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1. Generating Function and Invasion Probability with a
Fixed Duration of Infection

Assuming that the duration of infection is fixed leads to a Poisson distribution for
the secondary infections. Such a Poisson distribution has generating function given
by G(s) = exp(µ(s − 1)) (Grimmett and Stirzaker, 1992), where µ is the mean
number of secondary infections.

In the setting of a directly transmitted infection, equation (3.1) of the main text
can be used to find the probability of extinction for the branching process, starting
with one infectious individual, which (as it is throughout this paper) is written as
s. This gives the transcendental equation

s = exp{R0(s − 1)}. (A.1)

As usual, s is the smallest non-negative solution of this equation. The probability
of a major outbreak is then given by 1 − s.

In the branching process description of the well-mixed host-vector model, the
number of secondary infections amongst vectors (respectively hosts) due to an infec-
tive host (respectively vector) is Poisson distributed, with mean RHV

0 (respectively
RV H

0 ) (Diekmann and Heesterbeek, 2000). Thus an equation of the form

s = exp
(
RHV

0

[
exp

{
RV H

0 (s − 1)
}
− 1
])

(A.2)

or

s = exp
(
RV H

0

[
exp

{
RHV

0 (s − 1)
}
− 1
])

(A.3)

must be solved to find the extinction (and hence invasion) probability if there is
initially one infective indivdual present.

2. Multi-type Model: Calculation of Generating Functions

Individuals give rise to secondary infections of type i, for i = 1, 2, . . . , n, according
to independent Poisson processes of rates βi. We write the individuals’ numbers of
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secondary infections of type i as the random variables Xi. Individuals’ infectious
periods, denoted by the random variable T , follow some distribution whose average
is τ = 1/γ. The average number of secondary infections of type i is then given by
Ri

0 = βiτ = βi/γ.

(a) Fixed Duration of Infection

If infection lasts exactly τ time units, then the Xi are independent and Poisson
distributed, with means βiτ . Since the Xi are independent, their joint probability
mass function is given by the product

P (X1 = x1, X2 = x2, . . . Xn = xn) =
n∏

i=1

e−βiτ (βiτ)xi

xi!
. (A.1)

The probability generating function factors into a product of generating functions,
each of which is that of the appropriate Poisson distribution

GX1,X2,...,Xn
(s1, s2, . . . , sn) =

n∏
i=1

eβiτ(si−1) =
n∏

i=1

eRi
0(si−1). (A.2)

If the duration of infection T follows some distribution with density function
f(t), the joint probability mass function can be found by conditioning on T :

P (X1 = x1, . . . Xn = xn) =
∫

P (X1 = x1, X2 = x2, . . . Xn = xn|T = t)f(t) dt

=
∫ ( n∏

i=1

e−βit(βit)xi

xi!

)
f(t) dt. (A.3)

(b) Constant Recovery Rates

In the case where T is exponentially distributed with mean τ , we have that
f(t) = γ exp(−γt) and so

P (X1 = x1, . . . Xn = xn) = γ

(∏ βxi
i

xi!

)∫
t

P
xie−(γ+

P
βi)t dt. (A.4)

Here, all sums and products are taken over i running from 1 to n. In what follows,
whenever the index and range of a sum or product is omitted, it is to be taken that
the index is i and runs from 1 to n.

The integral is easily carried out, giving

P (X1 = x1, . . . Xn = xn) = γ

(∏ βxi
i

xi!

)
(
∑

xi)!
(γ +

∑
βi)1+

P
xi

. (A.5)
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The generating function is then

GX1,X2,...,Xn
(s1, s2, . . . , sn)

=
∑

x1,x2,...,xn

(∏
sxi

i

)
γ

(∏ βxi
i

xi!

)
(
∑

xi)!
(γ +

∑
βi)1+

P
xi

=
∑

x1,x2,...,xn

γ

(∏ (βisi)xi

xi!

