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Abstract

Attempts to identify causal interactions in multi-variable biological time series

(e.g., gene data, protein data, physiological data) can be undermined by the confound-

ing influence of environmental (exogenous) inputs. Compounding this problem, we

are commonly only able to record a subset of all related variables in a system. These

recorded variables are likely to be influenced by unrecorded (latent) variables. To ad-

dress this problem, we introduce a novel variant of a widely used statistical measure of

causality - Granger causality - that is inspired by the definition of partial correlation.

Our ‘partial Granger causality’ measure is extensively tested with toy models, both

linear and nonlinear, and is applied to experimental data: in vivo multi-electrode array

(MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep.

Our results demonstrate that partial Granger causality can reveal the underlying inter-

actions among elements in a network in the presence of exogenous inputs and latent

variables in many cases where the existing conditional Granger causality fails.

1 Introduction

Methods for identifying intrinsic relationships among elements in a network are increas-

ingly in demand in today’s data-rich research areas such as biology and economics. In

particular, advances in experimental and computational techniques are revolutionizing the

field of neuroscience. On one hand novel experimental techniques such as high-density

multi-electrode arrays (MEAs) have made routine the acquisition of massive amounts of

empirical data. On the other, new computational techniques are increasingly in demand for

interpreting this data and for generating hypotheses.
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A question of great interest with respect to network interactions is whether there exist

causal relations among a set of measured variables (Baker et al., 2006; Datta et al., 1997;

Fairhall et al., 2006; Feng et al., 2005; Gourevitch et al., 2007; Jacobi et al., 2007; Miller et

al., 2007; Oswald et al., 2007; Seth, in press). Over the last few decades several techniques

such as Bayesian networks (Friedman et al., 2000) and Granger causality (Baccalá et al.,

1998; Gourevitch et al., 2006; Granger, 1969; Granger, 1982) have been developed to

identify causal relationships in dynamic systems. Wiener (Wiener, 1965) proposed a way

to measure the causal influence of one time series on another by conceiving the notion

that the prediction of one time series could be improved by incorporating knowledge of

the other. Granger (Granger, 1969) formalized this notion in the context of linear vector

autoregression (VAR) model of stochastic processes. Specifically, given two time series,

if the variance of the prediction error for the second time series is reduced by including

past measurements of the first time series in the linear regression model, then the first time

series can be said to cause the second time series. From this definition it is clear that the

flow of time plays a vital role in the inference of directed interactions from time series data

and as such many applications of Granger causality remain in the time domain. Granger’s

conception of causality has received a great deal of attention and has been applied widely

in the econometrics literature and more recently in the biological literature (Baccalá et al.,

1998; Gourevitch et al., 2006; Granger, 1969; Granger, 1982). The formalism for bivariate

Granger causality is described in Appendix I (section 6.1).

The basic Granger causality described in Appendix I (6.1) is applicable only to bivariate

time series. In multivariable (more than two) situations, one time series can be connected

to another time series in a direct or an indirect manner, raising the important question of
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whether there exists a (direct) causal influence between two time series when the influence

of other time series are taken into account. In this case, repeated bivariate analysis can

be misleading. For example, one time series may falsely appear to cause another if they

are both influenced by a third time series but with different delays. To address this issue,

Geweke introduced conditional Granger causality (Geweke, 1984), as recently reviewed

in (Chen et al., 2006; Ding et al., 2006). Conditional Granger causality is based on a

straightforward expansion of the autoregressive model to a multivariate case including all

measured variables. In this case, one variable causes a second variable if the prediction

error variance of the first is reduced after including the second variable in the model, with

all other variables included in both cases. The formalism for conditional Granger causality

is given in Appendix I (6.2).

Critically, the ability of conditional Granger causality to deal with indirect interactions

depends on being able to measure all relevant variables in a system. Often, this is not

possible, and both environmental (exogenous) inputs and unmeasured latent variables can

confound accurate causal influences. For example, in our experimental data recorded from

the inferotemporal (IT) cortex of sheep, every measured neuron receives common exoge-

nous inputs from the visual cortex and feedback from the prefrontal cortex. Moreover,

even with advanced MEA techniques, we are only able to record a tiny subset of interact-

ing neurons in a single area and there are bound to be latent variables. Hence controlling for

exogenous inputs and latent variables is a critical issue when applying Granger causality

to experimental data. In this article, inspired by the definition of the partial correlation in

statistics, we introduce a novel definition of partial Granger causality to confront exactly

this problem.
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The paper is organized as follows. First, we introduce the partial Granger causality

and discuss in theoretical terms its advantages over conditional Granger causality. Both

Granger causalities are then extensively tested in linear, nonlinear models with and without

exogenous inputs and latent variables. We find that when the exogenous input is absent

or small, both conditional and partial Granger causality can correctly infer the underlying

causal relationships. However, when the exogenous input is sufficiently strong enough, or

when the data contains both exogenous inputs and latent variables, the conditional Granger

causality fails to pick up the correct causal relationship while the partial Granger causality

remains robust. Finally, we apply both Granger causality measures to local field potential

(LFP) recordings from the inferotemporal cortex of sheep.

2 Partial Granger causality

2.1 Linear partial Granger causality

2.1.1 Model

Both bivariate and conditional Granger causality have been extensively discussed in the

neuroscience literature and elsewhere (e.g., Gourevitch et al., 2007). We provide the for-

malisms for these measures in Appendix I and proceed directly to the formulation of partial

Granger causality.

For three time series Xt, Yt and Zt, define −→yt = (Xt, Yt, Zt), where Xt, Yt and Zt with

k, l and m dimensions, respectively. A general form of an autoregressive model with zero

mean and exogenous variable
−→
εEt has the following vector autoregressive representation
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with the use of the lag operator L:

B(L)−→y t =
−→
εEt +−→εt (1)

where B is a polynomial matrix ofL, B(0) = In, the n×n identity matrix. The two random

vectors
−→
εE and−→ε are independent. The exogenous variable

−→
εE represents the environmental

drive and is typically present in any experimental setup. For example, all neurons in the

inferotemporal cortex receive inputs from visual cortex. Not that each element of the vector

−→
εEt could be different.

