
Supporting Online Material for
Organism Size Promotes the Evolution of Specialized

Cells in Multicellular Digital Organisms

Martin Willensdorfer

Program for Evolutionary Dynamics,

Department of Molecular and Cellular Biology,

Harvard University, Cambridge, MA 02138, USA.

E-mail: ma.wi@gmx.at

Contents

1 Digital Self-Replicating Cellular Organisms (DISCOs) 2
1.1 The Cell . 2
1.2 Environment, Fitness, Merit, and Logic Functions 5
1.3 Multicellularity .. . 7

2 Details about the -X and +X simulations 9

3 Developmental cost of one Y cell 13

A List of Instructions 17

B Example Genomes 19

1

1 Digital Self-Replicating Cellular Organisms (DISCOs)

This section provides details about DISCOs. Since I was motivated by Lenskiet. al. (1), DIS-

COs are very similar to Avididans, that is, digital organisms developed by Christoph Adami (2).

However, there are some important differences: (a) DISCOs have a cell cycle with a metabolic

and a replication phase, (b) DISCOs have a minimal and disjunct set of instructions for each

phase, (c) DISCOs can only copy their genome to a daughter strand and cannot modify their

own genome, and (d) DISCOs can evolve multicellularity. Modifications (a)–(c) make it possi-

ble to directly identify the genomic basis of a phenotypic feature and modification (d) makes it

possible to study the evolution of multicellularity.

Section 1.1 explains in detail how a single DISCO cell works.Section 1.2 describes how

fitness is realized in DISCOs and how a DISCO can increase its fitness by computing logic

functions. Finally, Section 1.3 explains aspects of multicellularity in DISCOs.

1.1 The Cell

A DISCO cell is a computing automaton with the ability to replicate. Each DISCO has a

genome, that is, a sequence of instructions and modifiers. The instructions are designed to

operate on the automaton and change its state in certain ways. This state change depends not

only on the instruction but also on modifiers in the genome. For the following, however, I will

use the term instruction to refer to an instruction and all the modifiers in the genome that affect

the action of this instruction. Appendix A contains detailed information about how modifiers

affect each instruction. In DISCOs modifiers are also used toencode multicellularity in the

genome as we will see in Section 1.3.

Naturally, the execution of a sequence of instructions leads to a sequence of state changes

of the automaton. The right sequence of instructions can cause state changes that result in the

2

computation of logic functions, genome replication, and, finally, cell division. Which sequence

of instructions a cell will actually execute is determined by its genome. Hence, the genome

determines the ability of a cell to compute logic functions as well as speed and accuracy of

replication, which constitute a cells phenotype.

The life of a DISCO cell is divided into two phases, a metabolic and a replication phase.

At the onset of each phase the automaton is reset and starts toexecute instructions from the

beginning of the genome. During the metabolic phase a cell can read and manipulate data to

compute logic functions. During the replication phase a cell can copy its genome and initiate

cell division. Each phase has its own set of instructions. Wehave a set of instructions for

the metabolic phase (blank, io, nand, swap, push, pop) and a set of instructions for the

replication phase (copy, search, mov-head, if-label, divide).

A newly created cell enters first the metabolic phase. The transition from metabolic to

replication phase happens after the execution ofm metabolic instructions (m is a simulation

parameter and equals 300 in all described simulations). Thereplication phase, on the other

hand, ends at the successful or unsuccessful attempt to initiate cell division, that is, at the

execution of adivide instruction.

During the metabolic phase a DISCO cell can create data in theform of logic compounds.

To make the production of logic compounds possible the automaton is equipped withthree

registers (A, B, andC) and onestack. The registers are the operating platform. They are used

to store and manipulate data. New logic compounds can only begenerated by using thenand

instruction which manipulates data stored in the registers. The most basic logic compound is a

logic variable and every logic compound is composed of logicvariables and logic operators that

connect these variables. Logic variables are supplied by the io instruction and stored in one

of the three registers. By loading a new variable to a register, theio instruction might have to

replace a logic compound that is stored in this register. Whenever a logic compound is replaced,

3

theio instruction checks whether this compound is equivalent to one of nine logic functions.

If this is the case, then the DISCO will be rewarded (see next section). Data can also be copied

from one of the registers to the stack with thepush instruction and recovered with thepop

instruction. The DISCO reads the metabolic instructions one by one from the genome. If the

end of the genome is reached, the DISCO will continue from thebeginning, that is, the genome

is processed circular.

