

Figure 1 Supplemental - Block properties of T-type calcium currents. A Nifedipine (1 μ M) does not block the currents evoked by a depolarizing pulse to -20 mV, from a holding of -80 mV. B T-type calcium currents require high concentrations of Cd²+ for efficient blocking. Current responses measured as above. Labels on each trace indicate: a - control; b - 50 μ M Cd²+; c - 70 μ M Cd²+; d - 100 μ M Cd²+ and e - wash out. In both A and B the capacitance transients were digitally deleted from the traces C Concentration-response relationship for the blocking effect of Ni²+. Each point represents the percent inhibition of peak current in response to a -20 mV pulse from a holding potential of -80 mV measured in the presence of several Ni²+ concentrations in the external solution. Percent inhibition is expressed as [(I_c - I_{Ni})/I_{Ni}]x100, where I_c is the current in control solution and I_{Ni} in the presence of Ni²+. Points are mean \pm se. Numbers in parentheses indicate the number of cells analyzed in each situation. The solid line represents the best fit of the Hill equation to the experimental points (n=0.79 and K_i=2.6 μ M).