As already mentioned, the confounding influence of latent variables is possibly even

more disruptive than that due to exogenous inputs. To incorporate latent variables, assume

that the i’th network element receives unmeasured inputs of the form
∑N

j=1 xij(t)/N (see

Fig. 1 (A)), where each xij is a stationary time series and j is the latent index.

According to the Wold representation, any stationary variable ξ(t) can be expressed as

the summation of the form
∑

k ψkε(t− k), and we have

xij(t) =
∑
k=1

ψij,kε
L
ij(t− k).

Therefore ∑N
j=1 xij(t)/N =

∑N
j=1

∑
k=1 ψij,kε

L
ij(t− k)/N

=
∑

k=1 ψ̄i,kε
L
i (t− k)

where ψ. are constants. In words, each network element receives a latent input which

depends on the history So the model Eq. (1) becomes

B(L)−→yt =
−→
εEt +−→εt + B(1)(L)

−→
εLt (2)

where the random vectors (
−→
εEt ,

−→
εLt ) and −→εt are independent and B(1)(L) is another polyno-

mial matrix of L of appropriate size.
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To illustrate how to eliminate the influences of exogenous inputs and latent variables

let us first consider an example. Suppose we have three independent variables X , Y and Z

with variance x2, y2 and z2 respectively. Another three variables ξ, η and ζ are functions of

X ,Y and Z and are defined by 
ξ = X + Z

η = Y + Z

ζ = Z

(3)

Here Z represents an exogenous input to ξ and η. If we eliminate the influence of Z, ξ and

η should be uncorrelated. The covariance matrix of ξ, η and ζ can be expressed as

Ω =


x2 + z2 z2 z2

z2 y2 + z2 z2

z2 z2 z2

.


If we consider

cov(ξ, η)− cov(ξ, ζ)cov(ζ, ζ)−1cov(ζ, η)

we see that the expression above equals zero as one would expect. Actually this is exactly

the partial correlation defined in statistics. This simple example above leads us to the

following definition of partial Granger causality.

Consider two time series Xt and Zt which admit a joint autoregressive representation

of the form 
Xt =

∞∑
i=1

a1iXt−i +
∞∑
i=1

c1iZt−i +−→ε1t +
−→
εE1t +

−−−−−→
B1(L)εL1t

Zt =
∞∑
i=1

b1iZt−i +
∞∑
i=1

d1iXt−i +−→ε2t +
−→
εE2t +

−−−−−→
B2(L)εL2t

(4)

For simplicity of notation, let us define

ui(t) = −→εit +
−→
εEit +

−−−−−→
Bi(L)εLit
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i = 1, 2. The noise covariance matrix for the model can be represented as

S =

 var(u1t) cov(u1t, u2t)

cov(u2t, u1t) var(u2t)


Extending this concept, the vector autoregressive representation for a system involving

three variables Xt, Yt and Zt can be written as follows:

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

b2iYt−i +
∞∑
i=1

c2iZt−i +−→ε3t +
−→
εE3t +

−−−−−→
B3(L)εL3t

Yt =
∞∑
i=1

d2iXt−i +
∞∑
i=1

e2iYt−i +
∞∑
i=1

f2iZt−i +−→ε4t +
−→
εE4t +

−−−−−→
B4(L)εL4t

Zt =
∞∑
i=1

g2iXt−i +
∞∑
i=1

h2iYt−i +
∞∑
i=1

k2iZt−i +−→ε5t +
−→
εE5t +

−−−−−→
B5(L)εL5t

(5)

The noise covariance matrix for the model can be represented as

Σ =


var(u3t) cov(u3t, u4t) cov(u3t, u5t)

cov(u4t, u3t) var(u4t) cov(u4t, u5t)

cov(u5t, u3t) cov(u5t, u4t) var(u5t)


where

ui(t) = −→εit +
−→
εEit +

−−−−−→
Bi(L)εLit

i = 3, 4, 5.

In order to consider the influence from Y to X controlling for the effect of the exoge-

nous input, we partition the noise covariance matrix S in the following way

S =

 var(u1t) | cov(u1t, u2t)

cov(u2t, u1t) | var(u2t)

 =

 S11 | S12

S21 | S22

 (6)

Hence the variance of u1t by eliminating the influence of u2t is given by

R
(1)
XX|Z = cov(u1t, u1t)− cov(u1t, u2t)cov(u2t, u2t)

−1cov(u2t, u1t)

= S11 − S12S
−1
22 S21
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For the matrix Σ, by eliminating the second row and the second column, we can parti-

tion the remaining noise covariance matrix Σ1 in the following way

Σ1 =

 var(u3t) | cov(u3t, u5t)

cov(u5t, u3t) | var(u5t)

 =

 Σ11 | Σ12

Σ21 | Σ22

 (7)

We can define the variance of u3t by eliminating the influence of u5t similarly.

R
(2)
XX|Z = cov(u3t, u3t)− cov(u3t, u5t)cov(u5t, u5t)

−1cov(u5t, u3t)

= Σ11 − Σ12Σ
−1
22 Σ21

The value of R(1)
XX|Z measures the accuracy of the autoregressive prediction of X based

on its previous values conditioned on Z by eliminating the influence of the common ex-

ogenous input and latent variables, whereas the value of R(2)
XX|Z represents the accuracy of

predicting present value of X based on the previous history of both X and Y conditioned

on Z by eliminating the influence of the exogenous input and latent variables. According

to the causality definition of Granger, if the prediction of one process is improved by in-

corporating the information of the second process, then the second process causes the first

process. Similarly we can define this causal influence by

F1 = ln

(
|R(1)

XX|Z |

|R(2)
XX|Z |

)
= ln

(
|S11 − S12S

−1
22 S21|

|Σ11 − Σ12Σ
−1
22 Σ21|

)
(8)

We call F1 partial Granger causality.. For comparison, the standard conditional Granger

causality F2 is defined by

F2 = ln

(
|S44|
|Σxx|

)
. (9)

Note that the analogy between partial correlation and partial Granger causality is not

exact. Calculation of partial correlation requires knowing the variance of the common input

9



cov(ζ, ζ) (see Eq. (3)). However, this variance can only be known precisely if the common

input can be measured, which is not the case for exogenous inputs or latent variables.

