
Supporting Online Information: Implementation

of the simulations

July 30, 2007

We have adapted the Gillespie algorithm for chemical reactions [1], which
was originally thought for spatially homogeneous systems, to the case of parti-
cle transitions with spatio-temporal dependent rates. There are other existing
Monte Carlo methods to perform the simulations (see e.g. [2]).

The system is characterized by a rate matrix ki,j , where i ∈ [0, N ] specifies
the site and j ∈ [0, r − 1] the motor transition (r being the number of possible
motor transitions; r = 5 in the present case). We order the transitions as follows:
ki,0 = kf (i), ki,1 = ku(i), and ki,2 = kb(i), ki,3 = ki,4 = kd(i). Note that the
rate matrix does not contain information about the motors occupying the sites.
In order to account for the actual potential transitions, we define a global array
in the system, al, with l ∈ [0, N r], that characterizes the rates of all possible
potential transitions, and it is defined as the number of motors that can undergo
a particular transition times the rate of that transition: ai r = nb(i)ki,0, ai r+1 =
nb(i)ki,1, ai r+2 = nu(i)ki,2, ai r+3 = nu(i)ki,3 and ai r+4 = nu(i)ki,4, where
nb(i) ∈ [0, 1] ⊂ N and nu(i) ∈ N are, respectively, the number of bound and
unbound motors at site i (occupation numbers). Once the potential transitions
rates are given, we define the global transition rate as

kg ≡
N r∑
l=0

al . (1)

Unlike discrete-time Monte Carlo simulations, where the time step of the
simulation is set a priori, here it is necessary to know the time ∆t at which
the next transition takes place. This time is a stochastic variable distributed
exponentially with a characteristic time scale 1/kg. Note that this time does
not specify a particular transition of a certain motor, but only determines how
long we have to wait to see a motor (no matter which) performing a transition.
The actual transition that takes place is a stochastic variable distributed uni-
formly and is calculated as follows. Generate a stochastic number y distributed
uniformly in the range [0, kg] and define m as an integer number in the range
[0, N r]. The value of m that specifies the transition that occurs is the largest
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value of m ∈ [0, N r] that fulfills the following inequality:

m∑
l=0

al < y . (2)

The actual site i at which the transition takes place and the particular transition
j, are given respectively by the quotient and the remainder of m/r.

The simulation evolves as follows. The system is initialized in a configuration
with an initial number Mi of consecutive bound motors, the first one defining
the position of the very tip of the tube, so that the initial length of the tube N
is N = Mi. Then, the rate matrix is calculated, and the array al is obtained
from the system configuration and the rates. The value of the global transition
rate kg is calculated for the initial configuration. Then, the following steps are
repeated until a maximal time tmax:

• (step 1) Determine the stochastic time ∆t at which the next transition oc-
curs, the site i at which the transition takes place and the actual transition
j.

• (step 2) The transition is performed if allowed by excluded volume inter-
actions and the time t is updated to t + ∆t.

• (step 3) The transition rates ki,j are then updated with the new configu-
ration.

• (step 4) The array aj is updated with the new configuration and value for
the rates.

• (step 5) The global transition rate kg is updated.

• (step 6) Go back to step 1.

This part of the algorithm determines the transitions of the motors, given the
rate matrix and a particular configuration, but does not specify the dynamics of
tube growth. The dynamics of the tube is specified by the rates of the motors
(and their force dependence), and by a set of special rules for the growth events,
which are defined in the main text.
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