Supporting Online Material for

Organism Size Promotes the Evolution of Specialized

Cells in Multicellular Digital Organisms
Martin Willensdorfer

Program for Evolutionary Dynamics,
Department of Molecular and Cellular Biology,
Harvard University, Cambridge, MA 02138, USA.

E-mail: ma.wi@gmx.at

Contents

1 Digital Self-Replicating Cellular Organisms (DISCOs) 2
1.1 TheCell e 2
1.2 Environment, Fitness, Merit, and Logic Functions 5
1.3 Multicellularity 7

2 Details about the -X and +X simulations 9

3 Developmental cost of one Y cell 13

A List of Instructions 17

B Example Genomes 19

1 Digital Self-Replicating Cellular Organisms (DISCOs)

This section provides details about DISCOs. Since | wasvatd by Lensket. al. (1), DIS-
COs are very similar to Avididans, that is, digital organssteveloped by Christoph Adami (2).
However, there are some important differences: (a) DISC&s ha cell cycle with a metabolic
and a replication phase, (b) DISCOs have a minimal and disget of instructions for each
phase, (c) DISCOs can only copy their genome to a daughtardsand cannot modify their
own genome, and (d) DISCOs can evolve multicellularity. Miodtions (a)—(c) make it possi-
ble to directly identify the genomic basis of a phenotypitfee and modification (d) makes it
possible to study the evolution of multicellularity.

Section 1.1 explains in detail how a single DISCO cell worggction 1.2 describes how
fitness is realized in DISCOs and how a DISCO can increasetnitss by computing logic

functions. Finally, Section 1.3 explains aspects of maltidarity in DISCOs.

1.1 The Cell

A DISCO cell is a computing automaton with the ability to iepte. Each DISCO has a
genome, that is, a sequence of instructions and modifier iAstructions are designed to
operate on the automaton and change its state in certain Ways state change depends not
only on the instruction but also on modifiers in the genome.tke following, however, | will
use the term instruction to refer to an instruction and @lrttodifiers in the genome that affect
the action of this instruction. Appendix A contains detdileformation about how modifiers
affect each instruction. In DISCOs modifiers are also useentmode multicellularity in the
genome as we will see in Section 1.3.

Naturally, the execution of a sequence of instructionsddada sequence of state changes

of the automaton. The right sequence of instructions caeecatate changes that result in the

computation of logic functions, genome replication, antlfiy, cell division. Which sequence
of instructions a cell will actually execute is determinedits genome. Hence, the genome
determines the ability of a cell to compute logic functiossveell as speed and accuracy of
replication, which constitute a cells phenotype.

The life of a DISCO cell is divided into two phases, a metabald a replication phase.
At the onset of each phase the automaton is reset and stakedtote instructions from the
beginning of the genome. During the metabolic phase a celread and manipulate data to
compute logic functions. During the replication phase &@ah copy its genome and initiate
cell division. Each phase has its own set of instructions. ha%e a set of instructions for
the metabolic phasé(ank, i 0, nand, swap, push, pop) and a set of instructions for the
replication phaseclopy, sear ch, nov- head,i f - | abel , di vi de).

A newly created cell enters first the metabolic phase. Thesitian from metabolic to
replication phase happens after the executiomahetabolic instructionsrf is a simulation
parameter and equals 300 in all described simulations). ré&pkcation phase, on the other
hand, ends at the successful or unsuccessful attempt taténgell division, that is, at the
execution of ai vi de instruction.

During the metabolic phase a DISCO cell can create data ifothe of logic compounds.
To make the production of logic compounds possible the aatomis equipped withhree
registers (A, B, andC) and onestack The registers are the operating platform. They are used
to store and manipulate data. New logic compounds can onfjeherated by using theand
instruction which manipulates data stored in the regisfEin® most basic logic compound is a
logic variable and every logic compound is composed of legitables and logic operators that
connect these variables. Logic variables are supplied &y ¢hinstruction and stored in one
of the three registers. By loading a new variable to a regi#itei o instruction might have to

replace a logic compound that is stored in this register. Wgter a logic compound is replaced,

thei o instruction checks whether this compound is equivalenti® af nine logic functions.
If this is the case, then the DISCO will be rewarded (see nextian). Data can also be copied
from one of the registers to the stack with thesh instruction and recovered with thgop
instruction. The DISCO reads the metabolic instructions by one from the genome. If the
end of the genome is reached, the DISCO will continue fronb#gnning, that is, the genome
is processed circular.

