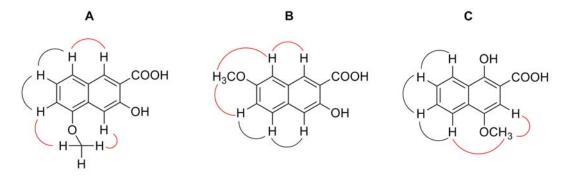
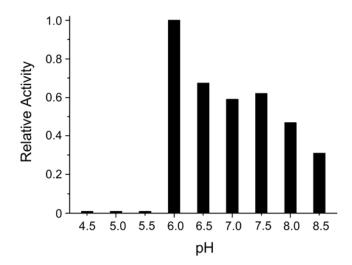
Regiospecific O-Methylation of Naphthoic Acids Catalyzed by NcsB1, an O-Methyltransferase Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin*

Yinggang Luo,^{1,2} Shuangjun Lin,¹ Jian Zhang,¹ Heather A Cooke,³ Steven D. Bruner,³ and Ben Shen^{1,4,5,*}


From the ¹Division of Pharmaceutical Sciences, ⁴University of Wisconsin National Cooperative Drug Discovery Group, ⁵Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA; ²Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China; and ³Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA

Running title: The NcsB1 *O*-Methyltransferase in Neocarzinostatin Biosynthesis Address correspondence to: Ben Shen, Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, Tel: (608) 263-2673; Fax: (608) 262-5245; Email: <u>bshen@pharmacy.wisc.edu</u>


SUPPLEMENTAL DATA

S2
S3
S4
S4
S5

Fig. S1. Graphic explanation of the nOe from the NOESY experiments for (A) 3-hydroxy-5-methoxy-2naphthoic acid (16), (B) 3-hydroxy-7-methoxy-2-naphthoic acid (17), and (C) 1-hydroxy-3-methoxy-2naphthoic acid (18), respectively. The curves between two protons depict nOe observed in the NOESY experiments. Key nOes correlations that unambiguously establish the regiospecific O-methylation are highlighted in red.

<u>Fig. S2</u>. Effect of pH on the relative activity of NcsB1 as an *O*-methyltransferase as determined with 2,7dihydroxy-5-methyl-1-naphthoic acid (**8**) as a substrate in 50 mM sodium acetate (pH 4.5-5.5) or 5.5-8.5 in 50 mM sodium phosphate (pH5.5-8.5), respectively, at 25° C.

<u>Fig. S3</u>. HPLC analyses of incubation of 2,7-dihydroxy-5-methyl-1-naphathoic acid (8) and NcsB1 without exogenously supplemented SAM in 50 mM sodium phosphate (pH 6.0) at 25°C and quantification of 2-hydroxy-7-methoxy-5-methyl-1-naphathoic acid formed to determine SAM endogenously bound to NcsB1: enzyme reactions contained 50 μ M NcsB1 and 5.0 mM 8 and terminated at (I) 2, (II) 5, and (III) 8 h, and enzyme reaction contained 100 μ M NcsB1 and 5.0 mM 8 and terminated at (I) 2, (II) 5, and (III) 8 h, respectively. (\blacklozenge), 8 and (\blacklozenge), 9.

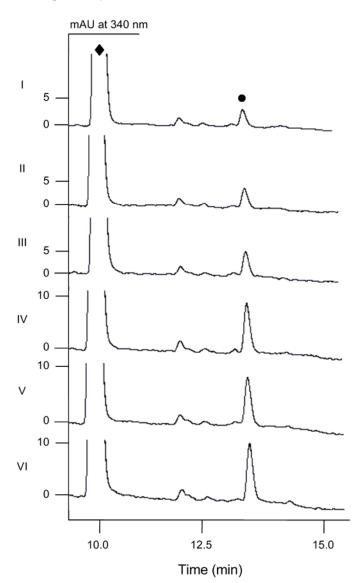
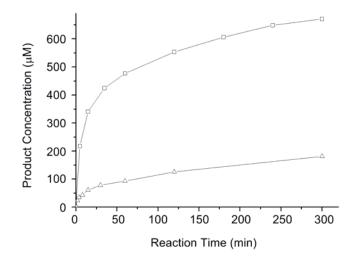



Table S1. Determination of SAM endogenously bound to NcsB1 purified and used in this study

	Product 9 formed (µM)		
NcsB1 (µM)	Reaction time (2 h)	Reaction time (5 h)	Reaction time (8 h)
50	38.0	41.4	40.1
100	81.8	80.4	82.6

[9] formed was estimated to be 40.1 μ M with 50 μ M NcsB1 or 81.6 μ M with 100 μ M NcsB1, which corresponds to 0.8 mole of SAM bound to 1 mole of the purified NcsB1 protein.

Fig. S4. Time course of NcsB1-catalyzed *O*-methylation as determined by production formation. Assays contained 1 mM 2,7-dihydroxy-5-methyl-1-naphathoic acid (8), 1.5 mM SAM in 50 mM sodium phosphate (pH 6.0) at 25°C in the presence of 50 μ M NcsB1 (\Box) and terminated at 5, 15, 35, 60, 120, 180, 240, or 300 min, or 5 μ M (\triangle) NcsB1 and terminated at 2, 4, 8, 15, 30, 60, 120, or 300 min. Increases in observed methylation product 2-hydroxy-7-methoxy-5-methyl-1-naphathoic acid (9) corresponded with the concomitant consumption of 8, and under these conditions 9 was linear with respect to time until approximately 15 min.

