

SUPPL. FIG 1. Nucleotide sequences of 12 randomly chosen clones from the unselected library (5' ends). The sequences were aligned to the 8 parental viruses and color-coded according to sequence identity. The colors are similar to Fig. 1: green, AAV-2; pink, AAV-4; brown, AAV-5; yellow, AAV-8; olive AAV-9 (orange in Fig. 1); blue, AAAV; red, BAAV. White background indicates point mutations. CAAV is not found in the 5' end, as only a downstream subfragment was used for shuffling. Numbers in parentheses indicate sequence identity with the AAV-2 prototype; in the shown examples, they ranged from 56 to 93%. Note that this is very similar to the range found for naturally occurring wildtype serotypes (compare Table 1).

SUPPL. FIG. 2. Nucleotide sequences of 12 randomly chosen clones from the unselected library (3' ends). The clones, labels and colors are identical to Suppl. Fig. 1. The 3' ends of all clones are shown here. Only clone S8 contained the AAV-2-derived HBD (the triplets encoding the two crucial arginines are shown white on black).

SUPPL. FIG. 3. Selection of shuffled AAV capsids with human immunoglobulin (IVIG). (A) To analyse the neutralizing acitivity of the particular IVIG batch, recombinant *gfp*-expressing AAVs of the shown serotypes were incubated for 1 hour at 37°C with the shown agents, and then titered on 293 cells (all virus stocks were normalized to 2x10⁹ particles per ml). IVIG had the strongest neutralizing effect on serotypes 2 and 3, followed by 6, 1, 4, and 5. AAV-8 or -9 were only inhibited (~10x) with undiluted IVIG (not shown). (B) AAV library amplification on Huh-7 cells under IVIG pressure. For passage 1, 20 µl of the library were incubated for 1 hour at 37°C with the shown amounts of IVIG, and then left on the cells overnight. The next day, the cells were washed and super-infected with helper Adenovirus. The cells were lysed three days later, and 20 µl from the supernatant showing minimal AAV protein expression (circled in red) were processed as before. Shown is expression of AAV replication (Rep, top) and capsid (VP) proteins (bottom). Ori, original library. The blot in (C) documents the increasing resistance of the amplified particles to high IVIG doses over the various passages.