One might wonder how those activities relate to a biologioatabolism. The analogy
becomes quite obvious if one considers autotrophic preselise carbon fixation in plants.
Plants convert carbon dioxide into organic compounds. Tisé $table intermediate is a 3-
carbon compound. These trioses can be condensed into kesoseose, or cellulose. They
can also be used to make amino acids and lipids. Hence, monglen organic compounds are
assembled from simpler ones and all those compounds cot&tib the fitness of the organism.
The situation is analogous in DISCOs. However, a DISCO hemidigic compounds instead of
organic ones. Logic variables are assembled withntdned instruction to form more complex
logic compounds and, as with real organisms, certain comgimaan contribute considerably
to the fitness of the organism.

The metabolic phase is followed by a replication phase. muthe replication phase a
DISCO can copy its genome and initiate cell division. Tdwpy instruction instructs the
automaton to copy a genome element to the daughter stranich\WWkement of the genome
is copied depends on the position of the so callead head Heads are pointers that the
automaton can use to mark elements of the genome. Besidesathdead the automaton has
an instruction head and aflow head The read head shows the automaton which element
of the genome has to be copied next. It moves forward to thé elexment after each copy
event. The instruction head shows the automaton whichucisbn has to be executed next and

does also move forward after the instruction has been exdciihe flow head is used to mark

positions in the genome to which either the instruction heatie read had can be moved by the
nov- head instruction. This together with thef - | abel instruction allows to encode jumps
and loops in the genome. Cell division is initiated by thevi de instruction. The execution
of adi vde instruction will always lead to a switch from the replicatiphase to the metabolic
phase, regardless of whether it was successful or not.

Appendix A describes precisely how each instruction charibe state of the automaton
and how modifiers can affect this state change. Appendix Batos1some example genomes

and illustrates how a sequence of instructions can encagefienctions and cell replication.

1.2 Environment, Fitness, Merit, and Logic Functions

DISCOs live in an unstructured environment that can accodat®a given number of organ-
isms. In this environment DISCOs compete for the opporuniexecute instructions. For each
iteration only one DISCO is selected and the selected DIS&Cegecute only one instruction.
Most of the times the execution of an instruction will onljeat the DISCO internally. At some
point, however, a DISCO will produce offspring. The offsyriis first exposed to replacement
(copy), insertion, and deletion mutations and then pla¢edrandomly chosen position in the
environment. In most cases this will result in the replaceinj@eath) of another DISCO.

The frequency with which DISCOs are chosen to execute aructsin is proportional to
their merit. Consequently, the more merit a DISCO has, theerfrequently it will be chosen
to execute an instruction. Obviously, if the number of instions that have to be executed until
a cell divides is the same for two DISCOs, then the one withgiieater merit will have the
higher fitness. On the other hand, if two DISCOs have the saard,then the one that has to
execute less instructions until cell division will have thigher fithess. We see that there are
two components that determine the fithess of a DISCO: (a)étstifrelative to the merit of the

other organisms) and (b) the speed of replication (i.e.ntimaber of instructions that have to

5

be executed until a cell divides).

As mentioned above, a DISCO can manipulate data to createdompounds. By creating
compounds that are equivalent to specific logic functior3|SCO can increase its merit and
consequently its fitness. A DISCO can only generate logicpmmds by applying theand
instruction. Thenand instruction connects two data elements (a data elementisra logic
variable or a logic compound) with the NAND (“Not And”) opé¢ian. The NAND operator
(.|.) is defined as the negation () of the conjunction (A .), thatis,(a|b) = —(a A D). The
resulting logic compound is false if and only if bothandb are true. Formal logic shows
that every truth-functional compound can be expressed imgygst the NAND operator (3).
For example, we can writea = ala anda A b = (a|b)|(a|b). Since a DISCO can apply the
NAND operation, it can also produce a multitude of logic campds. With the o instruction
a DISCO can test whether a data element is equivalent to onp taf nine logic functions. If
so, then the DISCO is rewarded with a merit increase. By howinthe merit is increased
depends on the complexity of the logic function (see belod &action 2). Hence, a DISCO
receives a reward for the construction of meaningful logimpounds. Selection will therefore
favor DISCOs that can construct such logic compounds.

