# **Supporting Information**

## Alliegro and Alliegro 10.1073/pnas.0802293105



**Movie S1.** Time-lapse sequence showing correlation between the position of the nucleolinus and the first meiotic spindle. The nucleolinus persists in the activated oocyte cytoplasm after the nuclear envelope and nucleolus dissipate. Its placement before its own subsequent dissolution reliably predicts the position of the meiosis I spindle pole, as originally suggested by Allen (1, 2). Coupled with the *in situ* localization of cnRNA65 in the oocyte nucleus and its later association with centrosomes (Fig. 3 *A–D*), the video sequence suggests a relationship between centrosomes (i.e., the spindle pole), and structures present in the oocyte nucleus before its breakdown. Images were captured 15 sec apart from 4:45 to 37:25 postactivation with KCI. Compare with Fig. 3*E* to identify nucleolus (arrow) and nucleolinus (arrowhead).

Movie S1 (MOV)

DNA C

#### Table S1. Summary of database matches for 39 cnRNA clones

SANG SANG

| cione                          | Similarity                                                | E-value, e <sup>-</sup> |
|--------------------------------|-----------------------------------------------------------|-------------------------|
| (A) BAC clones, uncharacterize | ed DNA, or chromosomal sequences                          |                         |
| 13                             | Human BAC clone                                           | 35                      |
| 20                             | Human chromosome 6 DNA                                    | 25                      |
| 26                             | Mouse chromosome 3 DNA                                    | 57                      |
| 43                             | Rat hypothetical protein                                  | 31                      |
| 75/177                         | Mouse BAC clone                                           | 25                      |
| 103                            | Candida chromosome M DNA                                  | 25                      |
| 114                            | Mouse chromosome 11 DNA                                   | 25                      |
| 120                            | Oryzias chromosome 6 DNA                                  | 23                      |
| 153                            | Rat BAC clone                                             | 30                      |
| 174/270/311                    | Mouse chromosome 13 DNA                                   | 27                      |
| 208                            | Xenopus clone                                             | 28                      |
| 217                            | Mouse chromosome 5                                        | 62                      |
| 218                            | Human BAC                                                 | 60                      |
| 221                            | Caenorhabditis cosmid                                     | 36                      |
| 238                            | Mouse chromosome 13                                       | 27                      |
| 279                            | Mouse BAC                                                 | 35                      |
| 286                            | Mouse chromosome 19 BAC                                   | 25                      |
| 291                            | Human chromosome 8                                        | 23                      |
| 305                            | Human chromosome 8                                        | 35                      |
| (B) Nucleic acid metabolism, g | ene expression, genome structure and maintenance          |                         |
| 15                             | Branchiostoma kinesin LC-like protein and CR1 RTP         | 40                      |
| 48                             | Mouse chromosome 5; <i>Entamoeba</i> U <sub>1</sub> snRNP | 43; 22                  |
| 65                             | Sea urchin RNA polymerase; zebrafish DNA                  | 30; 60                  |
| 86/123/186                     | V. mercenaria clam microsatellite DNA                     | 22                      |
| 93                             | Zebrafish linkage group 18; Oryzias LINE-like RE          | 41; 33                  |
| 118                            | Human chromosome 11 sequence; human RNA pol II            | 125; 67                 |
| 142                            | Pufferfish GYPSY-like RTP                                 | 74                      |
| 145                            | Plasmodium hypothetical, similar to exoribonuclease       | 110                     |
| 154                            | V. mercenaria microsatellite DNA                          | 24                      |
| 171                            | Xenopus cDNA clone; pufferfish RTP                        | 39; 24                  |
| 179/210                        | Mouse chromosome 13; similar to rat ott RNA binding       | 31; 21                  |
| 219                            | Zebrafish DNA clone; Crassostrea microsatellite           | 24; 20                  |
| 226                            | Pig microsatellite DNA                                    | 26                      |
| 227                            | Mouse cation channel; fish/pig microsatellite             | 31; 29                  |
| 248                            | Human MUC4 gene intronic tandem repeats                   | 80                      |
| 249                            | Mouse mucin 2; Caenorhabditis zinc finger protein         | 30; 20                  |
| (C) Unrelated characterized m  | olecules                                                  |                         |
| 35                             | Bacterial mannanase                                       | 37                      |
| 115                            | Human dentin sialoprotein                                 | 25                      |
| 273                            | Venerupis clam mitochondrial DNA cytochrome c             | 20                      |
| 313                            | Caenorhabditis ced-1 receptor family                      | 27                      |

