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Highly oncogenic, or acutely transforming, retroviruses
contain host-derived proto-oncogene sequences. All highly
oncogenic retroviruses also contain the retroviral cis se-
quences needed for viral replication. However, most highly
oncogenic retroviruses contain deletion(s) in their genomes;
they are, therefore, replication defective. In contrast, some
strains of Rous sarcoma virus have the oncogene src located
between the env gene and the 3' long terminal repeat (LTR).
Thus, these strains of Rous sarcoma virus are both acutely
transforming and replication competent.
The 3' junctions of proto-oncogene-virus sequences in

different highly oncogenic retroviruses are located in various
regions ofgag, pol, env, and the distal untranslated region.
Some of these 3' junction sequences involve different
amounts of identity between the presumed parental retrovi-
rus and proto-oncogene sequences. The 3' junctions of a
number of oncogenes are summarized in Fig. 1.
The 3' oncogene-virus junctions in highly oncogenic ret-

roviruses fall into two groups. The first group has a short
region of sequence identity at the junction and comprises 18
of the 31 highly oncogenic viruses. The length of the short
sequence identity ranges from 1 bp (BAI avian myeloblasto-
sis virus) (20) to 11 bp (3611 murine sarcoma virus) (32). The
second group has an insertion of 2 to 105 bp at the junction
and comprises 13 of the 31 highly oncogenic viruses, includ-
ing, for example, Fujinami sarcoma virus (15).
The numbers of viruses in the first group (having a short

region of sequence identity at the junction) relative to the
second group (having an insertion at the junction) are
different for murine leukemia viruses (MLV), feline leuke-
mia viruses (FLV), and avian leukosis viruses (ALV).
Among highly oncogenic retroviruses formed by MLV, six
viruses are in the first group (no insertion) and only one virus
is in the second group (insertion); among highly oncogenic
retroviruses formed by FLV, two viruses are in the first
group (no insertion) and six viruses are in the second group
(insertion); and among highly oncogenic retroviruses formed
by ALV, eight viruses are in the first group (no insertion) and
six viruses are in the second group (insertion). (These
different distributions are statistically significant [Fisher's
test, P = 0.005].)

In addition to the viruses listed in Fig. 1, Harvey murine
sarcoma virus contains two regions of 30S RNA (VL 30
RNA) located at the 5' and 3' ends of the ras oncogene (6).
This structure suggests at least a two-step origin for this
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virus, involving recombination of ras with a 30S RNA
genome and a helper virus.
Many hypotheses have been proposed to explain the

formation of highly oncogenic retroviruses. In this review,
we present recent results that enable us to compare these
hypotheses. We then present an explanation for each form of
junction (the two groups) and a rationale for the results with
different helper viruses.

In a recently described system (47), chimeric MLV hyg
RNA and neo-containing MLV vector RNA were copack-
aged. After infection, nonhomologous recombination re-
sulted in the formation of a hyg provirus. The junction
sequences in the recombinant viruses fell into three groups.
Only one is relevant to naturally occurring highly oncogenic
retroviruses. This junction, designated general type, in-
volved recombination between hyg and neo and usually
involved a short region of sequence identity. In addition,
some general-type recombinants contained an insertion be-
tween the two vector sequences. Similar sequence insertion
in other types of recombinants indicated that these recom-
binants were between the neo-containing MLV vector and a
read-through transcript of the chimeric MLV hyg.
Swain and Coffin (42) placed a simian virus 40 (SV40)

promoter and a neo gene with a polyadenylation signal
downstream of an avian leukosis provirus with a mutation in
its polyadenylation signal. This mutated polyadenylation
signal resulted in most viral transcripts containing the distal
SV40 neo sequences. Four of six junction sequences were
general type. One of the four general-type recombinants
contained a short region of sequence identity. Three of the
four general-type recombinants contained a 3' insertion of 1
to 16 bp between the SV40 neo cassette and the helper virus
sequence. The 16-bp insert was identical to a region in the
pol gene of the helper virus.

Since naturally occurring highly oncogenic retroviruses
may have formed in more than one round of replication,
insertions at the junctions may have been acquired in an
additional step of nonhomologous recombination. However,
Zhang and Temin (47) saw insertions at the 3' crossover

junctions, even though the viruses replicated for only one
round. Therefore, it is possible that the insertions at the
junctions in highly oncogenic retroviruses were acquired at
the same time as the acquisition of the nonhomologous
sequence.
To consolidate information both about recombinants from

nature and those from laboratories, we propose a model for
the formation of highly oncogenic retroviruses. In our
model, we divide the formation of a highly oncogenic retro-
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Group 1: Recombination using short sequence identity
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FIG. 1. Sequences of the 3' junctions between oncogenes and helper viruses in highly oncogenic retroviruses. The upper nucleotide

sequences represent the sequences of the presumed parental replication-competent virus, and the lower sequences represent the sequences

of the presumed proto-oncogene. The middle sequences represent the 3' junctions of highly oncogenic retroviruses. The vertical lines between
the sequences indicate identity. The numbers in parentheses are references; the dotted lines with numbers above them represent the numbers
of nucleotides not shown. Abbreviations: AEV-H, avian erythroblastosis virus strain H; A-MLV, Abelson murine leukemia virus; ASV, avian
sarcoma virus; BAI AMV, BAI avian myeloblastosis virus; BH-RSV, Bryan high-titer Rous sarcoma virus; E26, avian erythroblastosis
(myeloblastosis) virus E26; F ASV, Fujinami avian sarcoma virus; FBJ MSV, FBJ murine osteosarcoma virus; FSV, feline sarcoma virus;