For simplicity, the merit of an organism remains unchangetll it produces offspring.
Each time a DISCO produces new offspring its merit is newlgulated according to the logic
compounds it was able to create. One has to keep in mind théy bern DISCOs have not yet
had the chance to construct any logic compounds. To avoadidestageous for newborns, they
start off with the parental merit until they reached maguaihd produce their own offspring.

The table below lists the nine logic operators that a DISC®omanpute to change its merit.
During a simulation logic operators are identified by cadtinlg the truth value of the expression
in the second column, wherg is a logic compound that a DISCO generated. The truth value

of the expression in column two is calculated by using rangarenerated 64-bit integers as

instances for the logic variablesandb. The NAND operation as well as the logic operations
are applied bit-wise. An example is given below.

It is convenient to summarize which logic functions the gaemf a DISCO can compute
by using a nine digit binary code. For example a 00000000¢ wsl that the genome does not
encode for any logic function; a 101101000 that the genomecoapute NOT, AND, OR\,

and AND.N, and a 111111011 that the genome can compute all nine logatibns except for

XOR.
minimum number
logic operator definitioh of NAND required
NOT C(a) = —a 1
NAND Cla,b) = —(a A D) 1
AND C(a,b)=aNb 2
ORN <C’(a, b)=av ﬁb> v (C’(a, b) = —a Vv b) 2
OR C(a,b)=aVb 3
AND_N <C’(a, b) = aA ﬁb> v (C’(a, b) = —a A b) 3
XOR C(a,b) = (aVb) AN=(aAD) 4
NOR C(a,b) = —(a V) 4
EQU C(a,b) = (a Ab) V (ma A —b) 5
a :110101110001110011111001100010001000001000... 64-bitinteger
b :000100101101101001011100000111110000101000... 64-bitinteger

C(a,b):000100100001100001011000000010000000001000... 64-bit integer
We haveC'(a, b) = a A b and conclude that compouidd{ «, b) encodes for AND

1.3 Multicellularity

So far | have described how the genome of a DISCO determiegstitbnotype of a single cell.

The genome can also encode information about the develdprhammulticellular organism.

1, A, Vv, and= symbolize the logical negation, conjunction (and), disfion (or), and equivalence.

7

A DISCO:s life starts always with a single cell, the defaulj @Il. Each organism has exactly
one D cell and the D cell is the only reproductive cell. Aftee first cell division the D cell has
two options. It can either release the daughter cell intethwronment as offspring and remain
unicellular, or retain the cell as a first step towards thestigpgment of a multicellular organism.
If, how many, and what kind of cells are retained is encodgtiérgenome.

To understand how multicellularity is encoded, we have toinel ourself that the genome
Is a sequence of instructions and modifiers. Among the sestiuctions, theli vi de instruc-
tion is special because it is the only one that is not affebyednodifiers. To keep things as
simple as possible, | decided to exploit this feature ofdh&i de instruction. In particular,
the D cell will retain one cell for eactli vi de instruction in the genome that is followed by a
modifier. Depending on the kind of modifier the retained daegeell is assigned to a somatic
cell type. For example, ai vi de| A’ encodes for a X cell, whereas di‘vi de| B’ and a
‘di vi de| C encodes for a Y and a Z cell, respectively. (Z cells are nigvant for this work
and just mentioned for completeness.) After a daughterhaslbeen retained for each such
di vi de instruction, the D cell is able to release daughter cellsfisping into the environ-
ment (see Figure 1 for an example). Please note that the gemaght not contain angti vi de
instruction that is followed by a modifier and would therefencode for a unicellular organism
(see Appendix B for examples).