DJ 2 8 9 8 4 4 2	-MAADGYLPDWLEDILSEGIRQWWLKPEFPFPFAREHK DSKDLVPGYKYLGPFNGLDKGEPVHADDAALEHDKAVRQLDSGDNPYLYNHADAEFQERLKEDY -MAADGYLPDWLEDILSEGIRQWWLKPGPPPFFARERHKDDSKGLVPGYKYLGPFNGLDKGEPVHADAALEHDKAVRQLDSGDNPYLYNHADAEFQERLKEDY -MAADGYLPDWLEDNLSEGIREWWALKPGAPKFKANQQKQDDGRGLVLPGYKYLGPFNGLDKGEPVHADAAALEHDKAVDQLQAGDNPYLRYNHADAEFQERLKEDY -MAADGYLPDWLEDNLSEGIREWWALKPGAPKKANQQHQDNARGLVLPGYKYLGPGNGLDKGEPVNADAAALEHDKAVDQLKAGDNPYLKYNHADAEFQERLKEDY -MSFVDHPDWLES-IG-OFGREFWGALGPFKKANQQHQDNARGLVLPGYKYLGPGNGLDKGEPVNADAAALEHDKAVDQLKAGDNPYLKYNHADAEFQERLKEDY -MSFVDHPDWLES-EGIREFWGALGPFKKANQQHQDNARGLVLPGYKYLGFGNGLDKGEPVNAADAAALEHDKAVDQLKAGDNPYLKYNHADAEFQERLKEDY -MTDGYLPDWLEDNLS-EGVREFWGALQPGAPKFKANQQHQDNARGLVLPGYKYLGFGNGLDKGEPVNAADAAALEHDKAVDQLKAGDNPYLKYNHADAEFQERLKEDY -MTDGYLPDWLESLUKKGVREWWALQPGAPKFKANQQHQDNARGLVLPGYKYLGFGNGLDKGEPVNAADAAALEHDKAVDQLKAGDNPYLKYNHADAEFQERLKEDY MSLISDAIPDWLERLVKKGVNAAADFYHLESGPPRKANQQHQDNARGLVLPGYKYLGFGNGLDKGEPVNAADAAALEHDKAVDQLKAGDNPYLKYNHADAEFQERLKEDY	109 3 109 3 109 3 109 3 108 5 108 5 108 5 118
5	-MSFVDHPPDWLEEVGEGLR EFLGLEAGPPKPKPNQQ+NQQ AGLVLPGYNYLGPGNGLDRGEPVNRADEVAREHDISYNEQLEAGDNPYLKYNHADAEFQEKLADDTS + NSFVDHPPDWLEEVGEGLR + NGPV + N	3 108
DJ 2 8 9 4 2 C 5	FGGNLGRAVFQAKKRILENELSIVE AAK TAKG-KKREVEHSPVE- FDSSGTGKAGQQPARKRINFG-QTGDAS VPDPQFIGFPAAFGVESLTMAAGGAPMADNNEGDVEVSSG FGGNLGRAVFQAKKRVLEPLGLVEEGAKTAPG-KKREVEHSPVE- PDSSSGTGKAGQQPARKRINFG-QTGDASVPDPQPLGPPAAPSGUGTNTMATGSGAPMADNNEGADGVGNSSG FGGNLGRAVFQAKKRVLEPLGLVEEGAKTAPG-KKREVEHSPVE- PDSSSGTGKAGQQPARKRINFG-QTGDSSVPDPQPLGEPPAAPSGUGSTNTMATGSGAPMADNNEGADGVGNSSG FGGNLGRAVFQAKKRVLEPLGLVEEGAKTAPG-KKREVEPSPQRSPDSSTGIGKGQQPARKRINFG-QTGDSSVPDPQPLGEPPAAPSGVGSTMAAGGGAPMADNNEGADGVGSSSG FGGNLGRAVFQAKKRILEPLGLVEEGAKTAPG-KKREVEQSPQE FGGNLGRAVFQAKKRILEPLGLVETPDKTAPAAKKREVEQSPQE PDSSGVGKKKQPAKKRINFDQEFCAGD OFPEGSSGAMSTETEMRAAGGNGOBAGGGAGVGNASG FGGNLGRAVFQAKKRULEPLGLVEDAGATAFG-KKREVEQSPQE PDSSGVGKKGQPAKKRLVFDEGAGD OFPEGSSGAMSTETEMRAAGGNGOBAGGGAGGVGNASG FGGNLGRAVFQAKKRVLEPLGLVEDAGETAPG-KKREVEGSDPQ- PDSSGVGKKGQPAKKRLVFDEGAGD OFPEGSSSGAMSDDSEMRAAAGGAAVEGGQGADGVGNASG FGGNLGKAVFQAKKRVLEPFGLVED-SKTAPTGKKKGEDEPRI- PDTSSGTPKKNKKPKERFSGGAEDFGGGTSSNAGAAPASSVGSSTMAEGGGPVGDAGGADGVGNASG FGGNLGKAVFQAKKRVLEPFGLVEGAKTAPTGKRID DHFPKRKKARTEEDSKPSTSSDAEAGPSGS	226 227 227 226 222 222 220 220 2320 232 - 5 232
		- 246