One might wonder how those activities relate to a biologicalmetabolism. The analogy

becomes quite obvious if one considers autotrophic processes like carbon fixation in plants.

Plants convert carbon dioxide into organic compounds. The first stable intermediate is a 3-

carbon compound. These trioses can be condensed into hexoses, sucrose, or cellulose. They

can also be used to make amino acids and lipids. Hence, more complex organic compounds are

assembled from simpler ones and all those compounds contribute to the fitness of the organism.

The situation is analogous in DISCOs. However, a DISCO handles logic compounds instead of

organic ones. Logic variables are assembled with thenand instruction to form more complex

logic compounds and, as with real organisms, certain compounds can contribute considerably

to the fitness of the organism.

The metabolic phase is followed by a replication phase. During the replication phase a

DISCO can copy its genome and initiate cell division. Thecopy instruction instructs the

automaton to copy a genome element to the daughter strand. Which element of the genome

is copied depends on the position of the so calledread head. Heads are pointers that the

automaton can use to mark elements of the genome. Besides theread head the automaton has

an instruction head and aflow head. The read head shows the automaton which element

of the genome has to be copied next. It moves forward to the next element after each copy

event. The instruction head shows the automaton which instruction has to be executed next and

does also move forward after the instruction has been executed. The flow head is used to mark

4

positions in the genome to which either the instruction heador the read had can be moved by the

mov-head instruction. This together with theif-label instruction allows to encode jumps

and loops in the genome. Cell division is initiated by thedivide instruction. The execution

of adivde instruction will always lead to a switch from the replication phase to the metabolic

phase, regardless of whether it was successful or not.

Appendix A describes precisely how each instruction changes the state of the automaton

and how modifiers can affect this state change. Appendix B contains some example genomes

and illustrates how a sequence of instructions can encode logic functions and cell replication.

1.2 Environment, Fitness, Merit, and Logic Functions

DISCOs live in an unstructured environment that can accommodate a given number of organ-

isms. In this environment DISCOs compete for the opportunity to execute instructions. For each

iteration only one DISCO is selected and the selected DISCO can execute only one instruction.

Most of the times the execution of an instruction will only affect the DISCO internally. At some

point, however, a DISCO will produce offspring. The offspring is first exposed to replacement

(copy), insertion, and deletion mutations and then placed at a randomly chosen position in the

environment. In most cases this will result in the replacement (death) of another DISCO.

The frequency with which DISCOs are chosen to execute an instruction is proportional to

their merit. Consequently, the more merit a DISCO has, the more frequently it will be chosen

to execute an instruction. Obviously, if the number of instructions that have to be executed until

a cell divides is the same for two DISCOs, then the one with thegreater merit will have the

higher fitness. On the other hand, if two DISCOs have the same merit, then the one that has to

execute less instructions until cell division will have thehigher fitness. We see that there are

two components that determine the fitness of a DISCO: (a) its merit (relative to the merit of the

other organisms) and (b) the speed of replication (i.e., thenumber of instructions that have to

5

be executed until a cell divides).

As mentioned above, a DISCO can manipulate data to create logic compounds. By creating

compounds that are equivalent to specific logic functions, aDISCO can increase its merit and

consequently its fitness. A DISCO can only generate logic compounds by applying thenand

instruction. Thenand instruction connects two data elements (a data element is either a logic

variable or a logic compound) with the NAND (“Not And”) operation. The NAND operator

(. | .) is defined as the negation (¬ .) of the conjunction (. ∧ .), that is,(a|b) = ¬(a ∧ b). The

resulting logic compound is false if and only if botha and b are true. Formal logic shows

that every truth-functional compound can be expressed by using just the NAND operator (3).

For example, we can write¬a = a|a anda ∧ b = (a|b)|(a|b). Since a DISCO can apply the

NAND operation, it can also produce a multitude of logic compounds. With theio instruction

a DISCO can test whether a data element is equivalent to one ofup to nine logic functions. If

so, then the DISCO is rewarded with a merit increase. By how much the merit is increased

depends on the complexity of the logic function (see below and Section 2). Hence, a DISCO

receives a reward for the construction of meaningful logic compounds. Selection will therefore

favor DISCOs that can construct such logic compounds.

For simplicity, the merit of an organism remains unchanged until it produces offspring.

