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Materials and Methods 
 
Remote Sensing System 
  

Large-scale analysis of forest three-dimensional (3D) structure and biological 
composition requires a combination of advanced airborne imaging technologies that 
simultaneously resolve the horizontal and vertical characteristics of the vegetation as well 
as the type of vegetation, even to the species level.  No airborne (or space-based) 
technologies were available to make these simultaneous measurements until we 
developed the Carnegie Airborne Observatory (CAO), a new system designed 
specifically for mapping the biochemical, taxonomic, and structural properties of 
vegetation and ecosystems (http://cao.stanford.edu) (1).  The CAO combines three major 
instrument subsystems into a single airborne package: (i) high-fidelity Imaging 
spectrometer (HiFIS); (ii) waveform light detection and ranging (LiDAR) scanner; 
and (iii) global positioning system-inertial measurement Unit (GPS-IMU).   

The CAO HiFIS subsystem provides spectroscopic images of the land surface; 
each image pixel contains numerous spectral bands covering either the 367- to 1,058-nm or 
380- to 2,510-nm range, depending upon system configuration.  The CAO-Alpha 
configuration uses a pushbroom imaging array with 1,500 cross-track pixels, and 
sampling across the 367- to 1,058-nm range at up to 2.4-nm spectral resolution.  The CAO-
Beta system integrates the airborne visible and infrared imaging spectrometer 
(AVIRIS) to provide 10-nm spectral sampling across the 380- to 2,510-nm range (2, 3).  Both 
CAO configurations use a LiDAR subsystem with an adjustable laser pulse repetition 
rate of up to 100 kHz (1).  The GPS-IMU subsystem provides three-dimensional 
positioning and attitude data for the sensor package onboard the aircraft, allowing for 
highly precise and accurate projection of HiFIS and LiDAR observations on the 
ground (1). 

The CAO-Alpha and -Beta configurations provide coaligned HiFIS and LiDAR 
data at spatial resolutions of 0.3- to 3.5-m spatial resolution, depending on the aircraft 
altitude above ground.  The Alpha system is designed for spatial sampling at extremely 
high resolutions of 0.3-1.5 m.  The Beta system, which incorporates the AVIRIS sensor, 
operates in the 2.5-3.5 m spatial sampling range.  The LiDAR has a custom-designed 
laser beam divergence to match precisely the field-of-view of the CAO-Alpha 
spectrometer.  When flown in the CAO-Beta mode with AVIRIS, the LiDAR collects 
four laser shots per spectrometer pixel. 
 
Airborne Data Collection 
 
 In January and February 2007, we operated the CAO-Alpha and -Beta systems 
over 51,707 ha and 170,168 ha, respectively, of Hawaii Island (SI Fig. 4).  The CAO-
Alpha data were collected at 1,000 m and 2,000 m a.g.l., providing combined HiFIS and 
LiDAR measurements at 0.5-m and 1.0-m spatial resolution, respectively.  The CAO-Beta 
data were collected at ~2500 m a.g.l., resulting in measurements taken at ~2.5-m spatial 
resolution.  All flights were conducted within 2.5 h of solar noon.  Data from both 
system configurations were collected over federal and state forest reserves and parks, 
including Hawaii Volcanoes National Park, Laupahoehoe Forest Reserve, Wao Kele O 
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Puna Reserve, Kohala Forest Reserve, and the Lower Puna reserves of Keauohana, 
Malama Ki, and Nanawale (SI Fig. 4). 
 
Data Processing and Analysis 
 

Fusion of the imaging spectroscopy and LiDAR data requires a processing stream 
that maximizes the sharing of information between data products.  Given the enormous 
data volumes involved, the processing stream must be highly automated.  SI Fig. 5 shows 
the processing stream for this study, in which raw spectral, laser, and trajectory data are 
integrated and analyzed in a series of higher-order products and results.  The following 
sections briefly describe the major steps in the process. 