DJ 2 8 9 8 4 2 5	NHEOSTWIGERVITESTRIALPTINNHLYKQISNTSGESSIDNAYEGYSTEWGYEDTERFECESEDVQLINNNGEREKKLSKLENUQVEVIDAGTKILANNLTSTUQVET NWHCDSTWIGERVITTSTRIALPTINNHLYKQISNGESANDNYEGYSTEWGYEDFNREHCHSSERDVQLINNNGEREKKLSKLENUQVEVIDAGTKILANNLTSTUQVET NWHCDSTWIGERVITTSTRIVALPTINNHLYKQISNGESSIDNAYEGYSTEWGYEDFNREHCHSSERDVQLINNNGEREKKLSKLENUQVEVIDNGVKIIANNLTSTUQVET DWHCDSTWIGENVITTSTRIVALPTINNHLYKQISNGESSIDNAYEGYSTEWGYEDFNREHCHSSERDVQLINNNGEREKKLIKLENUQVEVIDNGVKIIANNLTSTUQVET NWHCDSGWLGDRVITTSTRIVALPTINNHLYKQISNGESSIDNAYEGYSTEWGYEDFNREHCHSSERDVQLINNNGEREKKLIKLENUQVEVITSNGETIVSNNLTSTUQVET DWHCDSTWSEGHVITTSTRIVALPTINNHLYKLIGSIDQSNITNGESTEWGYEDFNREHCHSSERDVQLINNNMGEREKKLIKLENUQVEVITSNGETIVSNNLTSTUQIFA NWHCDSQWLENGVVIRTTRIVVLPSINNHLYKRLIGSIDQSNITNGESTEWGYEDFNREHCHSSERDVQLINNNMGEREKAMRVKIENIQVKEVITSNGETIVSNNLTSTUQIFA DWHCDSTWSEGHVITTSTRIVVLPSINNHLYKRLIGSID	346 344 347 346 337 335 335 350 - 335
DJ 2 8 9 8 4 2 5	SEYQLEVILGSAHCGQLEPEHADVEMI POYCELTINGSOAVG'SSEVCLEVERSCHLERKGNNEOFTYTESDUPEKSSY HSGSLDRIMBE I DOVLYYLSRI OT-TGETTNOT DSEYQLPYVLGSAHGGCLPPEPADVFMVPQYGYLTINNGSOAVGRSSFYCLEYFPSQMLRTGNNFFFSYTEDVPEHSSYAHSQSLDRLMNPLIDQYLYYLSRI NT-PSGTTYQSRI DSEYQLPYVLGSAHGGCLPPEPADVFMIPQYGYLTINNGSOAVGRSSFYCLEYFPSQMLRTGNNFQFSYFEBVVPEHSSYAHSQSLDRLMNPLIDQYLYYLSRI NT-GGC-QNQQTD DSTYLPYVMDAGQEGSLPPEPADVFMIPQYGYLGUVTGGSQNQTDRNAFYCLEYFPSQMLRTGNNFQFSYFEBVVPEHSSYAHSQSLDRLMNPLIDQYLYYLSRI TI-GGC-QNQQTD DSSYELPYVMDAGQEGSLPPEPNDVFMVPQYGYCGUVTGGSQNQTDRNAFYCLEYFPSQMLRTGNNFEMYYKEBVVPEHSMYAHSQSLDRLMNPLIDQYLWLQSTTGGTLNAGTATI DSSYELPYVMDAGGEGSLPPEPNDVFMVPQYGYCGUVTGNTSQQTDRNAFYCLEYFPSQMLRTGNNFETYYFEDVPEHSMYAHSQSLDRLMNPLIDQYLWGLQSTTGTTINAGTATI DKDYQLPYVLGSATEGTPPPFPADIYTIPQYGYCTINYNNEAVDRSAFYCLEYFPSMLRTGNNFEFTYTFEDVPEHSMYAHSQSLDRLMNPLIDQYLWGLQSTTGTTINAGTATI DDDYQLPYVLGSATEGTPPPFPADIYTIPQYGYCTINYNNEAVDRSAFYCLEYFPSMLRTGNNFEFTYFFEVPFHSMFAHNQTLDRLMNPLVDQYLWAFSSVSQAGSGGRAI DDDYQLPYVVGNGTEGCLPAFPPQVFTLPQYGYATINND-GDNPTERSSFFCLEYFPSKMLRTGNNFEFTYNFEEVPFHSSFAPSQNLFKLANPLVDQYLWFVSTNN	462 460 463 461 457 455 464 107 444
DJ 2 8 9 8 4 2 5	CFSQCEPNTMANQAR NULFUC YRCERVSKÜSADNNSEYSÜTGATKYHLMGR DSIVNEGP-MASHKDDEEKFFROSGVLIFCKQCSEKTNVÜIEKVMIDDEELIRTHE QFSQAGASDIRDQSHNWLPGPCYRQQRVSKTSADNNNSEYSWTGATKYHLMGR DSIVNEGP-MASHKDDEEKFFROSGVLIFCKQCSEKTNVIEKVMITDEELIRTHE GFSQGGPNTMANQARNWLPGPCYRQQRVSTTGONNSKFAWTAGTKYHLNGRDSLANFGI-AMATHKDDEERFFROSGLIFGKCGSEKTNVIEKVMITDEELIRTHE KFSVAGSNMAVQGRNJIFGSYRQQRVSTTVTONNSKFAWTAGTKYHLNGRDSLANFGI-AMATHKDDEERFFROSGLIFGKCGNARDNNADYSVMLTSEELIKTHE NFSVAGSNMAVQGRNJIFGSYRQQRVSTTVT-ONNSKFAWFGASSWALNGRNSLANFGI-AMATHKDDEERFFFLSGSLIFGKCGTGRDNVADYSVMLTSEELIKTHE NFAKLTKINFSSYRNWLPGFMMKQQRFSKTASONVKIFQGRNNSLHYETHSTLDGFWSNFAFGT-AMATARNDATDES-OAQLIFAGFNITGMTTDANKLMFTSEDELRATHE NFTKLRFINFSNFKNWLPGSFMKQQGFSKTASONVKIFQGRNNSLHYETHSTLDGFWSNFAFGT-AMATAGPADSKES NSCLIFAGFNITGNATVFGTLIFTSEELAATNA