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Aqueous solutions are pumped (50 wl min~!; Harvard Appara-
tus) into the spraying chamber of a commercial ESMS instru-
ment (HP-1100 MSD; Agilent) through a grounded stainless
steel needle injector (100-wm internal diameter, 150-um exter-
nal diameter) and pneumatically nebulized by means of N, gas
flowing through a coaxial sheath (1). The difference between the
exit velocities of the liquid jet (10.6 cm s~!) and nebulizer gas
(2.65 X 10*cm s~ ') is so large that the drag imposed on the liquid
breaks it apart into submicron-size droplets. The terminal ve-
locities of the microdroplets thus produced exceed ~10° cm s™!
(2) that lead to transit times shorter than 7 ~1 ms across the ~
0.5-cm-wide O3(g) plume. These droplets, which are produced by
fragmentation of electrically neutral solutions from a grounded
injector, are charged via statistical fluctuations that scale with
(drop size) ™12 (3). The ensemble of spray droplets is, on average,
neutral, but individual droplets actually carry charges that follow
a Gaussian distribution, as expected for a random process. This
phenomenon is the basis of the classical oil drop experiment
performed by Millikan (4) to determine the magnitude of the
elementary charge. It should be emphasized that spontaneous,
asymmetrical charge separation during pneumatic nebulization
of liquids does not produce highly charged droplets, and, there-
fore, it is unrelated to electrospray ionization of droplets issuing
from high-field nozzles. Sprayed droplets eventually contract via
solvent evaporation, a process regulated by ambient temperature
and relative humidity, thereby increasing electrostatic repulsion
among excess surface charges. Coulomb explosions ensue in
which drops shed interfacial charge and mass into smaller
droplets. In the final stage, ions are ejected from nanodroplets
into the gas phase (5-7). It is apparent that, by its very nature,
this technique effectively samples the interfacial layers of nano-
droplets. Product identities were confirmed via MS-MS analyses
performed in an Agilent MSD-Trap mass spectrometer.

Ozone is generated by flowing ultrapure O,(g) (Air Liquid
America Co.) through a commercial ozonizer (Ozone Solu-
tions), diluted tenfold with ultrapure N»(g), and quantified by
UV absorption spectrophotometry (HP 8452) at 250 and 300 nm
before entering the spraying chamber, where it contacts the
aqueous AH, droplets for ~1 ms. This arrangement has been
described and illustrated in detail in ref. 1. Throughout, the
reported [O3(g)] values, which correspond to the concentrations
actually sensed by microdroplets in the reaction chamber, are
estimated to be ~10 times smaller than the values determined
from UV absorbances because of further dilution by the N
drying gas. Gas flows were regulated by calibrated mass flow
controllers (MKS). Typical instrumental parameters were as
follows: drying gas temperature, 250°C; nebulizer pressure, 2
atm; collector capillary voltage, +3.5 kV; fragmentor voltage, 17
V. We have evidence that droplets are weakly charged under
present conditions. Solutions were prepared in MilliQ water, or
in DO (D >99.9%; Cambridge Isotope Laboratories) that had
been previously purged with ultrapure N»(g) longer than 30 min.
L-[2C4]AH: (> 99%; Sigma-Aldrich), L-[1-13C], L-[2-13C], and
L-[3-3C] AH; (Omicron), calcium threonate (Sigma-Aldrich),
DHA (Sigma—Aldrich), and tert-butanol (Fisher) were used as
received. Solutions pH was measured with a calibrated pH meter
(VWR).

Appendix 1. Reactant diffusion from the droplets core may
account for the leveling off, i.e., the weaker than exponential
decay of [AHT])/[AH o vs. [Os(g)] (Fig. S5 Upper). If the
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concentration of X=AH" in the interfacial layers is determined
by its reaction with Os(aq) = Os(g), and by diffusion from the
droplets core, then:

X1 DX, — [X] , D
7=ﬁ*k[03][X];D =5A 11
D'[X]o—k[O3][X]pexp[ — (D' + k[O3])¢]
%] = D'+ k[0] (2]
[Xss _ D’ 31
[X]lo D'+ k[O;]
A([X1s/[X]0) k as [05] = 0 (4]
3 e