The equivalent terms for partial Granger causality, cov(u2t, u2t) and cov(u5t, u5t) reflect

elements of both the unmeasured and measured variables.

In theory, we are only able to deal the model with common exogenous inputs and latent

variables (the coefficients are all identical). Otherwise, due to Wold representation, any

intrinsic variable such as Xt could be expressed as the summation of εt−k and treated as

an exogenous and a latent variable as well. However, in our numerical examples below,

we try with the model with different coefficients to test the robustness of our approach. As

clearly shown in the numerical experiments (Section 3) partial Granger causality performs

substantially better than the standard conditional Granger causality in most cases.

A theoretical discussion of the relationship between F1 and F2 is given in Appendix II.

The essential difference is that conditional Granger causality, the effect of latent and ex-

ogenous variables remains present both in the denominator term |Σxx| and in the numerator

term |S44|. By contrast, in our definition of partial Granger causality, we use the conditional

variance in both the denominator |Σxx−ΣxzΣ
−1
zz Σzx| and numerator |S44−S45S

−1
55 S54|. As

a result, the effects of the latent and exogenous variables are taken into account. Of particu-

lar interest is that the definition of the partial Granger causality has a transparent statistical

meaning since it depends on the well understood notation: the conditional variance.
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2.2 Nonlinear partial Granger causality

Our discussion so far has been based on linear VAR models, however neural systems are

known to be nonlinear. Recently, several attempts to extend the linear causality to nonlin-

ear causality have been proposed. In (Chen et al., 2004) local linear methods in reduced

neighborhoods are considered and the average causality index, over the whole data set, is

proposed as a nonlinear measure. In (Ancona et al.,2004 ) a radial basis function (RBF)

approach was used to model data. In (Marinazzo et al., 2006) a nonlinear parametric model

for Granger causality of time series was proposed. In this section, we use the method

proposed in (Marinazzo et al., 2006) and extend the linear partial Granger causality to non-

linear partial Granger causality.

Let X(t), Y(t) and Z(t) be three time series of k, l,m simultaneously measured quan-

tities, we assume that the time series are stationary. We use the same notation as in (Mari-

nazzo et al., 2006) and aim at quantifying how significant is the effect of Y on X when

conditioned on Z. Let us now consider the general nonlinear model
X(t) =

∑
j[w1j · Φj(X(t− j)) + w1j · Φj(Z(t− j))] + u1

Z(t) =
∑

j[w2j · Φj(X(t− j)) + w2j · Φj(Z(t− j))] + u2

(10)

where ui represents the error term including exogenous inputs and latent variables and wij

are the coefficients to be fitted. As in (Marinazzo et al., 2006), Φj can be selected as the

kernel function of X and Z and have the following expression:

Φj(X) = exp(−||X− X̄j||2/2σ2
X)

Φj(Z) = exp(−||Z− Z̄j||2/2σ2
Z)
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where X̄j, Z̄j are centers of X and Z, σ2
Xj
, σ2

Zj
are variance of X and Z. The parameters

{w} must be fixed to minimize the prediction error. The covariance matrix of prediction

error in eq. (10) can be expressed as

S =

 var(u1t) | cov(u1t, u2t)

cov(u2t, u1t) | var(u2t)

 =

 S11 | S12

S21 | S22


A joint autoregressive representation has the following expression:
X(t) =

∑
j[w3j · Φj(X(t− j)) + w3j · Φj(Y(t− j)) + w3j · Φj(Z(t− j))] + u3

Y(t) =
∑

j[w4j · Φj(X(t− j)) + w4j · Φj(Y(t− j)) + w4j · Φj(Z(t− j))] + u4

Z(t) =
∑

j[w5j · Φj(X(t− j)) + w5j · Φj(Y(t− j)) + w5j · Φj(Z(t− j))] + u5

(11)

Where Φj is the kernel function of Y. The covariance matrix of prediction error of the first

and the third equations in eq. (11) can be expressed as

Σ1 =

 var(u3t) | cov(u3t, u5t)

cov(u5t, u3t) | var(u5t)

 =

 Σ11 | Σ12

Σ21 | Σ22


Similarly, we can define

F1 = ln

(
|S11 − S12S

−1
22 S21|

|Σ11 − Σ12Σ
−1
22 Σ21|

)
as the nonlinear partial Granger causality which has the same properties as linear partial

Granger causality.

As in the case of linear VAR modelling, to fit but not over-fit the data with a nonlinear

VAR kernel model is a challenging problem. Not surprisingly, there exists a large literature

devoted to model order selection. Example methods include information criteria such as

the Akaike criterion (AIC), or dividing the data set into training and generalization data

sets (the so-called kennel methods). In our numerical experiments we use the AIC method

(see section 3.2); for further discussion see (Bishop 1998).
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3 Numerical examples

3.1 Linear model with various exogenous inputs and latent variables

To illustrate and compare the difference between conditional Granger causality (Appendix

I) and the partial Granger causality introduced here, we first consider toy models with vari-

ous exogenous inputs and latent variables. The first toy model we use has been extensively

applied (e.g., Ding et al.,2006; Baccalá et al., 2001) in tests of Granger causality. Here we

modify this model by adding a common exogenous input and latent variable to each time

series. In all figures below, a causal connection illustrated as part of the network if and

only if the lower bound of the 95% confidence interval of the (partial, conditional) Granger

causality is greater than zero.

