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1 Empirical information on foraging trait
allometry

The DBM requires the body size of each species and four allometries; those
of energetic content of individuals of each species, density of each species,
the attack rate of each consumer on each resource species, and the handling
time of each consumer on each resource species. We assumed that energetic
content is linearly related with body mass and a common allometric scaling
of density and body mass.

We searched the literature for empirically motivated and parameterised
allometries of handling time and attack rate and, due to its importance for
food web structure, we focused on allometry of handling times. For a function
to be directly applicable to the model, it would need to 1) be parameterised
from data that cover the range of organism sizes observed in real food webs
(about 17 orders of magnitude); 2) include information about effects of a large
range of resource sizes on the foraging of a single predator species. Various
functions that appear in the literature are given in table S1 and none appear
applicable.

2 Fifteen real food webs

Table S2 contains the original sources of predation matrices and common
names used in this article. Only the scmown2 web in Cattin et al. (2004)
was used. We did not model or analyse the Weddell Sea food web because
the large number of species and links made the required computations exceed
available processing resources. The predation matrices of each food web are
presented in figure S1. Body sizes were compiled from a variety of sources
(table S2).

These real food webs contain producers, herbivores, carnivores, parasites,
and parasitoids. The organisms display a range of feeding interactions includ-
ing predation, herbivory, bacterivory, parasitism, pathogenic, and parasitoid.
For nine of the 15 webs there was information available about which inter-
action was represented by each individual feeding link.

3 Parameterising the Allometric DBMs

As the literature does not contain suitably parameterised allometries for
attack rates and handling times, we used optimisation to fit the parame-
ters. Two methods of optimisation were used: complete enumeration (CE)
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Table S2: The real food webs

Common food web
name

Predation
matrix source

Body size source

General ecosystem

Benguela Pelagic

Broadstone Stream

Broom
Capinteria
Caricaie Lakes
Coachella Valley

EcoWEB41
EcoWEBG60

Grasslands

Mill Stream

Sierra Lakes
Skipwith Pond
Small Reef
Tuesday Lake

Ythan

(Yodzis, 1998)

(Woodward and
Hildrew, 2001;
Woodward

et al., 2005)

(Memmott
et al., 2000)

(Lafferty et al.,
2006)

(Cattin et al.,
2004)

(Polis, 1991)

(Cohen, 1989)
(Cohen, 1989)

(Dawah et al.,
1995)

(Ledger,
Edwards,
Woodward,
unpublished)
(Harper-Smith
et al., 2005)
(Warren, 1989)

(Opitz, 1996)

(Jonsson et al.,
2005)

(Emmerson and
Raffaelli, 2004)

(Yodzis, 1998)

(Brose et al.,
2005)

(Brose et al.,
2005)

(Brose et al.,
2005)

(Reide,
unpublished)
(Jonsson, 1998)
(Jonsson, 1998)

(Brose et al.,
2005)

(Brose et al.,
2005)

(Brose et al.,
2005)

(Brose et al.,
2005)
(Reide,
unpublished)

(Brose et al.,
2005)

(Emmerson and
Raffaelli, 2004)

Marine

Freshwater

Terrestrial

Marine (Salt Marsh)
Freshwater
Terrestrial (Desert)

Marine
Terrestrial

Terrestrial

Freshwater

Freshwater
Freshwater
Marine (Reef)
Freshwater

Marine (Estuarine)




and Nelder-Mead (Nelder and Mead, 1965) (NM). Complete enumeration
searches a region of parameter space (table S3) for a set of parameter values
that gave the best fit between model prediction and observed data. Nelder-
Mead optimisation performs a search through parameter space starting at a
set of initial parameter values, and ends at a set of parameter values with
maximum explanatory power. To ensure that the results of Nelder-Mead
optimisation were not affected by local optima, we repeated the procedure
with various combinations of initial parameter values. CE and NM param-
eterisation produced generally similar results and we present only results of
NM optimisation in the main text.

