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We have adapted the Gillespie algorithm for chemical reactions [1], which
was originally thought for spatially homogeneous systems, to the case of parti-
cle transitions with spatio-temporal dependent rates. There are other existing
Monte Carlo methods to perform the simulations (see e.g. [2]).

The system is characterized by a rate matrix k; ;, where ¢ € [0, N] specifies
the site and j € [0, — 1] the motor transition (r being the number of possible
motor transitions; r = 5 in the present case). We order the transitions as follows:
ki,O = kf(i), ki,l = k‘u(l), and ]{72‘72 = kb(i), ki’g = ki’4 = kd(l) Note that the
rate matrix does not contain information about the motors occupying the sites.
In order to account for the actual potential transitions, we define a global array
in the system, a;, with [ € [0, N r], that characterizes the rates of all possible
potential transitions, and it is defined as the number of motors that can undergo
a particular transition times the rate of that transition: a;, = ny(9)ki 0, Girr1 =
nb(i)ki,l, Ajr42 = ’nu(i)k’i’g, i r43 = nu(i)kiyg and Ajr44 = nu(i)ki,4, where
ny(i) € [0,1] € N and n,(¢) € N are, respectively, the number of bound and
unbound motors at site 4 (occupation numbers). Once the potential transitions
rates are given, we define the global transition rate as

Nr
kg = Zal . (1)
=0

Unlike discrete-time Monte Carlo simulations, where the time step of the
simulation is set a priori, here it is necessary to know the time At at which
the next transition takes place. This time is a stochastic variable distributed
exponentially with a characteristic time scale 1/k,. Note that this time does
not specify a particular transition of a certain motor, but only determines how
long we have to wait to see a motor (no matter which) performing a transition.
The actual transition that takes place is a stochastic variable distributed uni-
formly and is calculated as follows. Generate a stochastic number y distributed
uniformly in the range [0, k4] and define m as an integer number in the range
[0, N r]. The value of m that specifies the transition that occurs is the largest



value of m € [0, N r] that fulfills the following inequality:

Zal <y. (2)
=0

The actual site ¢ at which the transition takes place and the particular transition
Jj, are given respectively by the quotient and the remainder of m/r.

The simulation evolves as follows. The system is initialized in a configuration
with an initial number M; of consecutive bound motors, the first one defining
the position of the very tip of the tube, so that the initial length of the tube N
is N = M;. Then, the rate matrix is calculated, and the array a; is obtained
from the system configuration and the rates. The value of the global transition
rate kg, is calculated for the initial configuration. Then, the following steps are
repeated until a maximal time t,,44:

e (step 1) Determine the stochastic time At at which the next transition oc-
curs, the site i at which the transition takes place and the actual transition

J-

(step 2) The transition is performed if allowed by excluded volume inter-
actions and the time ¢ is updated to t + At.

(step 3) The transition rates k; ; are then updated with the new configu-
ration.

step 4) The array a; is updated with the new configuration and value for
j
the rates.

step 5) The global transition rate k, is updated.
9

(step 6) Go back to step 1.

This part of the algorithm determines the transitions of the motors, given the
rate matrix and a particular configuration, but does not specify the dynamics of
tube growth. The dynamics of the tube is specified by the rates of the motors
(and their force dependence), and by a set of special rules for the growth events,
which are defined in the main text.

References

[1] Gillespie DT (1976) J Comp Phys 22:403-434.

[2] Newman MEJ, Barkema GT, Monte Carlo Methods in Statistical
Physics (Clarendon Press, 1999).