)
(
∑

xi)!
(γ +

∑
βi)1+

P
xi

=
∑

x1,x2,...,xn

γ
(∏

(βisi)xi

) 1
(γ +

∑
βi)1+

P
xi

( ∑
xi

x1 x2 . . . xn

)
(A.6)

Here the indices xj each run over the non-negative integers and the last term is
a multinomial coefficient. We rewrite this sum by collecting terms for which

∑
xi

takes values 0,1,2,. . . , and then write j =
∑

xi, giving

GX1,...,Xn(s1, s2, . . . , sn)

=
∞∑

j=0

∑
x1,...,xn

γ
(∏

(βisi)xi

) 1
(γ +

∑
βi)1+j

(
j

x1 x2 . . . xn

)
. (A.7)

Here, the sum over the x1, x2, . . . , xn is taken over all non-negative xi such that∑n
i=1 xi = j. The multinomial theorem then gives

GX1,...,Xn
(s1, s2, . . . , sn) =

∞∑
j=0

γ(
∑

βisi)j

(γ +
∑

βi)1+j

=
γ

γ +
∑

βi

1

1 −
P

βisi

γ+
P

βi

=
γ

γ +
∑

βi −
∑

βisi

=
1

1 +
∑n

i=1 βiτ(1 − si)
. (A.8)

Finally, since Ri
0 = βiτ ,

GX1,X2,...,Xn(s1, s2, . . . , sn) =
1

1 +
∑n

i=1 Ri
0(1 − si)

. (A.9)

This is the generating function of a multivariate geometric distribution (Griffiths,
1972).

(c) Fixed Durations of Infection

As discussed above, when durations of infection are fixed, the generating func-
tions GHi(sH1 , . . . , sHm , sV1 , . . . , sVn) and GVj (sH1 , . . . , sHm , sV1 , . . . , sVn) can be
written as products of simpler generating functions, and equations (4.6) and (4.7)
from the main text reduce to

GHiV1(sV1) · · ·GHiVn(sVn) = sHi , i = 1, . . . ,m (A.10)
GVjH1(sH1) · · ·GVjHm(sHm) = sVj , j = 1, . . . , n. (A.11)
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Here, GHiVj (s) is the generating function describing the number of secondary in-
fections of vector type j that arise from a host of type i, and similarly for GVjHi(s).
These generating functions take the form exp{R0(s − 1)}, with the appropriate
R

HiVj

0 or R
VjHi

0 .
For the two host, one vector model, equations (A.10 and A.11) become

GH1V (sV ) = sH1 (A.12)
GH2V (sV ) = sH2 (A.13)

GV H1(sH1)GV H2(sH2) = sV , (A.14)

and so the invasion probabilities can be found in terms of the solution of

GV H1(GH1V (sV ))GV H2(GH2V (sV )) = sV . (A.15)

With the exponential form of the generating functions, this gives

exp
(
RV H1

0

[
exp

{
RH1V

0 (sV − 1)
}
− 1
]

+ RV H2
0

[
exp

{
RH2V

0 (sV − 1)
}
− 1
])

= sV .

(A.16)

Invasion probabilities obtained from the numerical solution of (A.16) are shown in
figure (A.1), together with probabilities obtained from simulation of a corresponding
stochastic model. The figures show the probability of a major outbreak following
the introduction of a single infective vector, for different values of the parameter
γ1, which specifies the fraction of bites that are made on hosts of type 1. Very good
agreement is seen between the two sets of results in each case.

We notice that, if we are in a situation for which invasion is possible, the invasion
probabilities in figure A.1 are greater than those in the corresponding figure in
the main text, in agreement with the well-known result that invasion probabilities
are higher in a model with fixed durations of infection than in the corresponding
constant recovery model.

3. Variability About the Endemic Equilibrium

Figure (A.2) presents results that correspond to figure (7) of the main text, but
for population sizes that are ten times as large as was used there. This leads to a
reduction in the variability seen about the average, and we also see that the moment
equations are now able to provide an estimate of variability over the entire range
of γ1 values.
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Figure A.1. Major outbreak probability, following the introduction of infection with a
single infective vector, in a two host, one vector model, as a function of the vector’s
preference for the first type of host. A fraction γ1 of bites are made on hosts of type 1,
γ2 = 1− γ1 are made on hosts of type 2. The solid curve denotes the probability as found
from the solution of equation (A.16), symbols are probabilities estimated from numerical
simulation, using 10000 realizations for each parameter value. For this figure, a constant
infectious period assumption was made, with both vector and host being infectious for
exactly 7 time units. Parameter values are as follows: p = 0.2, q = 0.15, k = 0.5, H1 = 200,
H2 = 800. For the upper panel, V = 2000 and for the lower panel, V = 3000.