 
Aircraft Positioning 

 
 The CAO uses both in-flight and post-flight data integration approaches to precisely
match HiFIS and LiDAR data in three-dimensional space.  The in-flight step is 
achieved by providing a common mount with measured offsets between instrument 
optical centers, as well as time stamping of spectral and LiDAR data collection streams 
with shared position and trajectory data.  The GPS-IMU data form the common link for 
the detailed ray tracing of the photons between aircraft sensors and the ground.  The 
point-for-point alignment of the LiDAR and passive image data is complicated by 
inherent differences in the scanning geometries of the two systems and further distortions 
of the ground sampling grid due to topography.  Our approach is to recover best
estimates for each pixel center location in three dimensions for both the LiDAR and 
HiFIS data (1).  These pixel centers are then used for rendering of the two data sets into a 
single, integrated grid of HiFIS and LiDAR data for subsequent processing, analysis and 
product generation (SI Fig. 6). 
 

LiDAR Data Processing 
 

The GPS-IMU data are combined with the laser ranging data to determine the 3-D 
location of the laser returns.  From the laser “point cloud” data, a physical model is used 
to estimate top-of-canopy and ground surfaces (digital elevation models; DEMs) using 
the REALM (Optech Inc., Vaughn, Canada) and Terrascan/Terramatch (Terrasolid Ltd., 
Jyväskylä, Finland) software packages.  Vegetation height is then estimated by 
differencing the top-of-canopy and ground surface DEMs (4, 5).  Vertical errors in 
ground heights and tree heights average 0.12+0.14 m and 0.7+0.2 m, respectively (1). 

The large number of LiDAR points collected at high pulse rates makes it desirable 
to represent the data in a compact form for analysis of the vertical structure of vegetation.  
This data reduction is typically done to render pseudo-waveform data (6).  In this case, 
the vertical distribution of LiDAR points is represented by binning them into volumetric 
pixels (voxels) of 5 x 5 m spatial resolution, and 1 m vertical resolution.  The DEM of 
ground elevation was used to standardize the vertical datum of each voxel.  Therefore, the 
heights of each vertical “slice” of a vegetation canopy are defined relative to the ground 
at the horizontal center of each voxel.  After all LiDAR points are binned in the volume 
cube, each vertical column of the cube is divided by the total number of LiDAR points in 
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that column, yielding the percentage of LiDAR points that occurred in each voxel.  This 
approach has the positive effect of decreasing our sensitivity to localized variations in 
canopy leaf density or tree branch characteristics, which can result in a different number 
of LiDAR returns from voxel to voxel. 
 

HiFIS Data Processing 
 
 The HiFIS data are converted to at-sensor radiances by applying radiometric 
corrections developed during sensor calibration in the laboratory.  Apparent surface 
reflectance is then derived from the radiance data using an automated atmospheric 
correction model, ACORN 5LiBatch (Imspec LLC).  Inputs to the 
atmospheric correction algorithm include ground elevation (from the LiDAR), aircraft 
altitude (from GPS-IMU), solar and viewing geometry, atmosphere type (e.g., tropical), 
and estimated visibility (in km).  The code uses a MODTRAN look-up table to correct for 
Rayleigh scattering and aerosols.  Water vapor is estimated directly from the 940/1140 
nm water vapor features in the radiance data. 
 After the preparation of the HiFIS and LiDAR data, the spectral images are 
masked based on illumination conditions between the sensors and canopies (SI Fig. 5).  
The LiDAR and GPS-IMU data provide three-dimensional maps of precise illumination 
conditions on each canopy, allowing for the automatic identification and masking of 
shaded portions of the vegetation.  At the same time, a minimum vegetation height 
requirement of 0.5 m is applied to remove exposed ground areas and short vegetation 
such as grasses. 

