Supporting Information for

Iron Complexes of Dendrimer-Appended Carboxylates for Activating Dioxygen and Oxidizing Hydrocarbons

Min Zhao¹, Brett Helms², Elena Slonkina³, Simone Friedle¹, Dongwhan Lee¹, Jennifer DuBois³, Britt Hedman^{3*}, Keith O. Hodgson^{3*}, Jean M. J. Fréchet^{2*}, and Stephen J. Lippard^{1*}

¹Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue,

Cambridge, MA 02139

²Department of Chemistry, University of California, 718 Latimer Hall, Berkeley, CA 94720-

1460

³Department of Chemistry and Stanford Synchrotron Radiation Laboratory, Stanford University,

Stanford, CA 94305

Figure S1. X-band (top, 3.7 K, 9.367 GHz, 13 db) and Q-band (bottom, 2 K, 35.251 GHz, 20 db) EPR spectra of compound 9-P in frozen toluene solution.

Figure S2. Optical changes when 9-CN reacts with O_2 in toluene at -29 °C. The spectra were recorded every 30 s up to 15 min, and with an increment of 20% in the cycle time afterwards.

Figure S3. Plot of the evolution in absorbance at 442 nm after mixing **9**-P (0.0376 mM in CH₂Cl₂) with a large excess of dioxygen at 20 °C. The data were fit to eq. 1 fixing ε_{10} as 6000 cm⁻¹M⁻¹ and ε_{9-P} as 1000 cm⁻¹ M⁻¹ to afford k_1 ' = 0.0132(8) s⁻¹, k_2 = 0.04 (2) s⁻¹, and ε_{11} = 4523(5) cm⁻¹ M⁻¹.

Figure S4. X-band EPR spectrum of a toluene sample of 9-P at 4.2 K.

Figure S5. Fe K-edge XAS spectra for 9-P (black), A (green), and B (orange). The inset shows the magnified pre-edge region.

Figure S6. Fe K-edge XAS spectra for 11 (blue) and C (gray). The inset shows the magnified pre-edge region.

Figure S7. Simulated spectrum of a 1:1 mixture of **9**-P and **11** (navy) and experimental spectrum of **10** (magenta). The inset shows the magnified pre-edge region.

Figure S8. (a) EXAFS and (b) Fourier transforms of 9-P (black) and (top to bottom) Fits 1 (red) and 2 (blue) from Table 2.

Figure S9. (a) EXAFS and (b) Fourier transforms of A (black) and (top to bottom) Fits 1 (red), 2 (blue), 3 (green), 4 (magenta) from Table S1.

Figure S10. (a) EXAFS and (b) Fourier transforms of **B** (black) and (top to bottom) Fits 1 (red), 2 (blue), 3 (green), 4 (magenta) from Table S2.

Figure S11. (a) EXAFS and (b) Fourier transforms of **11** (black) and (top to bottom) Fits 1 (red), 2 (blue), 3 (green), 4 (magenta), and 5 (cyan) from Table S3.

Figure S12. (a) EXAFS and (b) Fourier transforms of **10** (black) and (top to bottom) Fits 1 (red), 2 (blue), 3 (green), 4 (magenta), 5 (cyan) and 6 (dark yellow) from Table S4.

Figure S13. A typical total ion chromatogram from reaction of 9-P and dihydroanthracene.

Fit number		R (Å) (EXAFS)	R (Å) (crystallography) ^b	$\sigma^2 \times 10^6 (\text{\AA}^2)$	F^{c}
1	5 O/N^d	2.00	2.03	890	0.399
	4 C	2.97	3.04	1090	
2	4 O/N	2.00	2.03	710	0.356
	4 C	2.98	3.04	1100	
3	4 O/N	2.00	2.03	720	0.314
	2 C/O	2.44	2.44	880	
	4 C	2.97	3.04	1100	
4	4 O/N	2.00	2.03	730	0.314
	10	2.35	2.36	450	
	1 C	2.53	2.53	330	
	4 C	2.97	3.04	1400	

Table S1. EXAFS Fit Results for A.^a

^a Errors are estimated to be 25 % for coordination numbers and 0.01 - 0.03 Å for distances. ^b JACS, **1998**, 120, 12153-12154. ^c Error (F) is defined as $F = [\Sigma k^6 (\chi_{exptl} - \chi_{calcd})^2] / \Sigma k^6 \chi_{exptl}^2]$. ^d Scatterers differing by Z = ±1 are not distinguishable by EXAFS. The first element in a pair indicates the type of atom used to model the backscattered wave in the theoretical fit.

