
Basic algorithm in code

Let vF, vM, and vN be 1-based (i.e., indexed by 1, 2, and so forth) vectors of size N where
vF[n] stores the n:th gene score, vM[n] the average score across the last segment in the
optimal segmentation of [1, n], and vN[n] the endpoint of the last-but-one segment of the
optimal segmentation of [1, n]. Further, let vJ be a 0-based vector of size N+1 containing the
optimal values of the objective function. This vector is initialized to ”infinity” at all elements,
except the first which is initially zero. In pseudocode, the forward dynamic programming
pass is

// Forward pass. Basic version.

for (int n=1;n<=N;n++) {

for (int n’=1;n’<=n;n’++)

{

s= 0;

ss= 0;

for (int j=n’;j<=n;j++)

{

s += vF[j];

ss += vF[j]*vF[j];

}

mu= s/(n-n’+1);

nu= (ss-s*mu);

if (n’>1)

// Modify mu_diff expression to adapt to L^0 or L^p norms

mu_diff= abs(vM[n’-1] - mu);

else

mu_diff= 0;

J= vJ[n’-1] + mu_diff + lambda*nu;

if (J < vJ[n])

{

vJ[n]= J;

vM[n]= mu;

vN[n]= n’-1;

}

}

}

After the forward pass, the segmental breakpoints are recovered by backtracking through
vN. The technical details follow the standard dynamic programming backtracking procedure
and are therefore left to the reader.

1



Reducing the computational complexity

The forward dynamic programming pass considers O(N2) intervals, and spends O(N) ad-
ditions and multiplications on computing sums and sums-of-squares over each one. Thus,
the overall time complexity is O(N3). However, by noting that the innermost loop can be
unfolded by computing sums and sums-of-squares cumulatively, we arrive at the following
considerably faster algorithm which is O(N2) in time:

// Forward pass. Fast version.

s_outer = 0;

ss_outer= 0;

for (int n=1;n<=N;n++)

{

s_outer += vF[n];

ss_outer += vF[n]*vF[n];

s_inner = s_outer;

ss_inner= ss_outer;

for (int n’=1;n’<=n;n’++)

{

mu= s_inner/(n-n’+1);

nu= (ss_inner-s_inner*mu);

if (n’>1)

// Modify mu_diff expression to adapt to L^0 or L^p norms

mu_diff= abs(vM[n’-1] - mu);

else

mu_diff= 0;

J= vJ[n’-1] + mu_diff + lambda*nu;

if (J < vJ[n])

{

vJ[n]= J;

vM[n]= mu;

vN[n]= n’-1;

}

s_inner -= vF[j];

ss_inner -= vF[j]*vF[j];

}

}

2