Example 1 Suppose that 5 simultaneously generated time series were generated by the

equations:

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t) + a1ε6(t)

+b1ε7(t− 1) + c1ε7(t− 2)

x2(t) = 0.5x1(t− 2) + ε2(t) + a2ε6(t) + b2ε7(t− 1) + c2ε7(t− 2)

x3(t) = −0.4x1(t− 3) + ε3(t) + a3ε6(t) + b3ε7(t− 1) + c3ε7(t− 2)

x4(t) = −0.5x1(t− 2) + 0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε4(t)

+a4ε6(t) + b4ε7(t− 1) + c4ε7(t− 2)

x5(t) = −0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε5(t) + a5ε6(t)

+b5ε7(t− 1) + c5ε7(t− 2)

where εi(t), i = 1, 2, · · · , 7 are zero-mean uncorrelated process, and their variances are
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0.8, 0.6, 1, 1.2, 1, 0.9, 1 respectively. ai, bi, ci, i = 1, · · · , 5 are parameters, aiε6 is then the

exogenous input. biε7(t− 1) + ciε7(t− 2) are treated as the latent variables to each entity.

As discussed in Eq. (2), the coefficients ai, bi, ci depend on i.

Inspection of the above equations reveals that x1(t) is a direct source to x2(t), x3(t),

that x4(t), x4(t) and x5(t) share a feedback loop and that there is no direct connection

between x1(t) and x5(t). Fig. 1 (B) (left) is an example of the 2000 time-steps of the data.

The network structure is depicted in Fig. 1 (B) (right). A direct check of the companion

matrix tells us that the time series is stationary.

Fig. 1 around here

Firstly, we analyze a simple case. We set bi = 0, ci = 0, i = 1, · · · , 5 which means no

latent variables are present. We also suppose that all parameters ai, i = 1, · · · , 5 are iden-

tical (later we will relax this assumption). In order to analyze the impact of the common

exogenous input on the causality, we compute the partial Granger causality F1 and con-

ditional Granger causality F2 in three conditions with ai equal to 0, 1 and 5 respectively.

When ai = 0, i = 1, · · · , 5, the common exogenous input is absent. The greater the value

of ai, the greater is the influence of the common exogenous input on the time series. F1

and F2 for all edges are calculated.

We use the bootstrap approach to construct confidence intervals. Specifically, we simu-

late the fitted VAR model to generate a data set of 2000 realizations of 2000 time points. In

Fig. 2, the histogram of F1 and F2 is plotted when ai = 0, bi = 0, ci = 0, i = 1, · · · , 5. It is

interesting to see that F2 is always nonnegative, but F1 can be negative due to the additional

term in its definition. In all our examples, we use 3σ as the confidence interval.

In Fig. 3, the causality values calculated in terms of F1 and F2 are shown for different
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parameters ai, i = 1, · · · , 5. The left panels show the magnitudes and confidence inter-

vals of all edges of F1 and F2. Blue solid lines represent the value of F1 and red dotted

lines represent the value of F2. The right panels are the inferred structures of the network

corresponding to different ai. The results show that when ai, i = 1, · · · , 5 are small (see

(A)), both conditional Granger causality and partial Granger causality can correctly infer

the network structure. However, when ai, i = 1, · · · , 5 are sufficiently large (see (B)), the

magnitude of F2 is very small, falsely implying the absence of any inter-element relation-

ship, which is consistent with the preceding theoretical analysis.

Fig. 2 around here

Fig. 3 around here

As mentioned before, it is almost always the case that in a complex biological network

only a small subset of interacting variables will be measured. These variables will be

influenced by many latent variables and the confounding influence of latent variables can

be more disruptive than that due to exogenous input. In the previous examples, the number

of links inferred according to F2 is always less than F1: no false positive interactions are

introduced by using F2. With the introduction of latent variables, we will see that this is

not always the case.

In example 1, we assume ai ∼ U [0, 1], i = 1, · · · , 5 are random variables with the

uniform distribution in [0, 1] and set bi and ci to different values (but equal for all i). In this

case, the exogenous inputs have in general different magnitudes for different time series,

and latent variables are present. The results presented in Fig. 4 clearly demonstrate that F1

is superior to F2 in revealing the underlying network interactions. It is clear that when the

influence of latent variables is significant, F1 remain robust while F2 is unable to identify
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the correct underlying relationships.

Fig. 4 around here

In Fig. 5, we relax the assumption that bi, i = 1, · · · , 5 are the same. We now allow

them to impose different influences for different time series and we recalculate F1 and F2

and their confidence interval. The figure shows that even in this case, the correct causal

relationship is recovered when using F1. However, the causal relationships inferred by

F2 now include several false positives and is substantially incorrect. These numerical re-

sults further confirm that partial Granger causality performs better than conditional Granger

causality in the presence of exogenous inputs and latent variables. The results are also con-

sistent with the theoretical explanation of the relationship between F1 and F2 as presented

in Appendix II.

Fig. 5 around here

3.2 Nonlinear model with various exogenous inputs and latent vari-

ables

Next we turn our attention to nonlinear models.

Example 2: We modify the model in example 1 to a series of nonlinear equations as

16



follows:

x1(t) = 0.125
√

2 exp

(
−x1(t− 1)2

2

)
+ ε1(t) + a1ε6(t) + bε7(t− 1) + bε7(t− 2)

x2(t) = 1.2 exp

(
−x1(t− 1)2

2

)
+ ε2(t) + a2ε6(t) + bε7(t− 1) + bε7(t− 2)

x3(t) = −1.05 exp

(
−x1(t− 1)2

2

)
+ ε3(t) + a3ε6(t) + bε7(t− 1) + bε7(t− 2)

x4(t) = −1.15 exp

(
−x1(t− 1)2

2

)
+ 0.2

√
2 exp

(
−x4(t− 1)2

2

)
+1.35 exp

(
−x5(t− 1)2

2

)
+ ε4(t) + a4ε6(t) + bε7(t− 1) + bε7(t− 2)

x5(t) = −0.5
√

2 exp

(
−x4(t− 1)2

2

)
+ 0.25

√
2 exp

(
−x5(t− 1)2

2

)
+ε5(t) + a5ε6(t) + bε7(t− 1) + bε7(t− 2)

Fig. 6 around here

We use these equations to generate time series of length 2000. An example of the

generated time series is shown in Fig. 6 (A). The underlying causal relationships are the

same as in Example 1. The mean and variance of each time series is chosen as the center

and variance in the kernel function (see Section 2.2). The Granger causality values of F1

and F2 and corresponding causal network structures are shown in Fig. 6 (B) and (C). It is

clear that when there are exogenous inputs and latent variables in the nonlinear time series,

the nonlinear partial Granger causality can reveal the correct underlying relationship while

the conditional Granger causality fails to do so, as in the linear case.