Fit number		R (Å) (EXAFS)	R (Å) (crystallography) ^b	$\sigma^2 \times 10^6 (\text{\AA}^2)$	F^{c}
1	5 O/N ^c	2.08	2.09	580	0.446
	6 C	2.98	3.00	5080	
2	20	1.99	2.03	300	0.416
	3 O/N	2.10	2.13	280	
	6 C	2.92	3.00	3900	
3	20	1.98	2.03	280	0.408
	3 O/N	2.09	2.13	260	
	1 Fe	2.76	2.82	840	
4	2 O	1.99	2.03	240	0.334
	3 O/N	2.11	2.13	250	
	1 Fe	2.77	2.82	490	
	6 C	2.97	3.00	660	

Table S2. EXAFS Fit Results for **B**.^{*a*}

^a Errors are estimated to be 25 % for coordination numbers and 0.01 - 0.03 Å for distances.
 ^b JACS, 1999, 121, 9893-9894.
 ^c Error (F) is defined as F = [Σk⁶(χ_{exptl} - χ_{caled})²]/Σk⁶χ_{exptl}²].
 ^d Scatterers differing by Z = ±1 are not distinguishable by EXAFS. The first element in a pair indicates the type of atom used to model the backscattered wave in the theoretical fit.

Fit number		<i>R</i> (Å)	$\sigma^2 \times 10^6 (\text{\AA}^2)$	F^b
1	6 O/N ^c	2.00	830	0.464
2	6 O/N	2.02	840	0.298
	5 C	3.00	270	
3	6 O/N	2.01	830	0.276
	1 Fe	2.99	380	
4	6 O/N	2.02	820	0.241
	1 Fe	3.00	400	
	5 C	2.94	1160	
5	6 O/N	2.02	840	0.178
	5 C	3.00	270	
	3 O/C	3.32	380	
	8 C/N-C	4.28	880	
	10 C	4.92	930	
6	6 O/N	2.01	830	0.174
	1 Fe	3.00	480	
	5 C	2.97	1430	
	3 O/C	3.30	710	
	8 C/N-C	4.27	860	
	10 C	4.91	940	

 Table S3. EXAFS Fit Results for 11.^a

^{*a*} Errors are estimated to be 25 % for coordination numbers and 0.01 - 0.03 Å for distances. ^{*b*} Error (*F*) is defined as $F = [\Sigma k^6 (\chi_{exptl} - \chi_{calcd})^2] / \Sigma k^6 \chi_{exptl}^2]$. ^{*c*} Scatterers differing by $Z = \pm 1$ are not distinguishable by EXAFS. The first element in a pair indicates the type of atom used to model the backscattered wave in the theoretical fit.

Fit number		<i>R</i> (Å)	$\sigma^2 \times 10^6 (\text{\AA}^2)$	F^b
1	6 O/N	2.04	1290	0.525
2	6 O/N	2.05	1300	0.331
	5 C	3.04	340	
3	6 O/N	2.04	1290	0.311
	1 Fe	3.02	460	
4	6 O/N	2.05	1280	0.280
	1 Fe	3.03	500	
	5 C	3.00	1524	
5	6 O/N	2.05	1290	0.235
	5 C	3.03	380	
	3 O	3.34	530	
	8 C/N-C	4.38	890	
	10 C	4.99	1000	
6	6 O	2.05	1290	0.217
	1 Fe	3.07	470	
	5 C	2.99	580	
	3 O	3.27	850	
	8 C/N-C	4.38	760	
	10 C	4.99	1000	

Table S4. EXAFS Fit Results for 10.^a

^a Errors are estimated to be 25 % for coordination numbers and 0.01 - 0.03 Å for distances. ^b Error (F) is defined as $F = [\Sigma k^6 (\chi_{exptl} - \chi_{calcd})^2] / \Sigma k^6 \chi_{exptl}^2]$. ^c Scatterers differing by Z = ±1 are not distinguishable by EXAFS. The first element in a pair indicates the type of atom used to model the backscattered wave in the theoretical fit.