sampling using a cross
calibrated well counter. Perfusion in ml min–1 ml–1 of tissue and
fractional volume of distribution (VD) are calculated using the
PET operational equation for perfusion. 

The main advantage of this technique is that 15O has several
fundamentally useful characteristics as a flow and volume tracer: it
© 2001 Cancer Research Campaign
is biologically inert, chemically stable with no physiological
effects and its short half-life allows rapid and repeat studies to be
performed. Regional tumour blood volume (BV) can also be
measured (Lammertsma et al, 1983; Leenders, 1994). C15O binds
to haemoglobin to form deoxyhaemoglobin, which remains 
within the vascular space and therefore provides a measure of
intravascular volume. The collection of data with an input function
allows a quantitative, non-invasive, repeatable measure of tumour
perfusion with this technique. Wilson et al (1992) refined the tech-
nique to measure perfusion and volume of distribution in breast
tumours. However, despite being regarded by many as the gold
standard for non-invasive measurement of perfusion very little
work has been published investigating perfusion in tumours
outside the CNS. One study that has been performed already
mentioned using PET H2

15O and C15O techniques to assess the
effects of Combretastatin A4 Phosphate and investigating its
mechanism of action (Anderson et al, 2000). 

Other tracers of use in PET 
PET has the major strength within the imaging modalities of being
able to measure metabolic and biochemical processes in vivo. It
uses radionuclides of commonly occurring elements such as
oxygen, carbon and nitrogen, which can be incorporated into a
wide range of compounds. In addition, it can measure down to
picomolar concentrations in a dynamic and repeatable way. 

Labelling of specific markers of tumour vasculature and angio-
genesis for analysis by PET has considerable potential.
Radiolabelled antibodies to VEGF are in the process of being
developed. VEGF mRNA is up-regulated in virtually all human
tumours so far examined (Ferrara, 1996). Correlations have been
observed between VEGF protein expression and microvessel
density (Toi et al, 1994). There are numerous other molecules
involved in the angiogenesis process that could potentially be
targets for PET labelling e.g. bFGF, αvβ3 integrin (Haubner et al,
2001), E-selectin, angiostatin and matrix metalloproteases. 

Indirect assessment of tumour vasculature can also be
performed using markers of tissue hypoxia. Nitroimidazoles for
example, are a class of compounds that undergo intracellular
metabolism depending on the availability of oxygen in the tissue.
At biologically significant levels of hypoxia nitroimidazoles are
trapped in cells. 18F-labelled fluoromisonidazole has been used to
image hypoxia in human tumours in vivo (Koh et al, 1992; Rasey
et al, 1996) and has been used to monitor the effects of conven-
tional therapy (Koh et al, 1995). 

Limitations 

1. PET availability is currently limited. 
2. Resolution is limited and definition of regions of interest can

be difficult without co-registration with CT or MRI. 
3. Scans require arterial cannulation to obtain an accurate input

function. 

In summary, PET is currently the gold standard in quantitating
tumour perfusion, fVD and blood volume. Its absolute measure-
ment of separate measures lends itself to not just being able to
measure P/D endpoints but also investigating mechanisms of
action of antiangiogenic and antivascular agents. 

CT scanning 

As with MRI the development of powerful machines capable of
rapid dynamic analysis has led to the introduction of a CT
British Journal of Cancer (2001) 85(8), 1085–1093
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Table 1 Summary of the various imaging techniques available to assess aspects of tumour vasculature 

Technique Measured parameters Pathophysiological Advantages Disadvantages 
correlates 

Contrast-enhanced MRI Maximum uptake Vessel density Availability Image quality can be affected by respiration 
Rate of uptake Permeability High spatial resolution Surrogate measures requiring validation of pathophysiological
Transfer rates Perfusion Registered anatomy correlates
Extra-cellular volume Extravascular space Inherent methodological problems: lack of input function therefore only
Relative blood volume semiquantitative 
Relative perfusion

MMCM MRI Blood volume Blood volume ‘Purer ’ pathophysiological correlation Limited to animal studies 
Permeability surface area (PS) Vessel permeability

BOLD MRI Image intensity change Vessel density No contrast agents required Exact pathophysiological correlates unclear 
Change with carbogen inhalation Blood oxygenation Carbogen required

Blood volume
Blood flow

MRS 1H, 13C and 31P spectra Tissue bioenergetics Serial measurements possible Poor sensitivity 
PH Non-invasive
Hypoxia
Oxygenation

Doppler U/S techniques Pulsatile index (PI) Global ‘flow’ Availability Unable to image microvasculature 
Resistive index (RI) Vascular resistance Non-invasive Co-registration difficulties 
Acceleration index (AI) Vascularity Easily repeatable No signal at low flow 
Peak systolic flow velocity Low cost
(Vmax)
Patterns of flow

CT Peak gradient in tissue Perfusion Availability Single section only 
Peak gradient in artery Quantitative Some methodology problems 

Positron emission tomography; Perfusion Perfusion Quantitative Expensive 

PET Blood volume Blood volume Repeatable Limited availability 

Specific vascular markers
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technique to measure tissue perfusion. The quantification of perfu-
sion using dynamic computed tomography takes as its assumption
that during the initial pass of the tracer through an organ there
exists a time, before the tracer reaches the venous drainage, when
all the tracer is within the region of interest and can be considered
to be totally extracted (Hermans et al, 1997). The data acquisition
time is presumed short enough that no venous outflow or extrava-
sation of contrast has had time to occur (Blomley et al, 1993).
Perfusion can thus be calculated from the equation: 

Perfusion =  Peak gradient of tissue time-density curve
Peak arterial density

(Blomley et al, 1993) 

This technique has been used to calculate perfusion in the kidney,
liver, pancreas and spleen (Blomley et al, 1993; Miles et al, 1998)
and values obtained are similar to those obtained from other tech-
niques such as gas washout. It has also been used to quantify
perfusion in tumours (Brix et al, 1991; Hermans et al, 1997; Miles
et al, 1998). It has the advantages over dynamic contrast-enhanced
MRI and shares with PET the inclusion of an input function
allowing accurate calculations. CT can also be used to measure
indices of permeability such as contrast clearance using Patlak
graphical analysis and other methods (Harvey et al, 2001).

Limitations 
1. Currently the technique uses high doses of radiation. 

2. Currently only one section can be obtained in each scan with
sufficiently high temporal resolution. Given the heterogeneity
in tumours a single section may not fully represent the whole
tumour. However, this is changing, with new generation
scanners with detector systems allowing multiple acquisitions
becoming more widely available.

3. A large vessel is necessary to determine the input function and
this may not be present in the section. 

4. The initial assumption that there is no venous outflow or
extravasation may not hold true in tumours. Tumour vessels
are characteristically more leaky than vessels in normal tissues
and significant AV shunts exist. 

Summary 
This is a promising technique but more work needs to be done in
validation and application. 

CONCLUSIONS 

A number of imaging modalities are available to image a range of
physiological changes in tumour vasculature (see Table 1). These
methods are at various stages of validation and methodology
development. They all measure a variety of aspects of tumour
physiology to varying degrees. The goals of the next few years will
be to define exactly what pathophysiological endpoints we need to
measure for what anticancer agent and to refine our ability to
measure them with the imaging tools available. We need more data
on the validation, reproducibility of the techniques and standard-
ised, quantitative parameters. Experience is accumulating but
more work is required. 
© 2001 Cancer Research Campaign
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