
Quantifying cyclicity
In order to objectively analyze cell-cycle regulated gene expression, a numerical cyclicity score can be con-

structed for the expression profile of each gene. Suppose that the data have already been preprocessed and
normalized, and let Z1, . . . , Zm denote the expression levels across the m time points for a given gene under con-
sideration. Also suppose that the culture is sampled evenly at interval ∆ minutes and has a nominal interdivision
time of τ minutes. We describe two methods that have been used in several studies to identify cyclically-expressed
genes. (In one published study [52] results of the two methods were combined).

Fourier approach
For given values of µ (baseline), α (amplitude), and phase (φ), the following sine wave can be constructed

fk(µ, α, φ) = µ + α sin(2π∆k/τ + φ),

and the fit F (µ, α, φ) =
∑

k(Zk − fk)2 to the experimental data can be determined. For each gene, optimal
values µ∗, α∗, and φ∗ can be numerically determined such that F (µ∗, α∗, φ∗) gives the smallest possible value
for F . Then the “fitted waveform” Ẑk = fk(µ∗, α∗, φ∗) can be calculated, and writing Rk = Zk − Ẑk yields
the decomposition Zk = Ẑk + Rk, where Ẑk is perfectly cyclic and Rk is perfectly non-cyclic. This leads to the
variance decomposition var(Z) = var(Ẑ) + var(R), where var(X) =

∑
(Xi − X̄)2/n is the statistical variance.

Since all three variances must be non-negative, smaller values of var(R) relative to var(Z) imply greater cyclicity
in Z. This suggests using the variance ratio var(Ẑ)/var(Z) (known as PVE or “proportion of variance explained”
[by a sine wave]) as a numerical measure of cyclicity.

The PVE falls between zero and one, and values closer to one indicate greater cyclicity. The following figure
shows two examples of yeast expression data at two PVE levels, where the experimental data Z (red) and the
fitted sine wave Ẑ (green) are superimposed.
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Correlation approach
To identify cyclic gene expression using correlation, a set of genes agreed upon as cell-cycle regulated is

identified, and the genes peaking in a given cell cycle phase are averaged. Correlation coefficients are then
computed between the average expression profile for genes peaking in each cell cycle phase, and the expression
levels of the gene under consideration. The largest among these correlation coefficients is used to quantify the
cyclicity of the gene under consideration.



Scaling and magnitude of expression
It is important to note that Fourier PVE and correlation do not take account of the magnitude of change in

gene expression, but rather are normalized to the total variation of expression in a given gene. Put a different way,
the expression levels Zi may be scaled by any nonzero constant without changing the results of either analysis.
Thus a gene that varies by 50% relative to its mean level and a gene that varies by 500% relative to its mean level
will have the same cyclicity score as long as they exhibit the same pattern of internal cyclicity relative to their
mean levels. More generally, the amplitude of variation and the PVE are not coupled. For instance, in the above
plots, the gene on the left has greater PVE (more perfect fit to a sine wave) but lower amplitude of cyclicity
compared to the gene on the right. The opposite relationship can occur as well.

As an alternative to the PVE, the unnormalized variance var(Ẑ) is used to form the composite cyclicity score
for the yeast analysis [52]. This measure gives cyclic genes with greater amplitude higher scores than equally
cyclic genes with lower amplitude. However this is not a perfect solution to the scaling problem, since writing
var(Ẑ) = PVE · var(Z) reveals that a highly variable gene can receive a high cyclicity score even if it is only
slightly cyclic. Rather than forming the product or some other composite of PVE and variance, we recommend
considering PVE and variance as distinct factors characterizing the level of cyclic variation in a gene. Both values
must be high in order for a gene to be cyclically expressed in a biologically meaningful way.

Specification of the nominal doubling time
The Fourier approach requires the specification of a numerical value for the nominal doubling time τ . There

are examples of disagreement in the literature about how these values are specified. Aach and Church [1] propose
alternate doubling times for the yeast data [52], and it is possible that the doubling time for human fibroblasts
[9] may be too short. A related issue is that the results of the Fourier analysis may not be stable when calculated
for a single value of τ , so the yeast data Fourier analysis was carried out for a range of values of τ and the results
were averaged [52].