Most multicellular organisms have specialized cells. Ethmugh the specialized cells of
a multicellular organism contain in most cases the samergeras the replicative cells, they
behave differently. Specialized cells in DISCOs work agaless. The genome of a cell might
be able to compute all logic functions, but cells can onlyizgilogic functions according to
their cell type. For this work, D and X cells can only benefrir the first six logic functions
and Y cells only from the last three functions that might beceted in the genome (see Section

2).

It is important to point out that, even though a DISCO can bemosed of several cells,
each cell is still an independent automaton that executesrstruction after another. In fact,
whenever a multicellular DISCO is selected by the environinb@ execute an instruction, each

cell of this organism will execute one instruction.

2 Details about the -X and +X simulations

This section describes the -X and the +X simulations in metail For computational reasons
| limited the population size to 200 (uni- or multicelluldd)SCOs. | conducted 500 runs for
each type of simulation, which differed only with respectiie seed for the random number
generator. Both types of simulations have two parts (a) #ialii0 000 generation2(x 10°
replication events) in which specialized cells are not fieia and (b) a further 10 000 genera-
tions in which specialized cells are advantageous.

For the first 10 000 generations, each simulation was ieiatith the same genome. This
genome contains 14bl ank’ instructions (essentially a place holder, see Appendiva@d a
sequence of 9instructions,éar ch| copy| i f -1 abel | C| Al di vi de| nov- head| A| B,
which encodes cell replication (see Appendix B). Thus, theeatral DISCO could not com-
pute any logic function and was unicellular. The initial gare has length 150. During all
simulations, genome length was restricted1t¢5, 155], that is, offspring was nonviable if its
genome was smaller than 145 or larger than 155. After theli@®00 generations | determine
the most recent common ancestor (MRCA) of the populatiore génome of the MRCA is
then used to seed the population for the next 10 000 genesatithat is, the second part of a
run is initialized with a genome that was produced duringfitts¢ part of this run.

During the simulations, offspring was exposed to copy, ritnse, and deletion mutations.

For each offspring, the number of copy, insertion, and deiemutations is chosen from a

Poisson distribution with mean 0.45, 0.025, and 0.025,eetsely. An average mutation rate
of 0.5 instructions per replications(3.4 x 10~3 mutations per instruction per replication) was
chosen because it seemed to be optimal for the evolution @i$pecific logic functions.

The merit of an organism is calculated based on the merisafdtls. The merit of a cell
in turn is calculated based on the logic functions it can caot@@and utilize. A cell that cannot
compute any logic function has merit 1. The second columnatid 1 shows how the merit
of a cell changes if it is able to compute (and utilize) theresponding logic function. The
values were taken from Lenski et al. (1) and reflect the coxilplef the respective function.
In particular, the merit of a cell is multiplied By if the cell is able to compute a logic function
of complexityn, wheren gives the minimum number of NAND operations that are reqlire
to construct the logic function [see (1) and Section 1.2].mentioned before, not every cell
is able to utilize every logic function. Which kind of cellcatilize which kind of functions
during the first and the second part of the +X and the -X sinaatis shown in Table 1.

Finally, the merit of the multicellular organism has to bécatated based on the merit of
each cell. In short, the merit of an organism during the +Xwdations is given bysUM X, D) * SET('Y)
and during the -X simulations b$ET(X, D) * SET(Y) . The expressiolsUM X, D) denotes
the sum of merits of all D and X cells. Hence, during the +X dations D and X cells con-
tribute linearly to the merit of the organismSET(.) is equal to the merit of a cell that
can compute the set of functions that all the cells in theraent can compute. For example,
SET(X, D) equals the merit of a cell that can compute the same set didunsahat all X and D
cells can compute. Since X and D cells can encode and utiizedame function§ET(X, D)
is essentially equal to the merit of one D cell. Hence, addél X cells cannot contribute to the
merit of the organism. SimilarhET(Y) equals the merit of a cell that can compute the set of
functions that all Y cells can compute. Again, since one Y cah compute the set of functions

that all Y cells can comput&ET(Y) is equal to the merit of one Y cell.

