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Methods for making inferences about the Poisson plus added zeros distribution and the truncated Poisson
distribution are presented and illustrated with bacteriological data. Some of the methods are designed for
testing the compatability of the zero frequency with the Poisson distribution, whereas others are given for
testing the goodness of fit for the truncated Poisson. In particular, a modified form of the Fisher index of
dispersion is presented which is suitable for the truncated case. It is shown that the use of the usual expression
of the index of dispersion for testing the adequacy of the truncated Poisson is not correct and leads to accepting
inadequate fits more frequently than expected on the basis of test of significance. Furthermore, three test
statistics are presented for testing the compatability of the zero frequency with the Poisson distribution. The
results of the simulation show that two test statistics, one due to Cochran (W. G. Cochran, Biometrics
10:417-451, 1954) and the other to Rao and Chakravarti (C. R. Rao and I. M. Chakravarti, Biometrics
12:264-282, 1956), are preferable to those from the likelihood ratio test.

The use of the Poisson distribution as a model for the
variation of the number of bacteria in equal samples from
completely homogeneous material is well known (3, 6-9).
However, the conditions needed for the application of the
Poisson model are rarely fulfilled in practice (4). The reasons
range from the natural heterogeneity of the material sampled
to problems associated with performing the bacteriological
analysis. To accommodate for the situation with greater
heterogeneity than that expected under the Poisson model,
Fisher (5) introduced the negative binomial as a more
general model for the dispersion of bacteria. To derive the
negative binomial, Fisher assumed that the mean of the
Poisson distribution is not a fixed quantity but is itself a
random variable with a two-parameter gamma distribution.
One of the parameters can be used as a measure for the
deviation from complete homogeneity. Another model for
accommodating the bacteriological heterogeneity is the Pois-
son plus added zeros (PZ), which was used by Christian and
Pipes (1). According to this model the number of bacteria
found in parallel samples follows a Poisson distribution with
the exception of the zero frequency. The underlying assump-
tion in the derivation of the PZ model is that the material
sampled consists of two portions. The first is completely free
of bacterial contamination, whereas the distribution of bac-
teria in the second is random and hence can be modeled by
the truncated Poisson distribution (TP).
The aims of this paper are to present a number of methods

for testing the adequacy of the PZ and TP models. Specifi-
cally, the following are given: (i) three different tests for
determining whether the zero frequency is actually respon-
sible for the lack of fit of the Poisson model (the first of these
tests is the likelihood ratio test, the second was proposed by
Cochran [C] [2], and the third was developed by Rao and
Chakravarti [R] [11]); (ii) an index of dispersions for testing
the adequacy of the TP; and (iii) numerical illustrations with
data reported by Christian and Pipes (1).

tamination and (1 - 0) be the proportion of contaminated
material. Then, under the assumption that bacteria are dis-
tributed at random in the contaminated part, the probability
of observing r bacteria in the sample is

P(r) =(1 - O)e-& + 0 when r = 0

(1 - 0)e-X (Xr/r!) when r 4 0
(1)

where X is the bacterial density in the contaminated part.
Equation 1 is the PZ model. There are two unknown
parameters 0 and X in equation 1. When 0 = 0 the PZ model
reduces to the Poisson model, and when 0 = 1 the material
is free of bacterial contamination.
TP. When the frequency of zeros is the source of the lack

of fit, one might consider ignoring the zero frequency in the
analysis. In this case the appropriate model is the TP which
is

P(r) = (e-'XX)I[r!(l- e-)] when r > 0 (2)

The mean and the variance of the TP model are p. = A/(1 -
e-X) and c2 = .(1 e-A p), respectively. From this it
appears that the mean is always larger than the variance, but
the difference between a and p. decreases with increasing X,
and when A-X*0 then &2 = p.