a[0s] D

where D is the diffusion coefficient of X in water, 6 is the
thickness of the interfacial shell, and A is the length over which
its intradroplet concentration gradient is established. k is the
local (X + O3) reaction rate constant in the interfacial layers.
The solution of Eq. 1 is given by Eq. 2. In the absence of
diffusion, i.e., D' = 0, [X] decays exponentially with time, at
constant [O3]. However, since X can diffuse (with D ~ 2 X 1073
cm? s~ 1) in tens of nanoseconds through, say, a A~ 10-nm layer,
a stationary state should be rapidly established within the ~1-ms
timeframe of our experiments. This condition is encoded by
equation Eq. 3, the limiting form of Eq. 2 att — . By assuming,
as a first approximation, that D' is constant, the [X]ss/[X]o ratio
becomes an inverse rational function of [Os3] at constant contact
time. The initial slope, given by Eq. 4, is therefore proportional
to the reaction rate constant k. Plots calculated from Eq. 3 for
various parameter combinations (Fig. S3) show that [X]«/[X]o
indeed “levels off” at large [O3(g)], supporting our interpreta-
tion of this phenomenon. A more realistic analysis should deal
with the development of intradroplet concentration gradients as
functions of time, radius, and [O3(g)] (8), but it is doubtful that
classical continuum diffusion models will be adequate for this
task. The leveling off of experimental [AH™]/[AH ] vs. [O3(g)]
curves cannot be due to diffusional limitations in the gas-phase
because this event is not replicated in the ozonolysis of other
anions, such as S;03~ or I7, over the same [O3(g)] ranges in 1
atm N»(g) (1). Note that, since intradroplet diffusion contributes
significantly to monitored interfacial [X] concentrations, inter-
facial layers behave as open reactors in which formal product P
yields calculated as: Yp = ([P]r — [Plo)/([X]o — [X]s) may exceed
unity (1, 9). Conventional integrated kinetic equations for
closed, well mixed chemical reactors are, of course, inapplicable
to interfacial layers.

Appendix 2. In Appendix 1, it was shown that the slopes of
[AH™]/[AH ]y vs. [O3(g)] curves at [O3(g)] — 0 are proportional
to reaction rate constants k (Eq. 4). To obtain limiting slopes, v,
Eq. 7, from experimental data, [AH™]/[AH ], curves were fitted
over the full [Os(g)] range (Fig. S5 Upper) using the four-
parameter expression Eq. 5:

y =yo + aexp(—bx) + cx [5]

y=[AH J/[AH ];; x = [03(g)] [6]
|

Y= [axlﬁo = —ab +c¢ [7]
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Regression results are shown in Table S1. Notice that ¢ values
make negligible contributions to 7. vy is in [ppm~!]. A y vs. pH
plot is shown in Fig. S4.

A

8
[pH - pHo.s] 181
1+ exp B

Y=Yt

Yo =0.41;4=-0.26; B =0.21; pHp5 = 3.98

Appendix 3. Initial slopes in Fig. 3:

vp = [ aa[[g]]] (P=DHA, THR, or AOZ) [9]
31110510

were calculated from best-fit numerical regressions to experi-
mental data. Second-order polynomials ([P] = Ao + A; [O3(g)]
+ A3 [O3(g)]% yp = A1) were used in the case of P=THR and
AQOZ, and exponential growth curves ([P] = By + By X{1 —
exp(—B2[03(g)])}; v = B1 X By) for P = DHA, <20 ppm
[O3(g)]- Concentrations are directly proportional to signal in-
tensities in these ranges. The results are shown in Table S2. yp
is in [signal intensity/a.u. ppm~!]. The (yrur/ypua)and(yaoz/
vYpua) ratios are plotted as function of pH in Fig. 4a. The ratios
of the corresponding signal intensities measured at 800 ppm
[O3(g)] as functions of pH, which are more representative of net
product formation after the complete decomposition of the
primary ozonide intermediate POZ, are shown in Fig. 4b.
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Appendix 4. The dissimilar evolution of AH, and DHA versus
THR and AOZ with [O3(g)] indicate that DHA is a primary
product, whereas THR and AOZ ensue from the decomposition
of an unstable intermediate, probably the primary ozonide POZ
(Scheme 1). A = [AH;], B= [DHA], C = [POZ] and D =
[AOZ]; [AH™] = a [AH;] throughout. The following simplified
mechanism should describe our system at small conversions, i.e.,
barring extensive diffusion (see Appendix 1):

A+O3%B;ak1=k}

A+ 03—=>C; (1 — a)ky =k

C - D; k3

C+ O3 > D; ky

f = exp(—(ki + k3)[0s]r)

g = exp(— (ks + ka)[O31)

h = ky[Os)/(ks + (ks — Kt — k)[Os])

m = ki/(ki + k3)