GA-FSV, Gardner-Arnstein feline sarcoma virus; GR-FSV, Gardner-Rasheed feline sarcoma virus; HT1 MSV, HT1 Moloney murine
sarcoma virus; HZ FSV, Hardy-Zuckermann feline sarcoma virus; IC10, IC10 avian lymphomatosis virus; M-MLV, Moloney MLV; MC29,
avian myelocytoma virus MC29; MH2, avian carcinoma (myelocytoma) virus MH2; MPSV, myeloproliferative sarcoma virus; MSV, murine
sarcoma virus; PRC II ASV, Poultry Research Center avian sarcoma virus II; Pr-C RSV, Prague C Rous sarcoma virus; RAV-2,
Rous-associated virus type 2; REV-A, reticuloendotheliosis virus strain A; REV-T, reticuloendotheliosis virus strain T; RSV, Rous sarcoma

virus; SKV, Sloan-Kettering virus; SM FSV, McDonough feline sarcoma virus; SR-ASV, Schmidt-Ruppin avian sarcoma virus; SSAV,
simian sarcoma-associated virus; SSV, simian sarcoma virus; UR2 ASV, avian sarcoma virus UR2. (All sequences were retrieved from
GenBank. Only one sequence was used when the same sequence was found in different retroviral strains.)
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FIG. 2. Model for the formation of highly oncogenic retroviruses. The numbers on the left represent the steps in the formation of a highly

oncogenic retrovirus, as discussed in the text. The thin lines represent RNA, and the thick lines represent DNA. The large boxes represent

the LTRs of the virus, and the small boxes represent the exon sequences of the proto-oncogenes. (Pathway a) (1) Virus integrates 5' of
proto-oncogene sequence. (2) Read-through transcription occurs, forming a chimeric virus-proto-oncogene RNA containing an internal 3'
LTR sequence. Wild-type viral RNA is formed by normal poly(A) formation. (3) Chimeric and viral RNA are copackaged. (4, 5) After
infection, the minus-strand growing point jumps from viral RNA to the proto-oncogene RNA, usually at a short stretch of sequence identity.
This process forms the 3' proto-oncogene-virus junction. A deletion is necessary to remove the internal 3' LTR sequence. Two deletions
result in an insertion junction. The deletion can occur either during minus- or plus-strand DNA synthesis, resulting in a deletion of the internal
3' LTR sequence and some proto-oncogene sequence. (For simplicity, the figure shows a deletion during minus-strand synthesis.) (Pathway
b) (1) Virus integrates 5' of the proto-oncogene sequence. (2) Read-through transcription occurs, forming a chimeric virus-proto-oncogene
RNA containing an internal 3' LTR sequence. Abnormal splicing deletes the internal 3' LTR and forms the 5' virus-proto-oncogene junction.
Wild-type viral RNA is formed by normal poly(A) formation. (3) Chimeric and viral RNA are copackaged. (4, 5) After infection, the
minus-strand growing point from wild-type viral RNA jumps to the proto-oncogene, usually at a short stretch of sequence identity. Deletion
during minus- or plus-strand DNA synthesis in the proto-oncogene sequence forms an apparent insertion at the 3' proto-oncogene-virus
junction. (For simplicity, the figure shows a deletion during minus-strand synthesis.)

virus into five steps, with variations leading to two different
pathways (a and b) (Fig. 2).

Step 1. Integration of a retrovirus 5' to a proto-oncogene.
Step 2. Formation of a chimeric virus-proto-oncogene RNA.

After a retrovirus integrates 5' of a proto-oncogene, a

chimeric viral-cellular RNA is formed by read-through tran-
scription (pathway a) or read-through transcription followed
by abnormal splicing (pathway b). (A chimeric viral-cellular
RNA also can be formed by deletion of the 3' end of the
retrovirus and transcription into the proto-oncogene se-

quence. However, the rate of mutation on the DNA level is
low. If this occurred, subsequent steps would be the same as
in pathway b.) (The read-through transcript without abnor-
mal splicing [pathway a] contains an internal 3' LTR se-

quence of the virus. This internal 3' LTR sequence is deleted
during reverse transcription [discussed below].)

Step 3. Copackaging with viral RNA. The cells in which the
chimeric RNA is formed by read-through transcription
(pathways a and b) contain wild-type viral RNA resulting
from transcription and normal retroviral polyadenylation.
Some abnormal spliced transcripts can be very efficiently
packaged (42).