Note that we chose the equations in Example 2 to generate nonlinear dynamics of

a form well suited to the exponential functions used as kernels in the general nonlinear

model (equation 9). Importantly, the general model is not limited to this case and can fit

arbitrary nonlinear dynamics given appropriate methods for kernel selection (Marinazzo

et al., 2006). Here we omit this step because our aim is only to demonstrate that the par-
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tial Granger causality does not depend on linear modelling, and is not to discuss nonlinear

autoregressive modelling per se.

4 Application to example experimental data

Our final example application is to LFP data collected from sheep inferotemporal cortex.

This data was collected using 64-channel MEAs implanted into in each cortical hemisphere.

Individual electrodes were fabricated from tungsten wires (125µ diam.) sharpened to a <

1µ tip and insulated with epoxylite. LFPs were sampled at 2000 Hz for 10 seconds per trial.

The sheep were trained to perform an operant discrimination task in which different pairs

of sheep faces were presented and a correct panel-press response elicited a food reward.

Previous analyses of this data can be found elsewhere (Horton et al., 2006; Wu et al.,

2007).

Numerical limitations prevent fitting 64-variable multivariate regression models given

our data. Therefore, we select only five channels by way of illustration. Clearly, our chosen

data exemplifies the issues confronted by our theoretical approach. The data is influenced

both by substantial exogenous input (see below) and by a large set of latent variables (due

to unrecorded inputs and the fact that we only choose five channels). We note that the links

revealed in our approach can be considered ’functional’ interactions between five channels,

as in the fMRI literature (Kim et al., 2007).

For the selected five channels (x1(t), x2(t), · · · , x5(t)), we have the following correla-
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tion matrix: 

1 0.9980 0.0702 0.1696 0.0678

0.9980 1 0.0713 0.1693 0.0603

0.0702 0.0713 1 0.9545 0.2751

0.1696 0.1693 0.9545 1 0.2828

0.0678 0.0603 0.2751 0.2828 1


(12)

In order to compare F1 and F2 we generate additional data sets in which a common

input σε(t) is added to each channel, i.e. the signals are y1(t) = x1(t)+σε(t), · · · , y5(t) =

x5(t)+σε(t). For example, when the exogenous input variance is σ = 0.01, the correlation

matrix becomes 

1 0.9999 0.9225 0.9338 0.9657

0.9999 1 0.9231 0.9453 0.9396

0.9225 0.9231 1 0.9939 0.9323

0.9338 0.9453 0.9939 1 0.9293

0.9657 0.9396 0.9323 0.9293 1


(13)

We then estimate both partial Granger causality and conditional Granger causality for

these matrices for different σ = 0.01. Because the underlying data generating process is not

known, we must also estimate the optimal model order (number of time-lags to include in

the model). Following standard practice, the optimal model order p is determined according

to the Akaike Information Criterion (AIC): AIC(p) = N log(det(Σ)) + 2L2p, where Σ is

the estimated prediction error covariance matrix with a p-th order model, N is the length of

data points and L(L = 5) is the number of variables. The optimal model order corresponds

to the minimum AIC which in this case is p = 10. The following results use this model
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order. To verify robustness we have also used p = 10, 11, · · · , 20, the inferred causal

relationships are the same in all cases.

With σ = 0 (i.e., without any artificially induced exogenous input), Fig. 7(A) shows

that F1 and F2 identify different network structures. Apparently, F2 suggests additional

causal connections such as 2 → 3 and 5 → 1. Based on the numerical analyses above,

these additional links are suggestive of the influence of latent variables (Example 1 in the

previous section, see Fig. 5). Also, some identified by F1 are not identified by F2; for

example 2 → 5 and 5 → 2. This is suggestive of the influence of exogenous inputs

(Example 1 in the previous section).

Although our theoretical analysis gives reason to believe that partial Granger causality

is likely to be more accurate than conditional Granger causality in inferring causal rela-

tionships, this is difficult to establish with certainty in this case because we do not know

the underlying data generating process (the neural mechanism). However, the two mea-

sures can be further compared by their performance when σ is changed, i.e., when artificial

exogeneity is introduced. If partial Granger causality is more accurate than conditional

Granger causality we would expect it to be robust to these disruptions.

Fig. 7(B,C shows the causal network structures inferred by F1 and F2 when σ is

increased to 0.005 and to 0.01. The structure obtained by F1 is always robust, but it changes

with σ for F2: when σ = 0.005, latent links (2 → 3 and 5 → 1 ) still exist, see Fig. 7(B

), but some links such as 3 → 4 and 5 → 4 are broken. When σ = 0.01, Fig. 7 (C ) the

only connections identified by F2 are not identified by F1 2 → 3 and 5 → 1), suggesting

the influence of latent inputs. In general, the obtained results are similar to the examples in

the previous section: F1 is robust, but F2 is not when there are exogenous inputs and latent
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variables.

Fig. 7 around here

5 Discussion

The myriad network structures that comprise the central nervous system are among the

most complex objects in nature. Moreover, even with limited experimental access we com-

monly face the problem of having too much data rather than not enough. The rapid devel-

opment of novel experimental methods will further exacerbate this problem. New statistical

and computational methods are therefore required in order to make sense of this data and

by doing so to generate an improved understanding of central nervous system structure and

function.