Estimation of A and 9. Suppose that bacteriological anal-
ysis was performed on n + nO samples and that no of these
samples have zero counts, whereas the remaining n samples
have the counts rl, r2, ...,rn. The maximum likelihood
estimates X and 0 of X and 0, respectively, are shown by

(3)A = f, (1 - e-X)

and

0 = (Pobs - e )/(1 - e-A)

MATERIALS AND METHODS

PZ. Let 0 (Table 1 defines all terms used in the paper) be
the proportion of the material that is free of bacterial con-

(4)

where F, = (rg + r2 + . . . + r,)In and Pobs = nol(n + no). The
solution for X can be obtained iteratively. It is easy to show
that (f - 1) < A < r, and hence the search for k should be
restricted to the interval (F - 1, F,). The iterative solution A
can be obtained in the following manner. Take Xo = f, as a
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TABLE 1. Table of definitions

Term Definition

0 ....... Proportion of material that is
free of bacterial contamination

1 - o ....... Proportion of contaminated
material

A........ Bacterial density in the
contaminated part

PZ ...... PZ
TP ...... TP

.......... Mean of TP
....... Variance of TP

. ....... Infinity
n ....... No. of contaminated samples
nO *-------................ No. of uncontaminated samples

N = n + no .. ..... Total no. of samples
A........ Maximum likelihood estimate

for X

0........ Maximum likelihood estimate
for 0

r........ Mean of bacterial counts (all
data)

......... Mean of bacterial counts for

contaminated samples
Pobs....... Proportion of uncontaminated

samples
-2lnA .. ..... Likelihood ratio test
C....... C test
R....... R test
T....... Sum of all the observations
D2 . ....... Fisher index of dispersion
D,2 . ...... Index of dispersion for TP

first approximation for A and compute a better approxima-
tion of X1 as

A1= r, (1-e-K°)
Then replace Ao by i, and repeat the process until two
successive values of X1 are almost identical. This value of k1
will be the required estimate of X. It should be pointed out
that X is the maximum likelihood estimate for X under the TP
and PZ models.

Discrimination between the Poisson model and the PZ
model. The problem of discriminating between the Poisson
and the PZ models is reduced to testing the hypothesis Ho of
0 = 0 against the alternative hypothesis H1 of 0 t 0. There
are three test statistics for doing this: (i) the likelihood ratio
test, (ii) the C test, and (iii) the R test (Table 2).
Goodness of fit for the TP. If the hypothesis 0 = 0 is

rejected, then a Poisson distribution is not appropriate for
fitting all the data. However, this does not imply that the PZ
model is the appropriate model. One way of determining that

TABLE 2. Tests for discriminating between the Poisson model
and the PZ model

Test Formula"

Likelihood ratio -21nA = 2{no In Pob, + n In [(1 - P,,b,),]/(X) -
nA + nf,.ln X + NF (1 - In F)}

C C = (no - Ne-D/[Ne-r (1 - e-' - fe- r)]1/2
R R ={nO -[(N - 1)/NV]N}/{N[(N - 1)/N]7 -

N2[(N - 1)/N]2T + N(N - 1)[(N - 2)1N] i-

In, Natural logarithm; f, mean of all the data. For large N the distribution
of -21nA is chi square with one degree of freedom, and the distribution of C
and R is normal with a mean of 0 and unit variance.

is to test whether the positive samples can be represented by
the TP model. A test for doing this was obtained by Rao and
Chakravarti (1/1) and is the index of dispersion for the TP.

D,2 = (ri - ft)2/[t,(1 + A-r,) (5)

The asymptotic distribution of D,2 is chi square with (n - 1)
degrees of freedom.

Confidence interval for K. If is the parameter of interest
in the PZ model or the TP model, then the approximate 95%
confidence limits for X are

X + 1.96 X(l - e-X)IVn(l - e A - Ae A) (6)

RESULTS AND DISCUSSION

Simulation study. The behavior of the three test statistics
-21nA, C, and R are compared by experimental sampling or
simulation. The Control Data Corporation Cyber 171 com-
puter was used to generate samples from the Poisson distri-
bution with a mean A of 5. Two groups of experiments were
generated. In the first group, 1,000 sets of samples of 15
observations were generated. The three test statistics were
computed for each of the 1,000 samples. For each test the
proportions of the 1,000 sets of samples for which the null
hypothesis was rejected at the 5 and 1% levels were re-
corded. The proportions estimate the significance levels of
the various tests. In the second group of experiments, the
above procedure was repeated, except that a number of
zeros were added to the 15 observations. In one set of 1,000
experiments two zeros were added, and in the other set five
zeros were added. Hence in these experiments the null
hypothesis (0 = 0) is not true; then the proportion of the
1,000 samples for which the null hypothesis was rejected at
the 5 and 1% levels represents the empirical powers of
various tests. Moreover, the above simulation was repeated
with samples of 50 observations so that the effect of increas-
ing the sample size on the estimate of the significance level
can be determined.
The results of these simulations are given in Table 3. It