A[):l;BU:CU:D[):O

B=m(l—f);C=h(f—g:;D=1~f—m(l~f)~h(f~g)
Fig. S7 shows experimental data for DHA and AOZ vs. [O3(g)]
at pH 5.8 (from Fig. 3) and the results of evaluating B and D
using 7= 0.001 s, k; = 600, k5 = 200, k4 = 12 (in ppm~! s~ ! units)
and k3 = 50 s71, in the equations above. The dashed line
corresponds to the curve calculated by substituting (k3 = 0; ks =
16 ppm~! s71) for (k3 = 50 s™1; k4 = 12 ppm~! s71) in the
previous set of parameters. It is apparent that the decomposition
of POZ involves unimolecular (step 3) and ozone-catalyzed (step
4) pathways (10). Neither pathway alone is able to account for
anonvanishing initial slope yaoz and increased AOZ production
at larger [Os(g)]. At the [Os(g)] <0.5 ppm concentrations
prevalent in polluted atmospheres, the decomposition of POZ
will largely proceed unimolecularly via step 3 in less than ~1 s.
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Fig. S1.  Lack of initial AH, concentration effects on its reactivity toward Os(g) at pH 3.8.
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n Fig.S2A. Continuous flow T-mixer setup used to study the reaction between AH; and Oz in bulk water. Aqueous AH; solutions (1 mM) at pH 3.8 and Os-sparged
water were pumped through the T-mixer into the ESMS for analysis after ~4-s contact time.
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Fig.S2B. ESMS of AH, in the absence of O3(aq). ESMS of AH, mixed with Os(aq). Note the formation of THR-(m/z = 135), DHA-H,O~ (m/z = 191) and DHA-(H,0);~
(m/z = 209), and the absence of AOZ~ (m/z = 223).
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Fig. S3.  [AHJ/[AH o vs. [O3(g)] plots calculated from Eq. 3 using the reported parameters. (Upper) Log {[AH~1/[AH 1o} vs. [O3(g)]. (Lower) [AH~1/[AH ]} vs.
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Fig.S4. Symbolsindicate initial slopes y (Eq. 7 and Table S1) vs. bulk pH for the decay of AH™ in the ozonolysis of AH,. The curve is a best fit to the experimental
slopes from Table S1 using the sigmoidal function Eq. 8. Best-fit parameters lead to ypH>7/vpH<3 = 2.73. Note that pHo5 = 3.98 * 0.18 ~ pKa1(AH) = 4.10.
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Fig. S5. Ascorbate and reaction products as functions of [O3(g)] in the range of 0-880 ppm. Red, pH 3.8; light blue, pH 4.7; green, pH 5.8; dark blue,

pH 8.1.
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Fig. 6. Decay of OD-substituted AH™ isotopologues as a function of [O3(g)] in the ozonolysis of 1 mM AH; in 50/50 H,0/D,0 (vol/vol) at pH 6.7. The virtually
indistinguishable decays of the various isotopologues exclude significant H-transfer control in the rate-controlling steps of AH, ozonolysis.
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Fig. S7. Results of calculations based on the mechanism and parameters given in Appendix 4.
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Fig. S8. Symbolsindicate experimental data at pH 5.8 from Fig. 3. Solid lines, calculated with the mechanism and parameters given in Appendix 4; dashed line,
calculated by assuming that the primary ozonide is stable (k3 = 0) but decomposes when assisted by O3 (9). (Lower) Expanded view of the fit to AOZ near the
origin in a linear ordinate scale.
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Table S1. Parameters obtained by fitting Eq. 5 to the data of Fig. S3 Upper

pH a b c R* y

3.2 0.24 = 0.00 0.66 = 0.02 —0.001 0.992 —0.159 + 0.005
3.8 0.35 = 0.00 0.53 = 0.02 —0.0045 0.998 —0.190 = 0.007
3.8 0.28 = 0.01 1.18 = 0.09 —0.0139 0.976 —0.270 = 0.021
4.5 0.48 = 0.01 0.76 = 0.03 —0.0106 0.988 —0.375 £ 0.015
4.7 0.67 = 0.01 0.63 = 0.02 —0.009 0.998 —0.431 = 0.014
5.8 0.70 + 0.00 0.57 = 0.01 —0.007 0.999 —0.406 = 0.007
7.7 0.74 = 0.01 0.53 = 0.01 —0.008 0.999 —0.400 + 0.008

*Correlation coefficient.

Enami et al. pvww.pnas.org/cgi/content/short/0710791105]

12 of 13


http://www.pnas.org/cgi/content/short/0710791105

SINPAS

Table S2. Initial slopes, vyp, for the DHA, THR, and AOZ curves

of Fig. 3

pH YDHA YTHR Yaoz
3.8 755 + 30 470 = 2 100.0 = 0.4
4.7 1896 =+ 81 369 =5 45.7 = 0.6
5.8 1572 £ 72 260 = 3 28.6 £ 0.8
8.1 2577 = 95 349 =5 325+ 1.4
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