Step 4. Nonhomologous recombination during minus-strand
DNA synthesis. In the two pathways (a and b), nonhomolo-
gous recombination can be the result of template switching
by a copy-choice mechanism during minus-strand DNA
synthesis (5). In pathway a, the minus-strand DNA synthesis
involves a deletion that removes the 5' end of the proto-
oncogene sequence and the internal 3' LTR sequence. In

pathway b, this process can result in minus-strand DNA with
5' and 3' virus-proto-oncogene junctions. Alternatively, in
pathway b, a deletion of internal proto-oncogene sequences,

which are already fused to 3' viral sequences, gives rise to an
apparent insertion. Depending on the place at which tem-
plate switching occurs, different amounts of sequence iden-
tity are found at the 3' virus-proto-oncogene junctions
formed during the nonhomologous recombination.

Step 5. Plus-strand DNA synthesis. In pathway a, depend-
ing on whether or not a deletion occurred during minus-
strand synthesis, a deletion in plus-strand synthesis could
remove the internal 3' LTR sequence. (It is also possible that
a second deletion in plus-strand synthesis occurs, resulting
in an internal deletion of proto-oncogene sequences and an

apparent insertion at the 3' junction.) Similarly, in pathway
b, the usual plus-strand DNA synthesis results in a highly
oncogenic retrovirus with no insertion in the proto-onco-
gene-virus junction. Alternatively, a deletion of internal
proto-oncogene sequences would result in an apparent in-
sertion.
To explain the differences in 3' junctions among MLV,

FLV, and ALV, we note that pathways a and b both involve
read-through transcription and that a single deletion results
in an insertion junction in pathway b (Fig. 2b, group 2),
whereas pathway a requires two deletions (Fig. 2a, group 2).
Thus, it appears that highly oncogenic MLV are more likely
to be formed by pathway a, highly oncogenic FLV are likely
to be formed by pathway b, and ALV are likely to be formed
by pathways a and b. (Although we are not sure what the
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difference is between FLV and MLV, it can be that the
frequency of abnormal splicing is different between the two
retroviruses.)
Formation of the 3' proto-oncogene-virus sequence also

has been hypothesized to occur at the DNA level. Goodrich
and Duesberg (12, 13) proposed that integration of a second
retrovirus at the 3' end of a proto-oncogene, followed by
deletion, forms a highly oncogenic retrovirus. Several lines
of evidence suggest that integration of a second retrovirus at
the 3' end of a proto-oncogene is not a necessary step in the
formation of highly oncogenic retroviruses. First, in Zhang
and Temin's system (47), several different cell clones, which
contained a single chimeric vector provirus and a single
infectious vector (integrated into different sites), were stud-
ied during a single round of virus replication. All of the cell
clones produced recombinant viruses at a similar rate. In
addition, analyses of recombinants by Zhang and Temin (47)
and Swain and Coffin (42) indicated that the 3' junction
sequences of recombinants from the same cell clone are
different and that some of the recombinant proviruses are
not infectious. These 3' junctions appear to result from
recombination during infection rather than from a preexist-
ing rearrangement in the original virus-producing clone.
Third, a poly(A) sequence has been found in one naturally
occurring highly oncogenic virus (15) and, in three other
experimental systems, some recombinants were found to
contain poly(A) sequences (31, 42, 47). The frequency of
formation of these naturally occurring highly oncogenic
retroviruses containing a poly(A) sequence is low, probably
because an internal poly(A) addition sequence within a
retrovirus interferes with its infectivity (37, 47). Fourth, the
presence of 5' and 3' splice sites in reticuloendotheliosis
virus strain T (46) provides further evidence that the forma-
tion of 3' proto-oncogene-virus sequences occurs at the
RNA level. Furthermore, DNA deletion does not explain
insertion junctions.

It has also been proposed that proto-oncogene mRNA is
nonspecifically packaged into virions, followed by two non-
homologous recombination events during reverse transcrip-
tion that place the proto-oncogene sequence into the retro-
viral genome (14). The frequency of these events depends on
how often such RNA is packaged with retroviral RNA.
Formation of the 3' junction would be by a mechanism
similar to those discussed here.

Conclusions. Highly oncogenic, or acutely transforming,
retroviruses contain host-derived proto-oncogene sequences.
The 3' junctions of the proto-oncogene-virus sequences in
different highly oncogenic retroviruses fall into two groups.
The first group has a short region of sequence identity at the
junction, and the second group has an insertion. The inser-
tion results from read-through transcription followed by
deletion(s). The numbers of viruses having a short region of
sequence identity at the junction relative to the group having
an insertion at the junction are different for MLV, FLV, and
ALV. The differences in 3' junctions among MLV, FLV,
and ALV suggest that different retroviruses are likely to
have formed highly oncogenic retroviruses by slightly differ-
ent pathways.
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