10

The use oSUM X, D) * SET(Y) for the +X simulations was motivated by specialized cells
in cyanobacteria. X and D cells are functionally equivalentl contribute additively to the
merit of the organism: Two photosynthesizing vegetatiiis @an fix approximately twice as
much carbon as one photosynthesizing cell. Y cells, howeaverspecialized cells that amplify
the activity of X and D cells (by providing nitrogen, for expla). This is reflected in the
multiplicative contribution of Y cells to the merit of theganism. | useSET(Y) instead of
SUM Y) because DISCOs are thought to be small enough so that ondsYcaal amplify the
merit of X and D cells as well as two Y cells.

Figure 1 shows the first five cell divisions in the life of a nedilular DISCO composed of
two X cells and one Y cell. It also shows what the merit of thigamism would be during the

first and the second part of the +X and -X simulations.

cell types that can utilize the given function

logic function change in merit first 10 000 generations second 10 000 generations

+X X +X X

NOT %21 D,X D D,X D
NAND %21 D,X D D,X D
AND x 22 D,X D D,X D
ORN x 22 D,X D D,X D
OR x 23 D,X D D,X D
AND N x 23 D,X D D,X D
XOR x 21 - - Y Y
NOR x 24 - - Y Y
EQU x 25 - - Y Y

Table 1: Merit increase and cell type specifity during the +d aX simulations. Please note
that X cells can utilize functions during the -X simulatidng are not able to contribute to the
merit of the organism, since | am usiB&T(D, X) » SET(Y) instead oSUM D, X) * SET(Y) .

11

(a) genome
5th division

\g\\i\delA/jo/nand\P“Sh |diVi<7’e/A/dMﬁe\3\pop\AIS/
<

)

1o

[}

jo« oe/ \’)\
11 Hir, code for logic functions we

001011101

(_J
3rd division
X
% . e
-_—
2%@ ‘mon
(b)

- cell type specificity utilized functions merit of one cell merit of the multicellular organism
gg¢®) 111111000 001011000 256 +X: ?ggénégé*ggggﬁfrns
8= '/‘\ + + *]1=
5§ (%) 111111000 001011000 256 _%: SET(D,X)*SET(Y)=
-5 (¥) 000000000 000000000 1 256*1=256
g£®) 111111000 001011000 256 +X: SUM(D X)+SET(Y)" so3216
ISk A =
2% (X) 111111000 001011000 256 _X: SET(D,X)*SET(Y)=
&8®) 000000111 000000101 512 256%512=131072

p

4

Figure 1: Multicellularity in DISCOs(a) The first five cell division of a DISCO with a genome
that encodes two X cells and one Y cell. As explained in Sacti@, if the genome contains
di vi de instructions that are followed by a modifier, then the D cell vetain daughter cells
to build a multicellular organism. The genome of this DISCé@ntains twodi vi de| A and
onedi vi de| B instructions. Consequently, the first three cell divisians used to produce
two X cells and one Y cell. Thereafter every further divisr@sults in cells that are released
into the environment as offsprin¢h) Calculating the merit of a multicellular organism. Let us
assume that the genome of this DISCO encodes for AND, OR, ANRIOR, and EQU, that s,
001011101. Alogic function can increase a cells merit only if it is ededl in the genome and
utilizable by the given cell type. Here, for example, the [can compute and utilize AND,
OR, and ANDN (001011000) and has therefore a merit dfx 22 x 23 x 23 = 28 = 256.
For the first 10 000 generations, Y cells cannot utilize argiddunction and have therefore
always merit 1. For the second part, however, Y cells caizatthe last three logic functions
(000000111). Since the genome of this organism encodes XOR and EQU, ¥ regeive a
merit of 1 x 2% x 2° = 29 = 512 for 000000101. The -X simulations differ from the +X
simulations in that X cells cannot contribute to the meritlod organism. | us&ET(D, X)
instead ofSUM D, X) and one D cell can compute the same set of functions as D antisX ce
together. We can clearly see that some somatic cells do oase the merit of the DISCO
(X cells during the -X simulations and Y cells during the fit§t000 generations). However,
somatic cells constitute a cost, since they delay the tinekés to reach maturity and finally
produce offspring. Hence, somatic cells that do not inaehs merit of the organism are
disadvantageous.