Each time a DISCO produces new offspring its merit is newly calculated according to the logic

compounds it was able to create. One has to keep in mind that newly born DISCOs have not yet

had the chance to construct any logic compounds. To avoid disadvantageous for newborns, they

start off with the parental merit until they reached maturity and produce their own offspring.

The table below lists the nine logic operators that a DISCO can compute to change its merit.

During a simulation logic operators are identified by calculating the truth value of the expression

in the second column, whereC is a logic compound that a DISCO generated. The truth value

of the expression in column two is calculated by using randomly generated 64-bit integers as

6

instances for the logic variablesa andb. The NAND operation as well as the logic operations

are applied bit-wise. An example is given below.

It is convenient to summarize which logic functions the genome of a DISCO can compute

by using a nine digit binary code. For example a 000000000 tells us that the genome does not

encode for any logic function; a 101101000 that the genome can compute NOT, AND, ORN,

and AND N, and a 111111011 that the genome can compute all nine logic functions except for

XOR.

logic operator definition1
minimum number

of NAND required

NOT C(a) ≡ ¬a 1

NAND C(a, b) ≡ ¬(a ∧ b) 1

AND C(a, b) ≡ a ∧ b 2

OR N
(

C(a, b) ≡ a ∨ ¬b
)

∨
(

C(a, b) ≡ ¬a ∨ b
)

2

OR C(a, b) ≡ a ∨ b 3

AND N
(

C(a, b) ≡ a ∧ ¬b
)

∨
(

C(a, b) ≡ ¬a ∧ b
)

3

XOR C(a, b) ≡ (a ∨ b) ∧ ¬(a ∧ b) 4

NOR C(a, b) ≡ ¬(a ∨ b) 4

EQU C(a, b) ≡ (a ∧ b) ∨ (¬a ∧ ¬b) 5

a : 110101110001110011111001100010001000001000. . . 64-bit integer

b : 000100101101101001011100000111110000101000. . . 64-bit integer

C(a, b) : 000100100001100001011000000010000000001000. . . 64-bit integer

We haveC(a, b) ≡ a ∧ b and conclude that compoundC(a, b) encodes for AND

1.3 Multicellularity

So far I have described how the genome of a DISCO determines the phenotype of a single cell.

The genome can also encode information about the development of a multicellular organism.
1¬, ∧, ∨, and≡ symbolize the logical negation, conjunction (and), disjunction (or), and equivalence.

7

A DISCOs life starts always with a single cell, the default (D) cell. Each organism has exactly

one D cell and the D cell is the only reproductive cell. After the first cell division the D cell has

two options. It can either release the daughter cell into theenvironment as offspring and remain

unicellular, or retain the cell as a first step towards the development of a multicellular organism.

If, how many, and what kind of cells are retained is encoded inthe genome.

To understand how multicellularity is encoded, we have to remind ourself that the genome

is a sequence of instructions and modifiers. Among the set of instructions, thedivide instruc-

tion is special because it is the only one that is not affectedby modifiers. To keep things as

simple as possible, I decided to exploit this feature of thedivide instruction. In particular,

the D cell will retain one cell for eachdivide instruction in the genome that is followed by a

modifier. Depending on the kind of modifier the retained daughter cell is assigned to a somatic

cell type. For example, a ‘divide|A’ encodes for a X cell, whereas a ‘divide|B’ and a

‘divide|C’ encodes for a Y and a Z cell, respectively. (Z cells are not relevant for this work

and just mentioned for completeness.) After a daughter cellhas been retained for each such

divide instruction, the D cell is able to release daughter cells as offspring into the environ-

ment (see Figure 1 for an example). Please note that the genome might not contain anydivide

instruction that is followed by a modifier and would therefore encode for a unicellular organism

(see Appendix B for examples).

Most multicellular organisms have specialized cells. Eventhough the specialized cells of

a multicellular organism contain in most cases the same genome as the replicative cells, they

behave differently. Specialized cells in DISCOs work analogous. The genome of a cell might

be able to compute all logic functions, but cells can only utilize logic functions according to

their cell type. For this work, D and X cells can only benefit from the first six logic functions

and Y cells only from the last three functions that might be encoded in the genome (see Section

2).

8

It is important to point out that, even though a DISCO can be composed of several cells,

each cell is still an independent automaton that executes one instruction after another. In fact,

whenever a multicellular DISCO is selected by the environment to execute an instruction, each

cell of this organism will execute one instruction.