HYSRATKINMAAQYHNWLPGFFRDQIFTGSNITKNNVSSVWEFSKWMLDGFSVAFDF-MATAGPADSKS-SNGLIFAGFNUGNTLATTTRUGILITNEELIFT QFQKNLAGRYANTYNWFFGFMGRTQGNNTSSGSSTNVSVNNFSVSKRWNLEGSSYQVNPQPNGMTNTLQGSNTALEENTMIFNAQNATFGTTSVYFDNLLISESETQFVNF QFNKNLAGRYANTYNWFFGFMGRTQGNNTSSGSSTNVSVNNFSVSKRWNLEGSYQVNPQPNGMTNNLQGSNTALEENTMIFNAQNATFGTTSVYFDNLLISESETQFVNF 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	572 570 573 571 571 571 571 578 578 7 222 R 560
DJ 2 8 9 8 4 2 5	VATEOXGSUSTILORGNRQAATALUNTGGVLEM MOODUVULOOPIUKKIEHDOH HEBELMGORGLKHEBOIL KUTPVEADE PTT NOSKLNEFTOZSTGVS EIEM GOR VATEOYGSVSTNLORGNRQAATALUNTGGVLEGMUWQDRDVYLQGPIUKKIEHDOH HEBELMGORGLKHEPPQILIKNTPVFANESTTFSAAKFASFITOZSTGVSVEIEWELQKEN VATESYGVJNLQQNTAPQIGTVNSQGALPGMUWQDRDVYLQGPIUKKIEHTDGNFHSSPLMGGFGLKHEPPQILIKNTPVFANESTTFSAAKFASFITOZSTGVSVEIEWELQKEN VATESYGVJNLASAQAQACTGVUQNGGILFGMUWQDRDVYLQGPIUKKIEHTDGNFHSSPLMGGFGLKHEPPQILIKNTPVFANESTTFSAAKFASFITOZSTGVSVEIEWELQKEN DDTLFGHLATNQQNATTVPTTDIVDGVDYFGMUWQDRDIYYQGPIUKKIEHTDGHFHSSPLGGFGCKHEPPQIFIKNTPVFANEATTFSARINSFITOZSTGVSVEIEWELQKEN TDTDMWGNLEGGDQSNSNLFTVDFLTALGAVFGMUWQDRDIYYQGPIUKKIEHTDGHFHSSPLIGGFGLKHEPPQIFIKNTPVFANEATTFSSTVNSFITOZSTGVSVEIEWELQKEN VAINGGWAFINNQSIVTFGTRAAVNNQGALPGMUWQNRDIYYQGPIWAKIEHTDGHFHSSPLIGGFGLKHEPPQIFIKNTPVFANEATTFSSTVNSFITOZSTGVSVEIEWELQKEN VAINGGWAFINNQSITTPGTAAVNNQGALPGMUWQNRDIYTGTHLAKIEPTGAHFHSSPLIGGFGLKHEPPQIFIKNTPVFANESETFOTAKVASFITOZSTGQCTVEIEWELKKET VAINTGGQMATNAQNATTAPTVGTYNLQEIVFGSVWMERDVYLQGPIWAKIEPTGAHFHSSPLIGGFGLKHEPPOIFIKNTPVFANESETFOTAKVASFITOZSTGQCTVEIEWELKKET VAINTGGQMATNAQNATTAPTTGTYNLQEIVFGSVWMERDVYLQGFIWAKIEPTGAHFHSSPLIGGFGLKHEPPOIFIKNTPVFANESETFOTAKVASFITOZSTGQCTVEIEWELKKET VAINTGGQMATNAQNATTAPTTGTYNLQEIVFGSVWMERDVYLQGFIWAKIEPTGAHFHSSPLIGGFGLKHEPPOIFIKNTEVFANESETFOTAKVASFITOZSTGQCTVEIEWELKKET VAINTGGQMATNAQNATTAPTTGTYNLQEIVFGSVWMERDVYLQGFIWAKIEPTGAHFHSSPLIGGFGLKHEPPONLIKNTEVFON 10	692 690 693 691 691 691 699 698 - 295 0 679
DJ 2 8 9 8 4 2 5	SKRWNPEIQYTSNYKKSVNGLTVDTN GVISEPREICTEVITIKEN 737 SKRWNPEIQYTSNYKKSVNGLTVDTN GVISEPREICTEVITIKEN 735 SKRWNPEIQYTSNYKKSVNGLTVDTN GVISEPREICTEVITIKEN 736 SKRWNPEQFTSNYKSNNUEFAVNTE GVISEPREICTEVITIKEN 736 SKRWNPEVQFTSNYGQONSLLWAPDNA GAYKEPRAIGSRYLTNH 736 JA JA JA	
<u>T</u>	otal DJ-VP1 protein (737 aa): Loop IV (212 aa):	
Co	mplete identity : 226 aa / ~30.7% Complete identity : 39 aa / ~18.4%	
lde	entical in DJ-2-8-9 : 307 aa / ~41.6% < Identical in DJ-2-8-9 : 91 aa / ~42.9%	
Eit	ther in DJ / 2 / 8 / 9 : 204 aa / ~27.7% < Either in DJ / 2 / 8 / 9 : 82 aa / ~38.7%	Ì