12

3 Developmental cost of one Y cell

I will calculate the fitness of an organism composead.of 1 cells relative to the fithess of an
organism composed of cells. Let us first consider = 1. The unicellular organism produces
offspring with every cell division at rate;, i.e.,(O — O + (). Its fitness is given by the rate
of cell division. The bicellular organism produces offswrionly after it reached maturity. In
DISCOs (see Figure 1a) only one cell is able to divide. Heweshave) — (OO — OO+0O.

If x; andz, denote the frequency of the bicellular organisms in thealhitar and the bicellular
stage of development, respectively, anthe rate of cell division, then we can use the following

differential equation to describe the population,

.i’l = —T9oX1 + ToXlo — (I).Tl (1)

jZ’g =Tl — (bl'g.

The fitness of the bicellular organism is given by the avefagess® at equilibrium, which is

given by the largest eigenvalue of

e @

T2 0

A short calculation shows, that the eigenvaluesare given by the solutions 6f A +) — 3.
Equivalently, we can solva(\ + 1) — 1 and multiply the solution withr,. In any case, the
fitness of the bicellular organism at equilibrium is givendy= (v/5 — 1)/2 ry =~ 0.62 r5.
Hence the fitness of the bicellular organism relative to ttreeéis of the unicellular organism
equals20.62/r. In DISCOs the rate of cell division is proportional to therihef the organism
and the efficiency of genome duplication. Since we are just@sted in the effect of mutations
that add an additional cell to an organism, we havex r,. Hence, mutations that turn a
unicellular into a bicellular organism decrease the redgfitness to 0.62.

The calculations for an organism of sizeare similar. To calculate the fitness,,, of an

13

organism of sizen, we have to calculate the largest eigenvalue of the follgwirx n matrix,

1 0 0 1
1 -1 - 0
o 1 . .ot 3)
: 10
0 0 1 0

The eigenvalues are given by the roots of()\ + 1)"~! — 1. The fitness of an organism of
sizen + 1 relative to and organism of sizeis then given byd,,,, /®,,. For example, the cost
of one additional, unused cell in an organism of size 1045/ ®;o = 0.184/0.197 = 0.934.
The dotted line in Figure 2 showds, and the solid lineb,, , /®,, for a wide range of organism

sizes.

14

e
-
@ _]
o

%}

g2 o |

v O

c

=

=

[}

=

8 <«

o o
N
o
o | e
o

1 5 10 50 100 500

organism size

Figure 2: Developmental cost of an additional, unused Gélé dotted line shows the fitness of
an organism of size relative to the fitness of a unicellular organism. The sofié shows the
fitness of an organism of size+ 1 relative to the fitness of an organism of sizeHence, it
shows how deleterious mutations are that add one, unusell 86 e& organism of size.

15

References and Notes
1. Lenski R.E., Ofria C., Pennock R.T., & Adami C. (2008jture 423, 139-44.
2. Ofria C. & Wilke C.O. (2004 Artif Life 10, 191-229.

3. Goldfarb W. (2003peductive Logic (Hackett Publishing Company).

16

A List of Instructions

This section describes how instructions together with fiidi change the state of a DISCO cell. In the following
i nst will refer to any of the available instructionspd will refer to a sequence of modifiers, adt{nod) to

its complement. We have the three modifidrs3, andC with their complement8, C, andA, respectively. The
complement of a sequence of modifiers is given by the sequeEnoemplements, for exampl€;(CACABB) =
ABABCC.

Instructions for the replication phase

The copy instruction: Thecopy instruction copies the instruction/modifiers to which thad head points to the
daughter strand and moves the read head to the instructalifier following the just copied genome elements.