Many neurophysiological methods involve simultaneous recording of time series data

from many elements. A key question in this context is how to reveal reliably the interactions

among these elements? Over the last decade, Granger causality has become established as

a useful method for addressing this question. Applications of Granger causality to physi-

ological data such as spike trains, local field potential, fMRI BOLD signals, and the like,

have been very successful and increasingly common. However, as we emphasized, pre-

vious applications of Granger causality to biological data may have generated misleading

causal network structures due to the influence of exogenous inputs and latent variables. In

this paper we have confronted this important problem by introducing a new definition of

Granger causality, partial Granger causality, which is robust against various perturbations

due to these common inputs.
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Our partial Granger causality is inspired by the definition of partial correlation but the

analogy is not exact. Partial correlation is able to fully eliminate the influence of additional

variables on the measured correlation, but only because the variances of these additional

variables are known. Partial Granger causality faces the problem that these variances are

not known and must be estimated from combinations of the measured variables (if these

variances could be measured directly then standard conditional Granger causality could be

used). For this reason, partial Granger causality cannot eliminate the influence of exoge-

nous inputs and latent variables in all cases. Full elimination is only possible if all common

inputs have equal influence on all measured variables. However, our theoretical analysis

and numerical results together show that in a wide variety of cases, partial Granger causal-

ity significantly outperforms conditional Granger causality. Importantly these include cases

in which exogenous inputs (Figure 4) and latent inputs (Figure 5) have differing influences

on the measured variables. These findings support the notion that partial Granger causality

is of substantial practical value for attempts to identify causal networks from time series

data.

In this paper we have only considered Granger causality in time domains. Geweke

(Geweke, 1982) expanded on Granger’s definition by providing a spectral decomposition of

the VAR process (Geweke, 1982). This decomposition leads to a set of causality measures

which have a frequency-dependent representation and are therefore of particular relevance

to neurobiological data (Wu et al., 2007). Future work will explore a spectral version

of the present partial Granger measure. In the time domain, after fitting the data with a

VAR model, whether there is a causal relationship between X and Y could be statistically

assessed via their coefficients. Of course, the advantage of Granger causality over the
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simple approach mentioned above is that we also have a quantitative measurement.

Finally, another popular approach for inferring causality among network elements is the

Bayesian approach. Another difference between the Bayesian approach and the Granger

approach is that Bayesian approaches are not able easily to incorporate feedback interac-

tions, which is certainly limiting in the case of physiological data (see for example Pearl,

1998).
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6 Appendix I: Granger causality

6.1 Pairwise Granger causality

Consider two time series Xt and Yt. Assume that they are jointly stationary. Individually,

under fairly general conditions, each process admits an autoregressive representation
Xt =

∞∑
i=1

a1iXt−i + ε1t

Yt =
∞∑
i=1

b1iYt−i + ε2t

(14)

A joint autoregressive representation having information of past measurements of both

processes Xt and Yt can be written as
Xt =

∞∑
i=1

a2iXt−i +
∞∑
i=1

c2iYt−i + ε3t

Yt =
∞∑
i=1

b2iYt−i +
∞∑
i=1

d2iXt−i + ε4t

(15)

where εit, i = 1, 2, 3, 4 are the prediction error, which are uncorrelated over time. The

value of var(ε1t) measures the accuracy of the autoregressive prediction of X based on its

previous values, whereas the value of var(ε3t) represents the accuracy of predicting present

value ofX based on previous values of bothX and Y . According to the causality definition

of Granger, if the prediction of one process is improved by incorporating past information

of the second process, then the second process causes the first process. In other words,

if the variance of prediction error for the first process is reduced by the inclusion of past

histories of the second process then a causal relation from the second process to the first

process exists. We quantify this causal influence by

FY→X = ln(var(ε1t)/var(ε3t)) (16)
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It is clear that FY→X = 0 when there is no causal influence from Y to X and FY→X > 0

when there is. Similarly, one can define causal influence from X to Y as

FX→Y = ln(var(ε2t)/var(ε4t)) (17)

If FX→Y = 0 then there is no causal influence from X to Y otherwise FX→Y > 0 when

there is.

6.2 Conditional Granger causality

In real situations, we often face data from multi (more than two) variable time series. A

simple approach to such situations is to decompose the multivariable dataset into a series

of pairwise analyses, treating each as in the previous section. This approach has some

inherent limitations, as amply discussed in the literature (Ding et al., 2006). For example,

a pairwise analysis would indicate a causal influence from a process that receives an early

input to a process that receives a late input.

To deal properly with the general multivariable case, Geweke (Geweke, 1984) intro-

duced condition Granger causality. This method has the ability to resolve whether the

interaction between two time series is direct or is mediated by another recorded time series

and whether the causal influence is simply due to different time delays in their respective

driving input. Consider two time series Xt and Zt. The joint autoregressive representation

for Xt and Zt can be written as
Xt =

∞∑
i=1

a1iXt−i +
∞∑
i=1

c1iZt−i + ε1t

Zt =
∞∑
i=1

b1iZt−i +
∞∑
i=1

d1iXt−i + ε2t

(18)
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The noise covariance matrix for the system can be represented as

S =

 var(ε1t) cov(ε1t, ε2t)

cov(ε2t, ε1t) var(ε2t)


where var and cov represent variance and co-variance respectively. Extending this repre-

sentation, the vector autoregressive representation for a system involving three time series

Xt, Yt and Zt can be written in the following way.

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

b2iYt−i +
∞∑
i=1

c2iZt−i + ε3t

Yt =
∞∑
i=1

d2iXt−i +
∞∑
i=1

e2iYt−i +
∞∑
i=1

f2iZt−i + ε4t

Zt =
∞∑
i=1

g2iXt−i +
∞∑
i=1

h2iYt−i +
∞∑
i=1

k2iZt−i + ε5t

(19)

The noise covariance matrix for the above system can be represented as

Σ =


var(ε3t) cov(ε3t, ε4t) cov(ε3t, ε5t)

cov(ε4t, ε3t) var(ε4t) cov(ε4t, ε5t)

cov(ε5t, ε3t) cov(ε5t, ε4t) var(ε5t)


where εit, i = 1, · · · , 5 are the prediction error, which are uncorrelated over time. From

these two sets of equations we define the conditional Granger causality from Y to X con-

ditioned on Z to be

F2 = ln(|var(ε1t)|/|var(ε3t)|) (20)

When the causal influence from Y to X is entirely mediated by Z, the coefficient b2i in

eq. (19) is uniformly zero, and var(ε1t) = var(ε3t). Thus, we have F2 = 0, meaning

that no further improvement in the prediction of X can be expected by including past

measurements of Y conditioned Z. On the other hand, when there is still a direct influence

from Y toX , the inclusion of past measurements of Y in addition to that ofX and Z results

in better predictions of X , leading to var(ε1t) > var(ε3t), and F2 > 0.