4. Ross Model with Host Immunity

The Ross model assumes that hosts are immediately susceptible upon recovery, i.e.
that there is no host immunity. This would correspond to an SIS model in the setting
of a directly transmitted infection. The simplest way to account for host immunity
is to add a “recovered and immune” class of hosts to the model; we denote the
number of such individuals by R. Infective hosts move into this compartment upon
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Figure A.2. Average behavior and variation about the average in the two host, one vector
model, in terms of the vector’s preference for the first host. As in the previous figure, a
fraction γ1 of bites are made on hosts of type 1, γ2 = 1− γ1 are made on hosts of type 2.
Solid curves denote the average total number of infective hosts, E(Y1+Y2). The variability
of realizations about this average is indicated by the dashed curves, which depict mean ±
standard deviation of the total number of infective hosts. The standard deviation is calcu-
lated as the square root of Var(Y1)+Var(Y2)+2cov(Y1, Y2). All curves are calculated using
moment equations closed by means of the multivariate normal approximation. Symbols
denote the corresponding quantities calculated from 1000 realizations of the stochastic
model. Parameter values are as in figure (7), except that the host and vector population
sizes are ten times as large. The complete set of parameter values is as follows: p = 0.2,
q = 0.15, k = 0.5, ξ = δ = 1/7, H1 = 2000, H2 = 8000. For the upper panel, V = 20000
and for the lower panel, V = 30000.

recovery and then return to the susceptible class as they lose immunity. Thus we
have an SIRS model.

We assume that a host loses immunity at constant rate µ, so that 1/µ is the
average duration of immunity. As µ tends to infinity, i.e. as the duration of immunity
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Event Transition Rate at which event occurs

Infection of Host S → S − 1, Y → Y + 1 αIS/H
Recovery of Host Y → Y − 1, R→ R + 1 ξY
Host loses immunity S → S + 1, R→ R− 1 µR = µ(H − S − Y )
Infection of Vector I → I + 1 β(V − I)Y/H
Death of Vector I → I − 1 δI

Table A.1. Events of the model with host immunity and their rates of occurrence.

tends to zero, the Ross model is recovered. Notice that we still do not include a
description of the demography of the hosts, although this could be added in a
straightforward way.

Writing the number of susceptible hosts as S, the stochastic host immunity
model is described by the rates given in the table. We remark that our model
assumes that the size of the host population remains constant, so that H = S +
Y + R. Thus R can be rewritten as H − S − Y and so the model need only track
the three quantities, S, Y and I.
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Figure A.3. Moments of the stochastic host immunity model in its quasi-stationary distri-
bution, calculated using the moment equations for a range of values of the rate of loss of
host immunity, µ. The upper panel shows the mean number of infective hosts (heavy solid
curve) and mean ± standard deviation (light dashed curves). The lower panel shows the
coefficient of variation of the number of infective hosts. Parameter values are as follows:
p = 0.2, q = 0.15, k = 0.5, ξ = δ = 1/7, H = 100, and V = 1000.

Figure (A.3) compares the behavior of the host immunity model for a range
of values of the rate, µ, at which immunity is lost. Except for the µ parameter,
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this figure employs the same set of parameter values as figure (2) of the main text.
Immunity means that individuals take no part in the infection process while in the
R compartment, reducing the pool of hosts found in the S and Y classes. As a
result, the number of infective hosts, Y , is decreased, with this effect being most
pronounced when the rate of loss of immunity, µ, is small (see the upper panel
of figure A.3). Consequently, the impact of stochasticity is greater in this model
compared to the Ross model, particularly when µ is small (see the lower panel
of figure (A.3). Notice that, even though the variance of Y is not seen to change
much with µ in the figure, these similar sizes of variation are being seen relative
to a much smaller mean as µ becomes small. As mentioned above, large values of
µ correspond to the Ross model, and we see that the variability and prevalence of
infection observed corresponds to those seen in figure (2).
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