SUPPL. FIG. 4. Protein sequence alignment of AAV-DJ and the 8 parental viruses. The 9 shown protein sequences (full-length VP1 proteins) were aligned using the ClustalW tool. Sequence identities between individual proteins are highlighted, using AAV-DJ as a reference. Individual amino acids are color-coded: red, identical between all 9 AAVs; green; identical between AAV-DJ and serotypes 2, 8 and 9; the bars highlight the amino acids constituting the five exposed capsid loops (the largest and most divergent loop IV is highlighted in yellow, indicative of a high degree of evolution in these regions. The blue box indicates the B1 antibody epitope (fully conserved in AAV-DJ, -2, -5, -8, -9). Shown at the bottom are comparisons of amino acid identities between the full-length VP1 protein and the other parental serotypes. This suggests the strongest selection pressure was exerted on this loop, resulting in the highest degree of evolution.

SUPPL. FIG. 5. Analyses of liver vector DNA. Mice were injected as described in Fig. 7, with hFIX-expressing AAV-2, -8, -9 or -DJ at low (L, 5x10¹⁰), medium (M, 2x10¹¹), or high (H, 1x10¹²) particle doses. Six weeks later, total liver DNA was extracted and digested with Bam HI and Xho I (A), to determine vector copy numbers, or either Bam HI (single cutter, B) or Nco I (non-cutter, C), to analyze vector DNA forms. There were no differences between vector DNAs delivered by AAV-8, -9, or -DJ (including the HBD mutants) at any dose. All vectors mainly persisted as circular monomers (relaxed or supercoiled), or concatemers at higher doses, in agreement with previous reports for AAV-8 and -9.

SUPPL. FIG. 6. Amino acid frequencies in AAV peptide display libraries before and after selection. (A) Shown are natural frequencies of amino acids based on the genetic code ("Nature") versus theoretical frequencies in an NNK or NNB (this paper) library. Note that the frequency of unwanted stop codons ("**") is lowest with the NNB design. (B) Comparison of overall amino acid frequencies in the unselected AAV-DJ-based library versus that in 46 peptides cloned after *in vivo* biopanning in mouse lungs. Note that the frequency of stop codons ("**") is even slightly below the theoretical prediction in the unselected library. Importantly, stop codons were no longer detected after *in vivo* selection, arguing for a 100% coupling of viral genomes and capsids.