The sear ch instruction: Thesear ch instruction repositions the flow head depending on modifgusnces

in the genome. We have to distinguish the following cases.
e Thesear ch instruction is followed by another instruction, i.e., wevba.. search i nst ...: Inthis
case the flow head is moved to poini ast .
e Thesear ch instruction is followed by a sequence of modifiers, i.e., \&ee .. search nod...:
In this case we look for the compliment of the modifier seqe€rigrod) in the genome. If this sequence
can be found, then the flow head is moved to point at the instruéollowing C(nod). If this sequence
cannot be found, then the flow head is moved to point to theuiasbn followingnod.

The nov- head instruction: Thenov- head moves either the instruction head or the read head to théiquosi
of the flow head. The instruction head is moved to the flow hé#uki DISCO cell executes@ov- head that

is followed by modifierA, i.e.,nov- head A. If the nov- head is followed by modifierB, i.e.,nmov- head B,
then the read head is moved to the flow head. In all other ctma®)v- head instruction does not affect the state
of the automaton.

Thei f - | abel instruction: Thei f - | abel instruction can be used to skip instructions depending emtbst

recently copied genome element. Let us consider the sequénd abel nod i nst. Thei nst instruction

will be executed only if the most recently copied genome eleiis the complement afod. If this is not the case,
theni nst will be ignored and the instruction head moved forward tort@gt instruction. In case off - | abel

i nst, the automaton will execuienst if and only if the most recently copied genome element is atriiction.

The di vi de instruction: Thedi vi de instruction initiates cell division and terminates theliegtion phase.
Thedi vi de instruction will successfully generate a new DISCO celhé& genome has the right length. For this
work the genome cannot be smaller than 145 or larger than Idbfiers and instructions long. The generated
daughter cell is either used as a somatic cell or releasedhinrtenvironment as offspring.

Instructions for the metabolic phase

The state changes for the metabolic phase are more straigbard than the ones for the replication phase. They
only affect the merit of the organism and data stored in tgesters and the stack. In the following | will usg «,
b, andc to denote logic compounds amdo denote a newly generated logic variable. The first colufiallmwing
tables shows the state of the automaton before the sequettoe second column is executed. The third column

17

shows the state of the automaton after the execution of tgesee. Not shown is the advance of the instruction
head to the next instruction.

The bl ank instruction: Thebl ank instruction does not change the state of the automatoneftssntially just
used as a place holder in ancestral genomes. Usuallig] thek instruction is not part of the pool of instructions
from which instructions for the copy and insertion mutai@me chosen. Consequently,ank instructions will
eventually disappear from the genome.

The i o instruction: The merit of the DISCO before the execution of theeinstruction is given byn. The merit
of the DISCO, after testing, b, andc for logic functions is given byn,, m;, andm., respectively. A DISCO cell
is rewarded only once for a given logic function during ondabelic phase.

before | instruction | after
io A meritm, A:z B:b Cic
.) L, ~ |10 B meritim, Aia Bz Cic
meritm Awa B:b Cic io C meritm, A:a B:b Cx
io inst meritm; A:a B:x Cic

The nand instruction: Please note that theand instruction is the only instruction that can generate neayido
compounds.

before | instruction | after
nand A Aalb B:b Cic
o A nand B Aia B:ble Cic
Aa Bb Cie nand C Ala B Cicla
nand i nst Aia B:ble Cic
The swap instruction:
before | instruction | after
swap A A:b B.a Cic
. . . swap B A:a Bic Cib
Aa Bib Cie swap C A:c B:b Cia
swap i nst A:a Bic Cb
The push instruction:
before | instruction | after
push A stack: a, s1, s2, 53, . ..
A:a B:b C:c push B stack: b, s1, 82, s3, . ..
stack: sq, 52, . .. push C stack: ¢, s1, 59, 53, . ..
push i nst stack: b, s1, 59, 53, . ..

The pop instruction:

18

before | instruction | after

pop A A:s; B:b C:c stack: sq, s3, ...
A:aB:b Cic pop B A:a B:s; Cic stack: ss, s3, ...
stack: sq, 52, ... pop C A:a B:b C:sy stack: so, s3, ...

pop inst | A:a B:s; Cic stack: s, s3, ...