The use of a sine-wave as the ideal waveform
The use of the sine wave as the ideal waveform for assessing cyclicity can be criticized in that it does not

arise from fundamental biological considerations. In fact, truly cyclic gene expression is not expected to exhibit
sine-like fluctuations (i.e., fluctuations that are symmetric above and below the mean value) since there is a floor
of zero in the measurements. A logarithmic transform produces much more symmetrical cycles. A measure of
robustness is provided by the fact that the Fourier PVE will be high for cyclic patterns that are not sinusoidal.
For example, the “boxcar” function which is 1 when the sine-wave is positive and −1 when it is negative has PVE
0.83. A sine-wave raised to the fifth power, which has much more localized peaks than an ordinary sine-wave,
has PVE 0.79.

Statistical Analysis
The assessment of statistical significance in a microarray experiment is complicated by the fact that large

numbers of genes are measured. For example, while a PVE of 0.7 would be considered highly significant in an
assay of a single gene, if 5000 genes are assayed at 12 time points, 22 genes would be expected to have cyclicity
scores exceeding 0.7 even if all expression levels are completely random.

Randomization analysis
A standard technique for assessing whether the level of cyclicity in an experiment is greater than expected

by chance is to produce an artificial data set in which all cyclicity arises as an artifact of the noise, and then
compare the level of measured cyclicity in the artificial data set to the level of measured cyclicity in the actual data
set. The artificial data set can be constructed by permuting or resampling the observed values, or by simulating
independent values from a distribution such as the normal distribution.

Let Sp be the pth quantile of the cyclicity scores for the artificial data set (so that fraction p of the cyclicity
scores are less than or equal to Sp and fraction 1 − p of the cyclicity scores are greater than Sp), and let Tp be
the corresponding quantile for the actual data. It is common to state the ratio Sp/Tp or the ratio Sp/(Sp + Tp)
as the “false positive rate”. If Tp is larger than Sp for p close to 1, then the observed cyclicities are stronger than
expected by chance. This can be visualized by forming a scatterplot of Sp against Tp, and noting whether the



upper tail falls below the 45◦ diagonal. Such a quantile-quantile plot is called a QQ plot and there are published
examples of this type of analysis [42,49,50].

In a more sophisticated analysis, multiple artificial data sets can be constructed so that error bars can be
placed around the Sp values. In fact, the upper quantiles of the artificial cyclicity scores are quite variable, so it
is important to repeat the simulation several times and take the mean quantile as Sp.

While widely used, it should be noted that there are several limitations to this approach to statistical inference.
One limitation is that the artificial data set is constructed independently across the genes, while in truth there
are significant correlations. If these correlations tend to be positive, randomization methods may overstate the
significance level. Similarly, for each gene the artificial data set is constructed independently across the time
points. In fact, due to the slowly varying nature of the cell culture (even for non-cell-cycle genes), there are
significant serial correlations in the expression levels of a given gene over time. These autocorrelations may be
positive or negative, depending on the sampling interval, ∆. Thus a consequence of correlation across genes and
across time points may be to impute significance to data in which the cycles are actually due to experimental
noise and non-cell-cycle related biological variation.

Influence of sampling interval on statistical significance
It is important to note that the number of samples per cycle ∆/τ has an important influence on statistical

significance, with greater values of ∆/τ giving greater significance for a given PVE. For example, the probability
of observing PVE = .5 by chance when 12 time points are measured has order 10−2, while when 24 time points
are measured the same probability has order 10−4.

Cut points and threshold values
The cyclicity measures described here are found to vary continuously over their range in experimental data.

That is, there is no sharp cut-off such that some proportion of genes fall distinctly above the cutoff while the
remainder fall below the cutoff. In practice it is possible to select a threshold that incorporates most known
positives while excluding as many negatives as possible, but it has always been found that a few known positives
are so far down the list that lowering the threshold to include them would also include many genes that are highly
unlikely to be cell-cycle regulated. Alternatively, it is possible to appeal to statistical principles such as the “false
discovery rate” (FDR) to define a cutoff. For most applications, however, it is not crucial to specify a precise
value such that only genes with cyclicity exceeding the value are said to be cyclic.