2 Details about the -X and +X simulations

This section describes the -X and the +X simulations in more detail. For computational reasons

I limited the population size to 200 (uni- or multicellular)DISCOs. I conducted 500 runs for

each type of simulation, which differed only with respect tothe seed for the random number

generator. Both types of simulations have two parts (a) an initial 10 000 generations (2 × 106

replication events) in which specialized cells are not beneficial and (b) a further 10 000 genera-

tions in which specialized cells are advantageous.

For the first 10 000 generations, each simulation was initiated with the same genome. This

genome contains 141 ‘blank’ instructions (essentially a place holder, see Appendix A)and a

sequence of 9 instructions, ‘search|copy|if-label|C|A|divide|mov-head|A|B’,

which encodes cell replication (see Appendix B). Thus, the ancestral DISCO could not com-

pute any logic function and was unicellular. The initial genome has length 150. During all

simulations, genome length was restricted to[145, 155], that is, offspring was nonviable if its

genome was smaller than 145 or larger than 155. After the first10 000 generations I determine

the most recent common ancestor (MRCA) of the population. The genome of the MRCA is

then used to seed the population for the next 10 000 generations. That is, the second part of a

run is initialized with a genome that was produced during thefirst part of this run.

During the simulations, offspring was exposed to copy, insertion, and deletion mutations.

For each offspring, the number of copy, insertion, and deletion mutations is chosen from a

9

Poisson distribution with mean 0.45, 0.025, and 0.025, respectively. An average mutation rate

of 0.5 instructions per replication (≈ 3.4 × 10−3 mutations per instruction per replication) was

chosen because it seemed to be optimal for the evolution of Y cell specific logic functions.

The merit of an organism is calculated based on the merit of its cells. The merit of a cell

in turn is calculated based on the logic functions it can compute and utilize. A cell that cannot

compute any logic function has merit 1. The second column of Table 1 shows how the merit

of a cell changes if it is able to compute (and utilize) the corresponding logic function. The

values were taken from Lenski et al. (1) and reflect the complexity of the respective function.

In particular, the merit of a cell is multiplied by2n if the cell is able to compute a logic function

of complexityn, wheren gives the minimum number of NAND operations that are required

to construct the logic function [see (1) and Section 1.2]. Asmentioned before, not every cell

is able to utilize every logic function. Which kind of cell can utilize which kind of functions

during the first and the second part of the +X and the -X simulations is shown in Table 1.

Finally, the merit of the multicellular organism has to be calculated based on the merit of

each cell. In short, the merit of an organism during the +X simulations is given bySUM(X,D)*SET(Y)

and during the -X simulations bySET(X,D)*SET(Y). The expressionSUM(X,D) denotes

the sum of merits of all D and X cells. Hence, during the +X simulations D and X cells con-

tribute linearly to the merit of the organism.SET(.) is equal to the merit of a cell that

can compute the set of functions that all the cells in the argument can compute. For example,

SET(X,D) equals the merit of a cell that can compute the same set of functions that all X and D

cells can compute. Since X and D cells can encode and utilize the same functions,SET(X,D)

is essentially equal to the merit of one D cell. Hence, additional X cells cannot contribute to the

merit of the organism. Similarly,SET(Y) equals the merit of a cell that can compute the set of

functions that all Y cells can compute. Again, since one Y cell can compute the set of functions

that all Y cells can compute,SET(Y) is equal to the merit of one Y cell.

10

The use ofSUM(X,D)*SET(Y) for the +X simulations was motivated by specialized cells

in cyanobacteria. X and D cells are functionally equivalentand contribute additively to the

merit of the organism: Two photosynthesizing vegetative cells can fix approximately twice as

much carbon as one photosynthesizing cell. Y cells, however, are specialized cells that amplify

the activity of X and D cells (by providing nitrogen, for example). This is reflected in the

multiplicative contribution of Y cells to the merit of the organism. I useSET(Y) instead of

SUM(Y) because DISCOs are thought to be small enough so that one Y cells can amplify the

merit of X and D cells as well as two Y cells.