29



7 Appendix II: Relationship between F1 and F2 and their

confidence intervals

Recall that F1 represents partial Granger causality and F2 represents conditional Granger

causality. We have

1. F1 is the extension of F2, i.e. when there are no common inputs or latent variables,

we have F1 = F2.

2. If Yt is independent of Xt conditioned on Zt, then

• F2 = 0

• F1 ≤ 0. Furthermore, if Yt is also independent of Zt, then F1 = 0, otherwise

F1 < 0.

3. When ai, i = 3, 4, 5 are sufficiently large and there are no latent variables we have

F2 → 0.

Proof: When there is no common noise and latent variables, by eq. (8) conclusion 1

follows. If Yt is independent of Xt conditioned on Zt, then in Eq. (5), all the coefficients

b2i = 0, S11 = Σ11, it is clear that F2 = 0.
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From Eq. (4) and Eq. (5), we get u1(t) = u3(t), u2t = u5t +
∞∑
i=1

h∗2iyt−i, then

S11 − S12S
−1
22 S21

= var(u3t)− cov(u3t, u5t +
∞∑
i=1

h∗2iyt−i)[var(u5t +
∞∑
i=1

h∗2iyt−k)]
−1

·cov(u5t +
∞∑
i=1

h∗2iyt−i, u3t)

= var(u3t)− cov(u3t, u5t)[var(u5t +
∞∑
i=1

h∗2iyt−i)]
−1 · cov(u5t, u3t)

= Σ11 − Σ12Σ
−1
22 Σ21 − cov(u3t, u5t)[var(

∞∑
i=1

h∗2iyt−i)]
−1cov(u5t, u3t)

If Yt is also independent of Zt, then all of the coefficients h∗2i = 0, F1 = 0. If Yt is

dependent of Zt, S11 − S12S
−1
22 S21 < Σ11 − Σ12Σ

−1
22 Σ21, then F1 < 0. Hence conclusion 2

is true.

The eq. (5) can be expressed in the matrix form as X(t) = [Xt, Yt, Zt]
T , U(t) =

[u3t, u4t, u5t]
T , and

A(i) =


a2i b2i c2i

d2i e2i f2i

g2i h2i k2i


then

X(t) =
∞∑
i=1

A(i)X(t− i) + U(t)
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We have

cov(X(t1),X(t2))

= cov(
∞∑

k1=1

A(k1)X(t1 − k1) + U(t1),
∞∑

j1=1

A(j1)X(t2 − j1) + U(t2))

= cov(
∞∑

k1=1

A(k1)X(t1 − k1),
∞∑

j1=1

A(j1)X(t2 − j1)) + cov(U(t1), U(t2))

=
∞∑

k1=1

∞∑
j1=1

A(k1)cov(X(t1 − k1),X(t2 − j1))A(j1)
T + cov(U(t1), U(t2))

=
∑

k1,j1

A(k1)(
∑

k2,j2

A(k2)cov(X(t1 − k1 − k2),X(t2 − j1 − j2))A(j2)
T

+cov(U(t1 − k1), U(t2 − j1)))A(j1)
T + cov(U(t1), U(t2))

=
∑

k1,k2,j1,j2

A(k1)A(k2) cov(X(t1 − k1 − k2),X(t2 − j1 − j2))A(j2)
TA(j1)

T

+
∑

k1,j1

A(k1)cov(U(t1 − k1), U(t2 − j1))A(j1)
T + cov(U(t1), U(t2))

= · · ·

=
∑
A(k1)A(k2) · · ·A(kn) cov(X(t1 − k1 − · · · − kn),X(t2 − j1 − · · · − jn))

·A(jn)TA(jn−1)
T · · ·A(j1)

T +
∑
A(k1)A(k2) · · ·A(kn−1)

·cov(U(t1 − k1 − · · · − kn−1), U(t2 − j1 − · · · − jn−1)) · A(jn−1)
TA(jn−2)

T · · ·A(j1)
T

+ · · ·+ cov(U(t1), U(t2))

(21)

Because εit is uncorrelated over time, uit is also uncorrelated over time. When ai, i = 3, 4, 5

are big and no latent variables, we have

cov(U(t1), U(t2)) =


σ2 ·M, if t1 = t2

0, otherwise.

where

M = σ2


1 + a2

3 1 + a3a4 1 + a3a5

1 + a3a4 1 + a2
4 1 + a4a5

1 + a3a5 1 + a4a5 1 + a2
5


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Denote u1t = u3t +
∞∑
i=1

b∗2iYt−i, then

var(u1t) = var(u3t +
∞∑
i=1

b∗2iYt−i)

= var(u3t) + var(
∞∑
i=1

b∗2iYt−i)

= σ2(1 + a2
3) +

∑
i

∑
j

b∗2ib
∗
2jcov(Yt−i, Yt−j)

Because cov(Yt−i, Yt−j) is the second row and second column of the above matrix cov(X(t−

k),X(t− j)), it is clear that σ2(1 + a2
3) is the only remaining term in Eq. (21), so we have

F2 = ln
|S11|
|Σ11|

→ 0

According to Geweke’s formation of Granger causality (Geweke, 1982), the causal-

ity between two time series X and Y is decomposed into three terms: two terms are the

causality between X and Y , the third term is the instantaneously causality which is the

exogenous term in our formulation. The conclusion 3 above tells us the influence of the

instantaneously causality on the causality between X and Y . The fact that F2 → 0 when

ai is small enough is observed in numerical examples.