appears that -21nA gives the closest estimate to the true
significance level; however, the power of this test is much
lower than that of the other two tests. For samples of 15
observations the significance levels with the two tests C and
R are overestimated; however, these levels are closer to the
true significance levels for samples of 50 observations. For a

fixed sample size, the power of the tests increases as the
proportion of zeros increases. As an illustration, the power
of the likelihood ratio test (-2lnA) increases from 0.153 to
0.946 as 0 increases from 2/15 = 0.13 to 5/15 = 0.33.
Furthermore, the power increases when the sample size

TABLE 3. Empirical power functions for testing the zero

frequency

True Tests for Sample size

significance zero 15 50
level (a) frequency O,, 2" 5" O" 2" 5"

-2lnA 0.040 0.153 0.946 0.050 0.138 0.528
0.05 C 0.075 0.722 0.992 0.040 0.266 0.905

R 0.085 0.794 0.996 0.043 0.275 0.922

-21nA 0.010 0.055 0.613 0.016 0.027 0.191
0.01 C 0.037 0.418 0.945 0.025 0.170 0.619

R 0.055 0.556 0.956 0.026 0.180 0.652

"Number of zeros added.

VOL. 49, 1985



APPL. ENVIRON. MICROBIOL.

TABLE 4. Tests for the zero frequency, TP, ML, and the confidence interval for three data sets (1)
No. of locations Mean current .Index ofNo.ofloaiosMenuTest for the zero frequency Maximum 95% ..Data sampled CFU/100 ml likelihood confidence dispersion

set (locations with
coliforms) r r, -21nA c R estimate interval D2 D,2

CV 225 (10) 0.11 2.52 76.32 12.621 12.962 2.256 (0.714-3.798) 36 48.91
WHI 66 (6) 0.40 4.42 86.90 9.550 9.774 4.363 (0.792-7.934) 29 30.73
BBI 92 (11) 0.51 4.27 132.78 11.347 11.439 4.206 (1.657-6.755) 287 306.50

increases while 0 remains fixed. For example, the powers of
-2lnA are 0.153 for samples of 15 observations and 0 = 0.13
and 0.528 for samples of 50 observations and 0 = 5/50 =

0.10. On the basis of power calculation, the C and R
statistics are preferable to the -2lnA statistics, with R
slightly better than C. From these results, the use of test
statistics C and R are recommended.
Example. Three data sets reported by Christian and Pipes

(1) are used to illustrate the methods of this paper. Table 4
gives the values of the three test statistics -21nA, C, and R
for testing whether the observed frequency of zeros is
compatible with that expected for the Poisson model, the
maximum likelihood and the confidence limits for X, the
index of dispersion D2 which was calculated by Christian
and Pipes, and the index of dispersion D,2. The R values
exceed those of C in the three cases. This agrees with the
simulation results which indicate that the R test is more
sensitive than the C test (i.e., more significant results will be
obtained if the R test is used instead of the C test). The
statistic -21nA can be compared with C2 and R2 since the
square of the R and C results will have asymptotically the
same distribution as -21nA. The comparison does not indi-
cate that -2lnA is consistently larger or smaller than C2. In
fact -2lnA is smaller than C2 for the data sets CV and WHI
and larger than R2 for the BBI case. All three tests indicated
that the frequency of zero is significantly different from that
expected for the Poisson model. The last two columns of
Table 3 give the values of D,2 for the TP model and D2, i.e.,
the correct index of dispersion. The values of D,2 are larger
than those of D2. In fact, this is always true and can be
shown immediately by noting that

2 = ,(r -r
= D2, (1 + X -r)

and by observing that if ft - 1< A < ,, then D2 < D,2 < 0.
This means that significant values obtained by calculating D2

are also significant when D,2 is calculated, but the inverse is
not true.

In conclusion the statistic D,2 should always be used
instead of D2 for testing the goodness of fit of the TP
distribution. For testing the adequacy of the zero frequency
the C and R statistics are preferable since they have higher
power than -21nA. The C statistic has the added advantage
of being easier to compute.
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