Figure 1 shows the first five cell divisions in the life of a multicellular DISCO composed of

two X cells and one Y cell. It also shows what the merit of this organism would be during the

first and the second part of the +X and -X simulations.

logic function change in merit

cell types that can utilize the given function

first 10 000 generations second 10 000 generations

+X -X +X -X

NOT ×21 D,X D D,X D
NAND ×21 D,X D D,X D
AND ×22 D,X D D,X D
OR N ×22 D,X D D,X D
OR ×23 D,X D D,X D

AND N ×23 D,X D D,X D
XOR ×24 - - Y Y
NOR ×24 - - Y Y
EQU ×25 - - Y Y

Table 1: Merit increase and cell type specifity during the +X and -X simulations. Please note
that X cells can utilize functions during the -X simulationsbut are not able to contribute to the
merit of the organism, since I am usingSET(D,X)*SET(Y) instead ofSUM(D,X)*SET(Y).

11

Figure 1: Multicellularity in DISCOs.(a) The first five cell division of a DISCO with a genome
that encodes two X cells and one Y cell. As explained in Section 1.3, if the genome contains
divide instructions that are followed by a modifier, then the D cell will retain daughter cells
to build a multicellular organism. The genome of this DISCO contains twodivide|A and
onedivide|B instructions. Consequently, the first three cell divisionsare used to produce
two X cells and one Y cell. Thereafter every further divisionresults in cells that are released
into the environment as offspring.(b) Calculating the merit of a multicellular organism. Let us
assume that the genome of this DISCO encodes for AND, OR, ANDN, XOR, and EQU, that is,
001011101. A logic function can increase a cells merit only if it is encoded in the genome and
utilizable by the given cell type. Here, for example, the D cell can compute and utilize AND,
OR, and ANDN (001011000) and has therefore a merit of1 × 22 × 23 × 23 = 28 = 256.
For the first 10 000 generations, Y cells cannot utilize any logic function and have therefore
always merit 1. For the second part, however, Y cells can utilize the last three logic functions
(000000111). Since the genome of this organism encodes XOR and EQU, Y cells receive a
merit of 1 × 24 × 25 = 29 = 512 for 000000101. The -X simulations differ from the +X
simulations in that X cells cannot contribute to the merit ofthe organism. I useSET(D,X)
instead ofSUM(D,X) and one D cell can compute the same set of functions as D and X cells
together. We can clearly see that some somatic cells do not increase the merit of the DISCO
(X cells during the -X simulations and Y cells during the first10 000 generations). However,
somatic cells constitute a cost, since they delay the time ittakes to reach maturity and finally
produce offspring. Hence, somatic cells that do not increase the merit of the organism are
disadvantageous.

12

3 Developmental cost of one Y cell

I will calculate the fitness of an organism composed ofn + 1 cells relative to the fitness of an

organism composed ofn cells. Let us first considern = 1. The unicellular organism produces

offspring with every cell division at rater1, i.e.,© → © + ©. Its fitness is given by the rate

of cell division. The bicellular organism produces offspring only after it reached maturity. In

DISCOs (see Figure 1a) only one cell is able to divide. Hence,we have© → ©© → ©©+©.

If x1 andx2 denote the frequency of the bicellular organisms in the unicellular and the bicellular

stage of development, respectively, andr2 the rate of cell division, then we can use the following

differential equation to describe the population,

ẋ1 = −r2x1 + r2x2 − Φx1

ẋ2 = r2x1 − Φx2.
(1)

The fitness of the bicellular organism is given by the averagefitnessΦ at equilibrium, which is

given by the largest eigenvalue of






−r2 r2

r2 0






. (2)

A short calculation shows, that the eigenvalues,λ, are given by the solutions ofλ(λ + r2)− r2
2.

Equivalently, we can solveλ(λ + 1) − 1 and multiply the solution withr2. In any case, the

fitness of the bicellular organism at equilibrium is given byΦ = (
√

5 − 1)/2 r2 ≈ 0.62 r2.

Hence the fitness of the bicellular organism relative to the fitness of the unicellular organism

equalsr20.62/r1. In DISCOs the rate of cell division is proportional to the merit of the organism

and the efficiency of genome duplication. Since we are just interested in the effect of mutations

that add an additional cell to an organism, we haver1 ≈ r2. Hence, mutations that turn a

unicellular into a bicellular organism decrease the relative fitness to 0.62.

The calculations for an organism of sizen are similar. To calculate the fitness,Φ
n
, of an

13

organism of sizen, we have to calculate the largest eigenvalue of the following n × n matrix,
















−1 0 · · · 0 1

1 −1
. . . 0

0 1
.