Best matches are listed with taxonomic source and approximate E-values. In some cases, a second-best match is shown but only if informational (i.e., not indicating another uncharacterized clone, or a similar molecule from another species, etc.). The results are divided into three categories: BAC clones and other uncharacterized DNA or chromosomal sequences; molecules related to nucleic acid metabolism, gene expression, or genome structure, and maintenance; and characterized molecules with no apparent relationship to either of the first two categories. Databases accessed for similarity searches and the algorithms used are detailed in *Materials and Methods*. RTP, retrotransposon; RE, retroelement.

### Table S2. PCR screen for enrichment in centrosomes

| Clone    | Insert<br>size, bp | Primer 1                  | Primer 2                  | Product<br>size, bp | Ooplasm | Centro-<br>some |
|----------|--------------------|---------------------------|---------------------------|---------------------|---------|-----------------|
| 3        | 963                | AAGCAACAGCCTTCCGTCTTG     | TCTCCGTCTGACTTTTGAACGC    | 148                 | -       | ++              |
| 10/212   | 543                | GTTGATGAAGGGTTATCTGACG    | TGGCTATTCTTGGCATTGC       | 413                 | -       | +++             |
| 11       | 638                | CTGAAAGTTCCGTGAGACCTGC    | ACGCAAGGGATTGAGGCTTC      | 541                 | -       | +++             |
| 15       | 692                | GCTGTAGTTAGCGGCGTTTCAC    | TGTCGGTATGTGTGTCCAGGAGAG  | 372                 | -       | +++             |
| 35       | 669                | CGCAGAAGCCATTTCCGTTAC     | TTTTGGTGGGGGGACACATCGTC   | 282                 | -       | +               |
| 41/164   | 780                | CGGTGAATGTAACTATGCCTTGG   | ACGGAGAACGGTGGGTAATGCTAC  | 242                 | +       | +++             |
| 46       | 958                | GGATGCGATGGAATCAGTGC      | GCTTATGGTCTCCTTTTTCGTCTG  | 469                 | -       | +++             |
| 65       | 749                | CCATTGGAAGCCTCAAATAACG    | AAAGTGACGAGACCGACTGACTGG  | 293                 | +       | +++             |
| 68/205   | 581                | CCGATGTCTCTGTTGASCG       | TCATTGGGCAGGGAAAAC        | 162                 | -       | -               |
| 102      | 831                | TGCTGCGACCGAGATTTGAACC    | AAGCGATAGATGTCCAATAGGGTG  | 219                 | -       | ++              |
| 113      | 751                | TGCTCTCCACACGAAATCGC      | TCGCCATCCTGTTGAAAGGG      | 260                 | -       | ++              |
| 131      | 695                | GGGACGAACTTGCGTTTTAGTGAC  | TCCAGCGACTGTATCATTGGC     | 582                 | -       | ++              |
| 137      | 602                | TGTTTCTCGTAAGAGGCTCACTGTG | TTCTCCCAATCCGAATGAACG     | 398                 | -       | +               |
| 142      | 1536               | GCAAAAATCTTGGATGTGCCAC    | GCCCTGGTCTTTACTCAATCGC    | 553                 | +       | +++             |
| 170      | 698                | CTCCTTGGATAGTTGGATACAGCAC | CATTGAACGACGGGAAGATGC     | 427                 | -       | ++              |
| 183      | 639                | TCCAACACATTCATACTCCCCAC   | CCCTTGATTTATTCTTGTCCACGC  | 546                 | -       | +++             |
| 184      | 870                | TAGGATTTCCAGGTCGGGTAGG    | CAACTGCGTCAAACAACCAGC     | 415                 | -       | +++             |
| 185      | 638                | TCACCCAAGAGCCAAATAATGC    | ATGACCGCACACACTCCAAGGTTG  | 248                 | -       | +               |