To estimate the confidence intervals of F1, we next work on the distribution of F1. For

F2, we refer the reader to the literature, for example (Geweke, 1982). In our autoregression

model (4) and (5), the number of unknown parameters is countably infinite. For the pur-

pose of estimation, here we suppose that all lag lengths have been truncated at p. We further

suppose the disturbances in model (4) and (5) are independent and identically distributed,

the common distribution is Gaussian.
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Let Ut =

 u1t

u2t

 ∼ N(0, S), Vt =

 u3t

u5t

 ∼ N(0,Σ1), where S and Σ1 are

partitioned as in Eqs. (6) and (7). Then we have the following conclusion.

exp(F1) ∼ F (n− 2p− 1, n− 3p− 1). (22)

proof: DenoteB =

 1 −S12S
−1
22

0 1

 , D =

 1 −Σ12Σ
−1
22

0 1

. U∗ = BU,V∗ = DV,

then we have

U∗
t =

 u∗1t

u∗2t

 =

 1 −S12S
−1
22

0 1


 u1t

u2t

 =

 u1t − S12S
−1
22 u2t

u2t

 ,

V∗
t =

 u∗3t

u∗5t

 =

 1 −Σ12Σ
−1
22

0 1


 u3t

u5t

 =

 u3t − Σ12Σ
−1
22 u5t

u5t

 ,

It is easy to see that

var(u∗1t) = (1,−S12S
−1
22 )

 S11 S12

S21 S22


 1

−S12S
−1
22


= S11 − S12S

−1
22 S21 = R

(1)
XX|Z

var(u∗3t) = (1,−Σ12Σ
−1
22 )

 Σ11 Σ12

Σ21 Σ22


 1

−Σ12Σ
−1
22


= Σ11 − Σ12Σ

−1
22 Σ21 = R

(2)
XX|Z

If model (4) is multiplied by matrix B, then in the new model Xt is a linear function of

Xt−i, i = 1, 2, · · · , p, Zt−i, i = 0, 1, · · · , p and a disturbance u∗1t = u1t−S12S
−1
22 u2t. Since
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the disturbance is uncorrelated with u2t, it is uncorrelated with Zt, Xt−i and Zt−i, i =

1, 2, · · · , p. Similarly, if the first and the third equation of model (5) are multiplied by

matrix D, then in the new model Xt is a linear function of Xt−i, Yt−i, i = 1, 2, · · · , p ,

Zt−i, i = 0, 1, · · · , p and a disturbance u∗3t = u3t − Σ12Σ
−1
22 u5t.

Because S11 − S12S
−1
22 S21 is the variance of u∗1t, Σ11 − Σ12Σ

−1
22 Σ21 is the variance of

u∗3t, we can estimate them by its unbiased variance of prediction error

R̂
(1)
XX|Z =

1

n− 2p− 1

n∑
i=1

(û∗1t)
2

R̂
(2)
XX|Z =

1

n− 3p− 1

n∑
i=1

(û∗3t)
2

Under the assumption that all the disturbance in Eq. (4) and (5) have identical distribution,

u∗1t shares the identical distribution with u∗3t . Then

exp(F1) =
R

(1)
XX|Z

R
(2)
XX|Z

=
n− 3p− 1

n− 2p− 1
·

n∑
i=1

(u∗1t)
2

n∑
i=1

(u∗3t)
2

∼ F (n− 2p− 1, n− 3p− 1)

This completes the proof.
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Figure 1: (A). A schematic of the network structure of the model considered in the numerical

examples. (B). Traces of the time series considered in Example 1 (left). x2, x3, x4 and x5 are

shifted upward for visualization purpose. The underlying causal relationships are shown on the far

right.
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Figure 2: Histograms of F1 and F2 when ai = 0, bi = 0, ci = 0, i = 1, · · · , 5 in Example 1.

Significant causalities are marked with links, i.e. the links 5 → 4, 1 → 2, 1 → 3, 1 → 4 and 4 → 5.
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Figure 3: F1, F2 for different common exogenous inputs without latent variables (Example 1). (A)

Left trace, F1 (blue solid lines) and F2 (red dotted lines) together with confidence intervals for all

edges for ai = 0 and ai = 1. Right trace, the inferred causal relationships. A causal connection

illustrated as part of the network if and only if the lower bound of the 95% confidence interval of

the (partial, conditional) Granger causality is greater than zero. It is clearly seen that the correct

causal relationships are recovered by both F1 and F2. (B) Left trace, F1 (blue solid lines) and F2

(red dotted lines) together with confidence intervals for all edges for ai = 5; right trace, the inferred

causal relationships. In this case F2 does not identify any of the underlying causal connections.
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Figure 4: Results of example 1 when latent variables present. In these figures, ai ∼ U [0, 1], i =

1, · · · , 5.(A) bi = 0, ci = 1 and bi = 2, ci = 0 for all i = 1, · · · , 5, both F1 and F2 are robust.

(B) bi = 4, ci = 1 and bi = 2, ci = 5, in these cases, the causal relationships predicted from F1

are unchanged, but in terms of F2 no relationships are detected. A causal connection illustrated as

part of the network if and only if the lower bound of the 95% confidence interval of the (partial,

conditional) Granger causality is greater than zero.
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Figure 5: F1 (blue solid lines) and F2 (red dotted lines) and the corresponding inferred causal

relationships, when the latent terms are randomly selected (example 1). F1 is again robust while F2

generates several false positives. A causal connection illustrated as part of the network if and only

if the lower bound of the 95% confidence interval of the (partial, conditional) Granger causality is

greater than zero.
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Figure 6: Data traces and predicted structures from the nonlinear model (Example 2). (A) Five

time series used in our simulations. For visualization purposes, x2, x3, x4, x5 are shifted upward.

(B) ai = 0, b = 0, no exogenous input and latent variables are presented. In this case, both F1 and

F2 predict the correct interactions. (C) ai = 3, b = 0 and ai = 0, b = 3, the predicted structures

from F1 are correct, but there is no interactions in terms of F2. A causal connection illustrated as

part of the network if and only if the lower bound of the 95% confidence interval of the (partial,

conditional) Granger causality is greater than zero.
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Figure 7: Results for experimental data. Exact values and confidence intervals are shown for F1

(blue solid lines) and F2 (red dotted lines) for σ = 0 (A), σ = 0.005 (B) and σ = 0.01 (C)

respectively. The network is unchanged for F1, but significantly changed for F2 as a function of

σ. Acausal connection illustrated as part of the network if and only if the lower bound of the 95%

confidence interval of the (partial, conditional) Granger causality is greater than zero.
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