The masked HiFIS images are passed to an automated spectral mixture analysis 
model called AutoMCU  (7).  This algorithm uses spectroscopic signatures to quantify the 
fractional cover of photosynthetic vegetation (PV), nonphotosynthetic vegetation (NPV), 
and bare substrate within each image pixel, using “tied” spectral endmember bundles 
derived from field- or image-based measurements, and Monte Carlo unmixing to derive 
mean estimates of fractional cover along with standard deviation and root mean squared
error (RMSE) data on a per-pixel basis.  The PV, NPV, and bare/shade spectral bundles 
were derived from island-wide samples collected using 2001-2005 AVIRIS imagery as 
well as field-based measurements with spectroradiometers (8).  For our purposes here, 
only the NPV data derived from the AutoMCU are used to mask out the standing dead 
trees and other nonphotosynthetic vegetation from the HiFIS data (SI Fig. 5). 

The image spectra that remain after illumination, shadow, vegetation height, and 
NPV masking represent a well controlled set of reflectance signatures that, theoretically, 
should be highly indicative of unique species.  The final automated step in the processing 
stream involves a new reformulated version of the AutoMCU algorithm to detect species 
using species-specific spectral bundles, hereafter called AutoMCU-S (SI Fig. 5).  
Whereas the previous step, running the AutoMCU in tied-spectral mode, isolates the 
fractional cover of live and dead vegetation with little sensitivity to taxonomic 
composition (7), AutoMCU-S uses the same Monte Carlo unmixing technique but adds 
species-specific endmember bundles to derive maps of species cover fractions per pixel, 
along with standard deviation and RMSE images. 

In previous work, we collected image-based spectral bundles of 43 of the most 
common native and invasive tree species found in Hawaiian rain forests (9).  Here, we 
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apply the AutoMCU-S approach with a subset of species bundles relevant to the forested 
regions of interest.  These were selected based on our general knowledge of the likely 
tree taxa to be present in each study forest.  For example, a spectral bundle for Fraxinus uhdei 
was only used in the forests where this species is known to occur.  This geographically
constrained use of the bundles simplified our detection and mapping problem, 
maximizing the accuracy of the approach at the landscape scale.  Since the general 
presence of both native and invasive species is known for most forests on Hawaii Island 
(www.hear.org) (10), tuning the AutoMCU-S with regionally-specific libraries was 
justified from both scientific and land management perspectives. 

For this study, we used endmember bundles containing one native tree species 
collected from all five sites (Metrosideros  polymorpha), one native tree species from two 
sites (Acacia koa), several other less common native woody plants, and four invasive tree 
species (Morella faya, F. uhdei, Falcataria moluccana, Psidium cattleianum).  
The libraries were constructed from spectra prescreened for minimum height and 
illumination conditions using the coaligned LiDAR data and thus were compatible with 
the image data.  Minimum height was set to 0.5 m, and only pixels containing canopies 
with unobstructed ray traces from the sun-to-canopy and canopy-to-sensor were used in 
the library development and image analyses.  In addition, only pixels with no detected 
NPV from the AutoMCU code were selected both for library construction and image 
processing. 

For the special case of the understory plant, Hedychium gardnerianum, we used a 
different technique to ensure accurate mapping.  We combined the canopy water 
measurement provided by the spectroscopic analysis, as detailed by Asner and Vitousek 
(11), with the LiDAR near-ground laser returns as shown experimentally in SI Fig. 7, to 
locate large infestations of this species.  The ground validation (described later) showed a 
detection error of less than 5% for H. gardnerianum, thus affording a method to map the 
effects of this species on forest structure. 
 

Forest Stand Selection and Structural Analysis 
 
Our process of searching for stands dominated by invasive tree species covered 

221,875 ha of forest spanning the study zones shown in SI Fig. 4.  We found thousands of 
vegetation patches dominated by each of the target invasive species, many of which were 
small infestations (SI Figs. 8 and 9).  These image data were then further reduced to select for 
the more accessible field-verifiable forests stands.  The final set of comparative study 
areas ranged in size from 49 to 97 ha (Table 1 of main text).  To normalize for differences 
in the area of each delineated forest stand, the larger stands were randomly subsampled 
to match the smaller of the two forest stands in each pairwise comparison.  We also 
broadly controlled for substrate age and elevation (SI Table 4).  We focused on protected 
reserves to minimize confounding effects of land use (e.g., no logging, clearing, gathering 
allowed in the state and federal reserves in Hawaii). 