...
...

. −1 0
0 · · · 0 1 0

















. (3)

The eigenvaluesλ are given by the roots ofλ(λ + 1)n−1 − 1. The fitness of an organism of

sizen + 1 relative to and organism of sizen is then given byΦ
n+1/Φ

n
. For example, the cost

of one additional, unused cell in an organism of size 10 isΦ11/Φ10 = 0.184/0.197 = 0.934.

The dotted line in Figure 2 showsΦ
n

and the solid lineΦ
n+1/Φ

n
for a wide range of organism

sizes.

14

1 5 10 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

organism size

re
la

tiv
e

fit
ne

ss

Figure 2: Developmental cost of an additional, unused cell.The dotted line shows the fitness of
an organism of sizen relative to the fitness of a unicellular organism. The solid line shows the
fitness of an organism of sizen + 1 relative to the fitness of an organism of sizen. Hence, it
shows how deleterious mutations are that add one, unused Y cell to an organism of sizen.

15

References and Notes

1. Lenski R.E., Ofria C., Pennock R.T., & Adami C. (2003)Nature 423, 139–44.

2. Ofria C. & Wilke C.O. (2004)Artif Life 10, 191–229.

3. Goldfarb W. (2003)Deductive Logic (Hackett Publishing Company).

16

A List of Instructions

This section describes how instructions together with modifiers change the state of a DISCO cell. In the following
inst will refer to any of the available instructions,mod will refer to a sequence of modifiers, andC(mod) to
its complement. We have the three modifiersA, B, andC with their complementsB, C, andA, respectively. The
complement of a sequence of modifiers is given by the sequenceof complements, for example,C(CACABB) =
ABABCC.

Instructions for the replication phase

Thecopy instruction: Thecopy instruction copies the instruction/modifiers to which the read head points to the
daughter strand and moves the read head to the instruction/modifier following the just copied genome elements.

The search instruction: Thesearch instruction repositions the flow head depending on modifier sequences

in the genome. We have to distinguish the following cases.
• Thesearch instruction is followed by another instruction, i.e., we have . . . search inst . . . : In this

case the flow head is moved to point atinst.
• Thesearch instruction is followed by a sequence of modifiers, i.e., we have. . . search mod . . . :

In this case we look for the compliment of the modifier sequenceC(mod) in the genome. If this sequence
can be found, then the flow head is moved to point at the instruction following C(mod). If this sequence
cannot be found, then the flow head is moved to point to the instruction followingmod.

The mov-head instruction: Themov-head moves either the instruction head or the read head to the position
of the flow head. The instruction head is moved to the flow head if the DISCO cell executes amov-head that
is followed by modifierA, i.e.,mov-head A. If the mov-head is followed by modifierB, i.e.,mov-head B,
then the read head is moved to the flow head. In all other cases,themov-head instruction does not affect the state
of the automaton.

The if-label instruction: Theif-label instruction can be used to skip instructions depending on the most
recently copied genome element. Let us consider the sequenceif-label mod inst. Theinst instruction
will be executed only if the most recently copied genome element is the complement ofmod. If this is not the case,
theninst will be ignored and the instruction head moved forward to thenext instruction. In case ofif-label
inst, the automaton will executeinst if and only if the most recently copied genome element is an instruction.

The divide instruction: Thedivide instruction initiates cell division and terminates the replication phase.
Thedivide instruction will successfully generate a new DISCO cell if the genome has the right length. For this
work the genome cannot be smaller than 145 or larger than 155 modifiers and instructions long. The generated
daughter cell is either used as a somatic cell or released into the environment as offspring.

Instructions for the metabolic phase

The state changes for the metabolic phase are more straight forward than the ones for the replication phase. They
only affect the merit of the organism and data stored in the registers and the stack. In the following I will usesi, a,
b, andc to denote logic compounds andx to denote a newly generated logic variable. The first column of following
tables shows the state of the automaton before the sequence in the second column is executed. The third column

17

shows the state of the automaton after the execution of the sequence. Not shown is the advance of the instruction
head to the next instruction.

The blank instruction: Theblank instruction does not change the state of the automaton. It isessentially just
used as a place holder in ancestral genomes. Usually, theblank instruction is not part of the pool of instructions
from which instructions for the copy and insertion mutations are chosen. Consequently,blank instructions will
eventually disappear from the genome.

