Table S1. Data on human brain tissue analyzed in Figure 1. Beclin 1 levels did not correlate with either age or PMT. There was no significant difference in Beclin 1 levels between males and females. PMT; Time to Post Mortem (hours), MMSE; Mini Mental State Evaluation, C; non-demented control, AD; Alzheimer's disease, MCI; Mild Cognitive Impairment, LBV; Lewy Body variant of AD, HD; Huntington's disease, n/a; not available. Values are mean ± SE. | Diagnosis | n | Age | MMSE | PMT | |-----------|----|----------------|----------------|---------------| | С | 19 | 75.4 ± 2.7 | 28.1 ± 0.8 | 7.7 ± 1.1 | | AD | 16 | 80.5 ± 2.6 | 3.8 ± 1.3 | 7.7 ± 1.0 | | MCI | 11 | 85.0 ± 2.7 | 28.8 ± 0.4 | n/a | | LBV | 5 | 83.2 ± 1.0 | 14.0 ± 4.7 | 2.3 ± 1.0 | | HD | 7 | 54.7 ± 6.0 | n/a | 8.6 ± 1.3 | **Table S2.** Relative size of hippocampus and motor cortex in 9-month-old female mice were unchanged by beclin 1 deficiency. No significant differences were observed between the groups (t-test). Digitized images from 3-6 coronal sections (30 μm) at 360 μm intervals through the region of interest were captured and analyzed using Metamorph software. The region of interest (hip; hippocampus, mt ctx; motor cortex) was outlined, and the mean total number of pixels calculated. The investigator was blinded to genotype. | Genotype | Region | N | Mean area (pixels \pm SEM) | |-------------------------|--------|---|------------------------------| | APP^+ , $Becn1^{+/+}$ | mt ctx | 7 | 1082641 ±26062 | | APP^+ , $Becn1^{+/-}$ | mt ctx | 8 | 1052164 ± 15265 | | APP^+ , $Becn1^{+/+}$ | hip | 6 | 780864 ± 38376 | | APP^+ , $Becn1^{+/-}$ | hip | 8 | 878921 ± 37726 | **Figure S1.** Beclin 1 immunoreactivity in sections from mid-frontal cortex of control and AD patients. Adjacent sections were stained with Cresyl violet to show neuron number. I-VI signify Braak stages of the representative AD cases, from mild (I), to severe (VI). **Figure S2.** APP and CTF levels are equivalent in young APP, $Becn1^{+/+}$ and APP, $Becn1^{+/-}$ mice. APP (**A, B**), CTF β (**A, C**), and CTF α levels (**A, D**) in the neocortex of 3-month-old APP, $Becn1^{+/+}$ mice (n = 3) and APP, $Becn1^{+/-}$ mice (n = 4). A representative western blot from replicate experiments (**A**) was probed with APP, CTF, and Actin antibodies. APP bands were normalized to Actin (**B**). CTF bands from the same samples on an independent blot were also normalized to Actin (**C, D**). All bars are mean \pm SEM; mean differences were compared by unpaired Student's t test. **Figure S3.** Distinct staining patterns in APP transgenic brains with antibodies detecting the APP holoprotein or Aβ. (**A, B**) Neocortex from nontransgenic mice (Non-tg) or 3, 6, and 12-month-old mice stained with antibodies recognizing human $Aβ_{17-24}$ (**A, B**) or human $APP_{444-592}$ (**C, D**). While Aβ immunostaining accumulates with age, APP immunostaining does not change or decreases slightly with age. **Figure S4.** Intracellular Aβ is partially colocalized with Cathepsin D. (**A-D**) brain sections from a 9-month-old APP transgenic mouse were treated with formic acid to reveal intracellular Aβ and stained with antibodies against 4G8 (Aβ₁₇₋₂₄; **B, C**) or 3D6 (Aβ₁₋₅; **D**). Both antibodies show a granular intracellular staining pattern in neurons (**B, D**). Double staining with an antibody against cathepsin D (**A**) shows partial colocalization with Aβ (arrows). Scale bars represent 20 μm. **Figure S5.** Additional ultrastructural disruptions in APP+, Becn1+/- mice. Lamellar bodies accumulated at synapses (arrowheads). Additional autophagosome like laminar bodies were identified (double arrowheads). Further pathological structures included fibrils (arrows) and electron dense bodies in axons (double arrows)