We chose to parameterise each food web separately, rather than param-
eterising all food webs simultaneously. This was due to the heterogeneity
present across the food webs in ecosystem (table S3), in taxa, and in the
types of interactions. For example, the Grasslands food web is mostly of
host-parasitoid interactions, whereas others have herbivores and predators
dominating. Table S4 gives the values of parameters fitted for each web
when the ratio handling time function was used.

4 Structural food web properties

We examined twelve structural properties between model and observed food
webs:

1. Proportion basal. Basal species are those that have no resources in
the recorded food web. The proportion of all species that are basal is
used to make this property comparable among food webs with different
numbers of species.

2. Proportion intermediate. Intermediate species are those that have re-
sources and consumers.

3. Top species. Top species have resources and no consumers.
4. Proportion herbivores. Herbivore species consume only basal species.

5. Mean trophic level. The average trophic level of the species in a food
web. The trophic level of each species is computed using the short-
weighted trophic level algorithm (Williams and Martinez, 2004).

6. Maximum trophic level. The maximum trophic level of the species in
a food web.
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Table S4: The parameter values for the ADBM with ratio handling time.

Parameter

Food web a a; a; b

Benguela Pelagic 1.89 x 1072 —4.91 x 107" —4.65 x 107" 4.01 x 1072
Broadstone Stream 2.08 x 10722 —2.00 x 10° —1.85 x 10° 8.43 x 1072
Broom 6.15x 1079  —9.37 x 107! 1.05 x 10° 272 x 1072
Capinteria 254 x 1077  —1.96 x 10° 2.04 x 10° 5.74 x 1073
Caricaie Lakes 3.27x107% —4.67x107Y 539x 1071 4.12x 1072
Coachella 1.20 x 107°  —7.67 x 1071 —3.67x 107! 3.83 x 107!
EcoWEB41 1.89 x 107¢  —1.93 x 10° 2.11 x 10°  8.86 x 1072
EcoWEBG60 4.41 x 103 —5.06 x 1071 —4.81 x 107! 4.28 x 1072
Grasslands 3.88 x 10% 1.00 x 10° 1.00 x 10° 1.00 x 10°
Mill Stream 1.29 x 10712 —9.10 x 107! —8.82x 107! 6.72 x 1073
Sierra Lakes 597 x 10710 —2.11x10°  —2.02x 10° 3.34 x 107!
Skipwith Pond 1.07 x 107" —2.03 x 10°  —2.04 x 10° 4.70 x 101
Small Reef 856 x 1076 —539x 107! 5.80x 107! 5.69 x 1072
Tuesday Lake 3.88 x 1071  —1.80 x 10°  2.01 x 10°  7.21 x 1074
Ythan 1.89 x 1072 —4.91 x 107!  —4.65 x 107! 4.01 x 1072
Grasslands 1.80 x 10717 —1.98 x 10° 2,19 x 10°  3.22x 107*




7. Mean omnivory. The level of omnivory displayed by each species is the
standard deviation of the trophic level of its resources. This is averaged
across all the species in the food web.

8. Clustering coefficient (aka. transitivity) Watts and Strogatz (1998).
This measures how close to a small world type of network is a food
web.

9. Standard deviation of generalism. The generalism of a species is the
number of resources its has. The standard deviation of this is taken
across all species.

10. Standard deviation of vulnerability. The vulnerability of a species is
the number of consumers it has. The standard deviation of this is taken
across all species.

11. Diet similarity. The similarity of a two species’ diets is the number of
prey shared in common, divided by the pair’s total number of prey. The
maximum value for species was taken, and averaged over all species.

12. Mean path length. The mean of the shortest path length between all
pairs of species in a food web.

For each food web and property, raw error was calculated as predicted
- observed. Standardised error was raw error divided by the maximum raw
error for each property. This gives each property the same weight when mean
standardised error was calculated for each food web.