The io instruction: The merit of the DISCO before the execution of theio instruction is given bym. The merit
of the DISCO, after testinga, b, andc for logic functions is given byma, mb, andmc, respectively. A DISCO cell
is rewarded only once for a given logic function during one metabolic phase.

before instruction after
io A merit:ma A:x B:b C:c
io B merit:mb A:a B:x C:c
io C merit:mc A:a B:b C:x

merit:m A:a B:b C:c

io inst merit:mb A:a B:x C:c

The nand instruction: Please note that thenand instruction is the only instruction that can generate new logic
compounds.

before instruction after
nand A A:a|b B:b C:c
nand B A:a B:b|c C:c
nand C A:a B:b C:c|aA:a B:b C:c

nand inst A:a B:b|c C:c

The swap instruction:

before instruction after
swap A A:b B:a C:c
swap B A:a B:c C:b
swap C A:c B:b C:a

A:a B:b C:c

swap inst A:a B:c C:b

The push instruction:

before instruction after
push A stack: a, s1, s2, s3, . . .

push B stack: b, s1, s2, s3, . . .

push C stack: c, s1, s2, s3, . . .

A:a B:b C:c
stack: s1, s2, . . .

push inst stack: b, s1, s2, s3, . . .

The pop instruction:

18

before instruction after
pop A A:s1 B:b C:c stack: s2, s3, . . .

pop B A:a B:s1 C:c stack: s2, s3, . . .

pop C A:a B:b C:s1 stack: s2, s3, . . .

A:a B:b C:c
stack: s1, s2, . . .

pop inst A:a B:s1 C:c stack: s2, s3, . . .

B Example Genomes

Encoding Replication

The following shows a sequence of the state changes that leadto genome replication. During the replication phase,
state changes affect only the position of the read, flow, and instruction head. These positions are indicated by
underlines, overlines, and bold font, respectively, i.e.,read head, flow head, andinstruction head.

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:

search moves the flow head to thecopy instruction

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:

copy copies theio instruction to the daughter strand and moves the read head forward

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io

The complement ofC|A is given byA|B. Since the most recently copied element isio and notA|B,
if-label ignoresdivide and advances the instruction head to themov-head instruction.

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io

mov-head moves the instruction head to the position of the flow head.

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io

copy copies thesearch instruction to the daughter strand and moves the read head forward.

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io|search

This loop continues until the automaton copiesA|B, the last genome element.

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io|search|copy|if-label|C|A|divide|mov-head

CopiesA|B to the daughter strand and moves the read head forward.

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io|search|copy|if-label|C|A|divide|mov-head|A|B

Now the most recently copied genome element is identical to the complement ofC|A andif-label does
not skip thedivide instruction

• io|search|copy|if-label|C|A|divide|mov-head|A|B
daughter strand:io|search|copy|if-label|C|A|divide|mov-head|A|B

Thedivide instruction ends the replication phase and the daughter strand is used to build a new cell.

19

Encoding NAND and AND

This sequence creates two logic compounds. The first one(a|b)|(a|b) is equivalent to AND and the second onea|b
is equivalent to NAND, wherea andb are logic variables.

io|io|C|nand|push|pop|C|nand|io|io|C A: B: C: stack: merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:a C: stack: merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:a C:b stack: merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:a|b C:b stack: merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:a|b C:b stack:a|b merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:a|b C:a|b stack: merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:(a|b)|(a|b) C:a|b stack: merit= 1
io|io|C|nand|push|pop|C|nand|io|io|C A: B:c C:a|b stack: merit= 1 × 22

io|io|C|nand|push|pop|C|nand|io|io|C A: B:c C:d stack: merit= 1 × 22 × 21

Encoding NAND, AND, and Replication

This sequence is pieced together using the two sequences above. The first part encodes the two logic function
NAND and AND, and the second part genome replication.

io|io|C|nand|push|pop|C|nand|io|io|C|search|copy|if-label|C|A|divide|
mov-head|A|B

Encoding NAND, AND, Replication, and One Y Cell

This sequence is a derivative of the previous sequence. It contains adivide|B and encodes therefore for a
multicellular organism with one Y cell. Please note that theif-label|C before thedivide is required to
prevent a premature initiation of cell division.

io|io|C|nand|push|if-label|C|divide|B|pop|C|nand|io|io|C|search|copy|
if-label|C|A|divide|mov-head|A|B

20