| 194      | 671                | CATTCTAAGGCGTTTCATCCAGG   | GCATCATCGGCTCTGAGTG       | 513                 | +       | +++             |
| 195      | 859                | CAGAACCAGGGAAACTGTTAGAGG  | CAGGAGGTATTGTCGTATCTTGTGC | 501                 | -       | +++             |
| 200/300  | 1057               | TTTACCCATTAGAGCAAGTCCCC   | CAAAAAACCGTCACCAGAATCG    | 194                 | +       | ++              |
| 228      | 685                | TGGCTCAAGCAGCAGCAATG      | TGAATCTTCCTTCTGTTTCCCCAC  | 166                 | +       | +               |
| 234      | 678                | GGCGATGTATTTCGTAATCCCAG   | GAACTGCGTTGGCATTGTTTTG    | 253                 | -       | +               |
| 239      | 665                | GTTGCCTTACTAATACAATCGCCG  | TTATCGTGAGACACCAGTCCCC    | 467                 | -       | +++             |
| 240      | 643                | TCTTCTCGTCATAGCGGTTGTCTC  | GGGACCATTGGGTTCTCAGTTTG   | 202                 | -       | -               |
| 243      | 726                | ACACCTTTATGAGCGTCAGCGG    | TGATAGATGTCGGGGTTTGGC     | 219                 | -       | -               |
| 246      | 632                | GTGGGTCAATCAGTGTATCAGCAG  | AGTCAGTATTACGGCAGTGGGTTC  | 155                 | -       | -               |
| 264/59   | 456                | TCAGCATTGTAAACTCTGTGTGGC  | AAAAGCGGCACGAATCTGC       | 139                 | -       | +               |
| 273      | 675                | CATAAGCCAAAACACAAGGGGAC   | TCGGGAAACTCGGACTCTTCTG    | 305                 | ++      | +++             |
| 276      | 467                | GCAATGCGATGTAACCTTCACC    | GCTTAGGGCTATGGATGTTGGC    | 218                 | -       | ++              |
| 278      | 633                | GCACCTTGTTTATTGGGGTCTG    | TTCTAAGAGCGTATGTGATGGACG  | 347                 | -       | -               |
| 288      | 826                | TTGGCGAGAGCACAATGTTTG     | AAGGCGTAAGGTTGAATGGTAGG   | 277                 | -       | -               |
| 290      | 750                | TCCCATAGCAGCCCAAAACAC     | AAGGAAGCCAACGAAGCATTG     | 191                 | +       | ++              |
| 299      | 401                | GGGAGGTCCAGGTTCAAATCTC    | TTTCATTGGGTTTTACGCCG      | 214                 | ++      | +++             |
| 312      | 805                | TTTTTTTTCTAAGGGGGGGGTC    | TTCTCTGCGACTGGACATTGC     | 220                 | -       | -               |
| 314      | 594                | TACACGCATTTAGGGACGCAC     | CTGGTTGGTGATTGCTCTTTGTC   | 301                 | -       | +               |
| PABP     |                    | CGAGCGTCTTGAGCAAATGG      | CAAAGCCGAAACCCTTAGAACG    | 482                 | ++++    | -               |
| RR       |                    | GAACCATTATTGGCTGACAACCC   | CACAGTGAAGACCCTCATCTCTGC  | 604                 | ++++    | -               |
| 18S rRNA |                    | TGTTAGCCCAAAACCAATCCG     | GCCGAGACACTCAATCAAGAGC    | 553                 | ++++    | ++++            |

Primer pairs are shown in 5' to 3' direction. Last two columns indicate relative strength of amplified product signal from whole oocyte template and centrosomal template. Key: -, no signal detected; +, weak signal detected; ++, moderate signal; +++, strong signal. These designations can be evaluated by comparing this table with corresponding gel lanes in Fig. 1. Note that signal strength was estimated visually in agarose gels and depends on PCR product size, due to stoichiometric incorporation of ethidium bromide, so signal strength is underestimated for small products relative to larger.

## **Other Supporting Information Files**

Dataset S1 (XLS)

PNAS PNAS