To quantify differences in forest volumes among comparative stands, we 
calculated changes in LiDAR point densities among canopy strata (e.g., lower-, mid-, and 
upper-canopy positions).  The probability of laser penetration to the forest floor is a 
function of flying altitude, beam divergence, laser pulse repetition frequency (PRF), 
vegetation density, and other factors.  In comparing forest stands, we controlled for flying 
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altitude and PRF.  CAO-Alpha measurements were collected at a PRF of 50-100 kHz.  
CAO-Beta measurements were collected from a higher altitude to accommodate AVIRIS, 
which required a PRF limited to 33 kHz.  In both cases, laser beam divergence was held 
constant at 0.56 mrad.  We held all of these factors constant when comparing specific 
forest stands dominated by native or invasive species.   

Vegetation density varied between forest stands as well, so our approach relied on 
knowing that some portion of the total laser shots reached the ground, as shown in Fig. 2 
of the main text.  This was readily achieved in most cases, but in a few invasive stands of 
very high leaf area index (LAI), the laser signal was almost completely attenuated.  In these cases, our 
field surveys indicated that little to no understory vegetation was present under the dense 
canopies, thus minimizing our bias caused by lost laser signal.  In other words, when 
overstory or midcanopy vegetation density was so high as to attenuate the signal, we 
found no underlying vegetation that would have been missed in our airborne 
measurements.  As such, the laser return (or lack thereof) was an excellent indicator of 
vegetation losses at the lowest canopy positions. 
 We report relative changes in the vertical canopy profiles in Fig. 3 of the main 
text.  This was a useful approach because it allowed for a clear comparison of changes 
over a diverse array of canopy structures and species.  However, at times, it slightly 
biased the results because, for example, a 50% increase in vegetation density in one canopy 
layer would necessarily, from a sensor standpoint, be balanced by a 50% loss from other 
layers.  In most cases, this turned out to be a small artifact that we considered reasonable 
in looking for relative changes among many canopies.  In a few cases, such as with the P. 
cattleianum invasion in lowland rainforests (Fig. 2e of main text), a very large increase in 
the midcanopy volume of this species caused an apparent decrease in upper-canopy M. 
polymorpha density that was, technically, caused by the fact that we are using relative 
changes in total laser returns.  However, in this case, the absolute change in upper-canopy 
laser point returns was nonetheless 56% (also shown visually in SI Fig. 10e), so the artifact 
caused by using relative change as our index remained acceptable.  In subsets of the 
mapping results, however, the bias was more pronounced, but the overall impact of using 
relative changes in forest profiles remained comparatively small and tolerable. 
 
Remote Sensing Validation 
 

We carried out field studies to evaluate the accuracy of our remote species 
detections in each forest stand.  The analysis employed a combination of intensive plot-
scale measurements, long field-based transect surveys, and low-altitude helicopter 
surveys that identified false-positive and false-negative detections.  Transects ranged 
from 200 m to 3,000 m in length, with a total distance covered among sites of 16.3 km.  
Transect sampling was done according to Asner et al. (9) and Asner and Vitousek (11), 
by which a point was recorded whenever the canopy cover changed, in this case, when 
the overstory changed in species dominance.  Each change in species cover was recorded 
using a survey-grade GPS for colocation of field data with the airborne measurements.  
A Leica GS-50+ GPS with multiple-bounce filtering and postdifferential correction was 
used to measure our position in the forest to average uncertainties of ~2 m (Leica 
Geosystems Inc., St. Gallen, Switzerland).  In addition, a ruggedized tablet computer with 
integrated GPS (Xplore Technologies) was used to navigate in the forests, 
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providing a real-time analysis and logging of our position with respect to the species 
identified in each digital map.  Helicopter-based validation measurements were carried 
out by entering the coordinates of detected invasive species from the digital maps into a 
GPS with real-time wide-area augmentation system (WAAS) corrections (Thales 
Navigation).  Each helicopter GPS point was visited from an altitude of 
< 75 m a.g.l., with two or three observers determining canopy species cover. 