B Example Genomes

Encoding Replication

The following shows a sequence of the state changes thatdegmhome replication. During the replication phase,
state changes affect only the position of the read, flow, asttuction head. These positions are indicated by
underlines, overlines, and bold font, respectively, iead headflow head, andnstruction head.

e i0| search| copy|if-1abel|C|A divide|l nov-head| Al B
daughter strand:
sear ch moves the flow head to theopy instruction
e i 0| search|copy|if-1abel | C Al divide| nov-head| Al B
daughter strand:
copy copies the o instruction to the daughter strand and moves the read headrd
e i 0| search|copy]|if-1abel | C Al divide| nov-head| Al B
daughter strand: o
The complement o€] A is given byA| B. Since the most recently copied element & and notA| B,
i f-1abel ignoresdi vi de and advances the instruction head tortibe - head instruction.
e i 0| search|copy|if-1abel | C Al divide| nov-head| Al B
daughter strand: o
nmov- head moves the instruction head to the position of the flow head.
e i 0| search|copy|if-1abel | C Al divide| nov-head| Al B
daughter strand: o
copy copies thesear ch instruction to the daughter strand and moves the read head .
e i 0| search|copy|if-Iabel | Cl Al divide| nmov-head| Al B

daughter strand: o| sear ch

This loop continues until the automaton cop<B, the last genome element.

e i 0| search|copy|if-1abel | C| Al divide| nov-head| Al B
daughter strand: o| sear ch| copy| i f - | abel | C| A di vi de| nov- head T
CopiesA| Bto the daughter strand and moves the read head forward.
e i 0| search|copy|if-1abel | C Al divide| nov-head| Al B
daughter strand: o| sear ch| copy| i f-1abel | C| Al di vi de| nov- head| Al B
Now the most recently copied genome element is identichid@dmplement of] Aandi f - | abel does
not skip thedi vi de instruction
e i 0| search|copy|if-1abel|C| Al divide| nov-head| A B
daughter strand: o| sear ch| copy| i f-1abel | C| Al di vi de| nov- head| Al B
Thedi vi de instruction ends the replication phase and the daughais used to build a new cell.

19

Encoding NAND and AND

This sequence creates two logic compounds. The first@ihg (a|b) is equivalent to AND and the second o#lé

is equivalent to NAND, where andb are logic variables.

ol i o]] nand| push| pop| C| nand| i
ol i o]] nand| push| pop| C| nand| i
ol i o] €] nand| push| pop| C| nand| i
ol i o] €| nand| push| pop| C| nand| i
ol i o] €] nand| push| pop| C| nand| i
ol i o]] nand| push| pop| C| nand| i
ol i o]] nand| push| pop| C| nand| i
ol i o]] nand| push| pop| C| nand| i
ol i o] €] nand| push| pop| C| nand| i

ol i
ol i
ol i
ol i
ol i
ol i
ol i
ol i
ol i

o|C
o|C
o|C
o|C
o|C
o|C
o|C
o|C
o|C

Encoding NAND, AND, and Replication

2E2E2E2EEE222

B: C: stack:
B:a C: stack:
B:a C:b stack:
B:alb C:b stack:
B:alb C:b stack:alb
B:alb C:alb stack:
B:(alb)|(alb) C:a|b stack:
B:c C:alb stack:
B:c C:d stack:

merit=1

merit=1

merit=1

merit=1

merit=1

merit=1

merit=1

merit= 1 x 22
merit= 1 x 22 x 2!

This sequence is pieced together using the two sequences.albbe first part encodes the two logic function

NAND and AND, and the second part genome replication.

i o] i o] C] nand| push| pop| C] nand|i o] i o| C|] search| copy]|if-I|abel|C Al divide|

nov- head| Al B

Encoding NAND, AND, Replication, and One Y Cell

This sequence is a derivative of the previous sequence. ntatces adi vi de| B and encodes therefore for a
multicellular organism with one Y cell. Please note that itlie | abel | C before thedi vi de is required to
prevent a premature initiation of cell division.

i o] io| Clnand| push|if-Iabel|C| divide|B|pop|C nand|io|io|C| search|copy]|
i f-1abel | C A divide| nov-head| Al B

20