Mean diet contiguity was measured for each real web as the >2%_, W,
where $,,4; is the maximum number of discrete contiguous ranges along the
size axis and S,y is the realised number. A completely contiguous diet gives
Sreal = 1, whereas S,,q, is defined by the possible number of resources and
the number of realised resources (8,4, = the number of realised resources if
this is not too large relative to the possible number of resources). Hence, a
mean diet contiguity of 1 indicates all consumers have a completely contigu-
ous diet, whereas a value of 0 indicates that all consumers have diets that

are as non-contiguous as possible.

5 Model complexity and performance

Statistical theory predicts that increasing the number of parameters alone can
increase model performance. To explore the importance of model complexity,



we examine the performance of each ADBM when the number and combina-
tion of fitted parameters is restricted. The full Ratio ADBM has three (a;,
aj, b) and the full Power ADBM has four (a;, a;, h;, h;). We measured the
performance of each ADBM when the combinations (and therefore numbers)
of parameters were varied. We then modelled the effect of parameter combi-
nation on performance, taking into account the different performance among
food webs. This was done by fitting a linear model of the form Performance
= Food web + Parameter combination, where Performance is proportion of
links correctly predicted, Food web is a factor, and Parameter combination
is a factor. Performance was arcsine transformed before modelling.

Generally, fewer than all parameters were required to maintain near max-
imum predictive power (within 10% of the maximum). Across all the webs
analysed, the Ratio model required only parameter b (table S5). This pa-
rameter defines how handling times relate to the mass ratio of predator and
prey. The Power model required parameter h; and at least one of the two
predator specific parameters (a; or h;) (table S6). It therefore seems clear
that model complexity is not primarily responsible for performance.



Table S5: Complexity and performance of the Ratio ADBM. The effect col-
umn shows the change in performance caused by that parameter combina-
tion, relative to the combination with maximum predictive power. They are
the coefficients of the linear model Performance = Food web 4 Parameter
combination, where Performance is arcsine transformed proportion of links
correctly predicted, Food web is a factor, and Parameter combination is a
factor. We do not use the model for hypothesis testing.

Presence (1) or absence (0) of parameter Effect of parameter combination
on model performance (relative to
maximum)

a; a; b

0 0 1 -0.07

0 1 0 -0.46

0 1 1 0.00

1 0 0 -0.40

1 0 1 -0.02

1 1 0 -0.28

1 1 1 -0.01
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Table S6: Complexity and performance of the Power ADBM. See legend of

table S5 for details.

Presence (1) or absence (0) of parameter

£

S
<S5

N

<.

Effect of parameter combination
on model performance (relative to
maximum)

[ S S S G SO TG U o B = B = I e Sl o T e Ml )

el === e R e R T R e i e B e B e

e OO e OO e e OO = = O

_ O = O O R O O RO MO >

-0.17
-0.24
-0.02
-0.17
-0.12
-0.01
0.00
-0.39
-0.12
-0.11
-0.02
-0.16
-0.11
-0.01
0.00
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6 Figure legends

Figure S1: The real food webs and various models of them, each of them de-
picted by a predation matrix. Each predation matrix describes a food web,
with resources in rows and consumers in columns. The rows and columns
are ordered in increasing body size from left-to-right, and top-to-bottom. A
black dot indicates the consumer in that column feeds upon the resource
in that row. Hence dots in the upper right triangle indicate feeding links
where consumers are larger than their resources. Colours from yellow to
red indicate low to high resource profitability in the ADBM models. Here,
consumer diets (columns) always include the darker red (most profitable)
resources, and extend to different amounts into yellows (less profitable re-
sources). The dashed diagonal line represents the position that cannibalistic
links would occupy. Ratio indicates an ADBM with ratio handling time
function, Power indicates the power handling time function. NM indicates
parameterisation using the Nelder-Mead algorithm; CE indicates parameter-
isation by Complete Enumeration. Connectance (C) and proportion of links
correctly predicted (prop. correct) are also given. This legend applies for
figures S1 a-o.
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Benguela Pelagic
Real predation matrix