We tabulated invasive species detections at the AutoMCU-S threshold of > 75% 
cover fraction and compared those results with the field- and helicopter-based validation 
points (SI Table 2).  In montane forests, we visited 164 points in the field and calculated a 
0% and 4.2% error rate for false-negative and false-positive detections, respectively, for 
F. uhdei.  M. faya was detected in submontane forests with false-negative errors of 3.0% 
and false-positive errors of 4.9% (n = 256).  We recorded zero errors for F. moluccana in 
lowland forests (n = 64).  Finally, our uncertainty in P. cattleianum detections in lowland 
and submontane forests peaked at 6.8% for false-negative detections and 0% for false 
positives (n = 141).  Asner et al. (9) showed that the consistently low error rates for these 
canopy species resulted from the ability to isolate sunlit portions of each tree crown using 
the LiDAR data, allowing for focused spectral analysis without the confounding effects 
of intercrown shadows. 

Understory species detections were also tabulated and reported in SI Table 3.  A 
chi-square test showed a highly significant association between H. gardnerianum 
locations and the CAO detection (χ2 = 19.0 > 3.8; p < 0.001).  The false-negative and 
false-positive errors averaged 5.6% and 4.1%, respectively (n = 602).   

 
Canopy Measurements 
 

We collected LAI measurements using a plant canopy analyzer 
(LAI-2000; Licor Inc.).  The LAI estimates were made under diffuse sky 
conditions as required by the instrument data processing algorithms (12).  A 50% optical 
block was used to mask the operator.  An open-sky measurement was collected followed 
by 12 under-canopy measurements.  The LAI-2000 sensor head was oriented in the 
direction of the main stem from a position 30-50 cm within the edge (drip line) of the tree 
crown.  These measurements also included mean leaf angle, which, when combined with 
LAI, provided a means to estimate the fractional absorption of photosynthetically active 
radiation (fAPAR) by the canopy using a radiative transfer model (13).  The 
measurements were collected in each large invasive species stand detected.  Our goal 
here was to characterize typical LAI and light levels beneath the canopies following 
invasion, so only mature stands (Figs. 1, 2, and SI Figs. 8-10) were visited.  In all cases, we 
found significantly higher LAI values in invasive canopies and concomitantly higher 
fAPAR values (SI Table 4).  In the lowland stands containing F. moluccana, areas also 
containing a midcanopy infestation of P. cattleianum had significantly higher total LAI 
and fAPAR than those without the secondary invasion (14).  Without the midcanopy, F. 
moluccana alone transmits 21 + 6% of the incoming PAR, which is essential to the P. 
cattleianum midcanopy trees (see SI Fig. 10d). 
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Figures 
 
Fig. 4.  Island of Hawaii with forested regions shown in green.  The airborne survey 
areas are delineated in red boxes showing actual flight coverage.  Area 1, Kohala 
Mountains; area 2, Laupahoehoe Forest Reserve; area 3, Lower Puna forest reserves; area 
4, Wao Kele O Puna Reserve; area 5, Hawaii Volcanoes National Park. 
 
Fig. 5.  The processing stream for in-flight and post-flight integration of airborne 
imaging spectrometer and LiDAR observations, sunlit-live canopy detection, and 
invasive species mapping. 
 
Fig. 6  The GPS-IMU system onboard the Carnegie Airborne Observatory provides (A) 
high-precision and accuracy 3D motion analysis of each flight (red line shows actual 
motion of sensors at 2000 m a.g.l. over the Laupahoehoe Forest Reserve below).  These 
GPS-IMU data are then used to fuse (B) the hyperspectral data to the (C) LiDAR data, 
providing (D) 3D imaging of forest canopies. 
 
Fig. 7.  (a) Upper-canopy mapping (simple color-infrared composite) from CAO 
hyperspectral sub-system; (b) understory plant mapping (white shows dense vegetation 
0.5-2.0 m above ground level) from CAO LiDAR sub-system.  This test and validation 
area was once infested by Hedychium gardnerianum (kahili ginger) until it was manually 
cleared prior to overflight. 
 
Fig. 8.  (a) Mapping results of constrained AutoMCU-S analysis for the detection of 
invasive M. faya trees (reds) and native M. polymorpha trees (greens) in 
Hawaii Volcanoes National Park.  (b) Invasive F. uhdei (orange), native A. 
koa (yellow-green) and native M. polymorpha (blue-purple) in Laupahoehoe 
Forest Reserve. Extensive field validation provided by (9). 
 
Fig. 9.  (a) Mapping results of constrained AutoMCU-S analysis for the detection of 
invasive P.cattleianum trees (reds), native A.koa (green) and native 
M. polymorpha (blue) in Olaa Forest Reserve.  (b)  Invasive P.
cattleianum trees (reds) and native  M. polymorpha (green) in Wao Kele O 
Puna Reserve.  Extensive field validation provided by (9). 
 
Fig. 10.  Photographs of typical infestations of: (a) F. uhdei, (b) M. faya, (c) 
H. gardnerianum, (d) F. moluccana (upper canopy) and P. 
cattleianum (midcanopy), and (e) sparse M. polymorpha protruding through a 
densely populated, 8- to 10-m tall P. cattleianum canopy.  The last photograph was 
taken at low altitude from a helicopter. 
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Table 2.  Validation results for invasive species detection at the upper-canopy 
level

4.9%1166YesDetected

3.0%4130NoDetected

YesNo

ObservedObservedM. faya
(n = 256)

Sub-
montane 
forest

0.0%230YesDetected

6.8%8109NoDetected

YesNo

ObservedObservedP. 
cattleianum

(n = 141)
Lowland

0.0%300YesDetected

0.0%034NoDetected

YesNo

ObservedObservedF. 
moluccana

(n = 64)

Lowland 
forest

4.2%683YesDetected

0.0%093NoDetected

YesNo

Percentage
ErrorObservedObservedF. udhei

(n = 164)
Montane 

forest



*Number of image points that met the following criteria: (1) absolute error in 
GPS point location was < 5 m; (2) understory was declared present when 
plants covered a 5 x 5 m area or greater surrounding the GPS point; (3) 
understory plants were 0.5-2.0 m above ground level.

313.712.3YesDetected

12.3277.7NoDetected

YesNo

UnderstoryUnderstory

Expected

31917YesDetected

17283NoDetected

YesNo

UnderstoryUnderstory

Observed*

Table 3. Chi-square (χ2) test of the validation results for understory 
plant detection



Table 4. Leaf area index (LAI), mean leaf angle, and upper-canopy transmission of 
photosynthetically active radiation (PAR) among native and invasive tree species 
found in each forest. Notes after forest type indicate substrate age (s), mean elevation 
(e), and number of samples collected (n).

0.21+0.06a2.1+1.3a---• F. moluccana

Lowland Forest (s = 750-1000 y, e = 450m, n = 74) *

0.05+0.01a5.9+0.4a79.7• P. cattleianum

0.12+0.02b4.1+0.4b80.8• Native

Lowland Forest (s = 200-300 y, e = 75-125 m, n = 193)

0.03+0.03b7.3+0.7b51.9• F. moluccana +
P. cattleianum

0.19+0.11a3.1+0.8c48.8• Native

Sub-montane Forest (s = 250-350 y, e = 1200 m, n = 231)

0.07+0.01a8.1+1.3a61.1• H. gardnerianum

0.09+0.02a5.3+0.7b63.8• Native

0.09+0.02b5.3+0.7b64.3• Native

0.02+0.01a8.1+1.3a67.2• M. faya

Sub-montane Forest (s = 200-250 y, e = 1150 m, n = 219)

0.13+0.02b4.4+0.6b60.7• Native

0.04+0.01a6.7+1.4a60.2• F. uhdei

Montane Forest (s = 65,000 y, e = 1600 m, n = 183)

Canopy PAR 
Transmission

LAIArea
(ha)

Forest Stand

* Measurements taken from the most accessible forest stands neighboring the study areas.