C=0.23
A R
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CE Power ADBM NM Power ADBM
C =0.25; Prop. correct =0.44 C =0.23; Prop. correct =0.42
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Supplementary Figure Sla
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Broadstone Stream
Real predation matrix

C=0.19
. 3 E\\E\. é é oE
croe e el
CE Power ADBM NM Power ADBM
C =0.18; Prop. correct =0.41 C =0.18; Prop. correct =0.4

CE Ratio ADBM NM Ratio ADBM
C =0.19; Prop. correct =0.4 C =0.19; Prop. correct =0.4
N Qzece Q000000

N

Supplementary Figure S1b

17



Broom
Real predation matrix

C= 0.02
MRNEET
CE Power ADBM NM Power ADBM

C =0.02; Prop. correct =0.06 C =0.02; Prop. correct =0.06

CE Ratio ADBM NM Ratio ADBM

C =0.02; Prop. correct =0.06 C =0.02; Prop. correct =0.08

Supplementary Figure S1c
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Capinteria
Real predation matrix
C= 0.05

N dpi
o3 of% o
A\ -! .E:\.'E.‘:.:"'
NS bkl gl
s YT L
.\\_s,-,.-a,’._‘; :
Q\V-\ﬁ.b..:?\.
N . .
N
N\
ANy .
N
N
N\

CE Power ADBM

C =0.05; Prop. correct =0.13

CE Ratio ADBM

C =0.05; Prop. correct =0.15

NM Power ADBM

C =0.04; Prop. correct =0.13

NM Ratio ADBM

C =0.05; Prop. correct =0.16

Supplementary Figure S1d



Caricaie Lakes
Real predation matrix

C= 0.05
‘It:::if,l l.al'&:
AL
:::3-.?}::;,5'&'
..... P

CE Power ADBM NM Power ADBM
C =0.05; Prop. correct =0.04 C =0.05; Prop. correct =0.09
CE Ratio ADBM NM Ratio ADBM
C =0.05; Prop. correct =0.14 C =0.05; Prop. correct =0.13

Supplementary Figure Sle
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Coachella
Real predation matrix
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EcoWEB41

Real predation matrix
C=0.14
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Supplementary Figure S1g
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EcoWEBG0

Real predation matrix

CE Power ADBM

C =0.06; Prop. correct =0.1

NM Power ADBM
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Supplementary Figure S1h



Grasslands
Real predation matrix

C= 0.03
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Supplementary Figure S1i
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Mill Stream

Real predation matrix
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Supplementary Figure S1j
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Sierra Lakes
Real predation matrix
C=0.16
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CE Power ADBM NM Power ADBM

C =0.17; Prop. correct =0.42 C =0.16; Prop. correct =0.51
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Supplementary Figure S1k
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Skipwith Pond

Real predation matrix

C= 0.07
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Supplementary Figure S1l
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Small Reef
Real predation matrix
C=0.22
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C =0.22; Prop. correct =0.41 C =0.22; Prop. correct =0.4

Supplementary Figure S1m
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Tuesday Lake
Real predation matrix
C= 0.08

N LI .t ]

AN i

-.
N .
N B

CE Power ADBM NM Power ADBM

C =0.08; Prop. correct =0.25 C =0.08; Prop. correct =0.27

CE Ratio ADBM NM Ratio ADBM
C =0.08; Prop. correct =0.37 C =0.08; Prop. correct =0.46

Supplementary Figure S1n
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Ythan

Real predation matrix
C= 0.05

CE Power ADBM NM Power ADBM
C =0.02; Prop. correct =0.26 C =0.02; Prop. correct =0.26
* AN * AN
CE Ratio ADBM NM Ratio ADBM
C =0.05; Prop. correct =0.22 C =0.05; Prop. correct =0.19

Supplementary Figure S1o0
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