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The rates of mineralization of ['*C]benzoate by an induced population of Pseudomonas sp. were
measured at initial substrate concentrations ranging from 10 ng/ml to 100 ug/ml. Plots of the radioactivity
remaining in the culture were fit by nonlinear regression to six kinetic models derived from the Monod
equation. These models incorporate only the variables of substrate concentration and cell density. Plots of
the mineralization kinetics in cultures containing low, intermediate, and high initial substrate concentrations
were well fit by first-order, integrated Monod, and logarithmic kinetics, respectively. Parameters such as
maximum specific growth rate, half-saturation constant, and initial population density divided by yield
agreed between cultures to within a factor of 3.4. Benzoate mineralization by microorganisms in acclimated
sewage was shown to fit logistic (sigmoidal), Monod, and logarithmic kinetics when the compound was
added at initial concentrations of 0.1, 1.0, and 10 pg/ml, respectively. The mineralization of 10 pg of
benzoate per ml in sewage also followed logarithmic kinetics in the absence of protozoa. It is concluded that
much of the diversity in shapes of mineralization curves is a result of the interactions of substrate
concentration and population density. Nonlinear regression with models incorporating these variables is a

valuable means for analysis of microbial mineralization kinetics.

Several types of curves have been obtained in plots of the
disappearance of organic molecules added to samples of
natural environments or to pure cultures. On arithmetic
axes, such substrate disappearance curves may be concave-
up (14, 26), as in first-order Kinetics, or concave-down
during nearly the entire period of decreasing substrate
concentration, or the concentration of substrate or the
appearance of product may appear to change linearly with
time (25, 26, 28). In natural ecosystems, a variety of factors
probably alter the shapes of substrate disappearance curves.
These factors may include predation by protozoa (8, 19), the
time for induction of the active organisms, the accumulation
of toxins produced by other microorganisms, depletion of
inorganic nutrients or growth factors (8, 19), the presence of
other substrates which may repress utilization of the com-
pound of interest, and binding of the compound to colloidal
matter (24, 27). The impacts or interactions of such poten-
tially important factors may make it difficult to predict the
kinetics of mineralization or disappearance of a particular
substrate.

One approach to establish why substrate disappearance
curves have so many different shapes is to seek an omnipres-
ent minimum set of factors affecting the kinetics of biodegra-
dation. In many instances, it is possible that the only factors
or variables, at least for substrates that are mineralized, that
need to be considered are the concentration of the com-
pound and the abundance of active organisms. This study
was designed to determine whether the variety of shapes of
substrate disappearance curves could be modeled with only
the variables of substrate concentration and population
density and the parameters of classical Monod kinetics.

THEORY AND METHODS

Theoretical considerations. Several formulations have been
proposed to express the growth dynamics of a population
that is limited solely by the concentration of a single sub-
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strate (10, 15). However, in the development that follows, it
is assumed that Monod kinetics adequately describe the
relationship between growth rate and substrate concentra-
tion. Monod kinetics are frequently expressed as follows:

B = Bmax - SAK + S) D
where p = dB/dt(1/B) is the specific growth rate, pwmay is the
maximum specific growth rate, S is the substrate concentra-
tion, K is the half-saturation constant for growth, and B is
the population density. If the population density changes, an
expression describing the relation between changes in popu-
lation size and concomitant changes in substrate concentra-
tion is also necessary. For the theoretical development of
this paper, the following equation (18), which is sometimes
termed a mass-balance equation (5), will be used:

So+qBo=S+qB (2)
where S, is the initial substrate concentration, By is the
initial population density, and q is the cell quota or inverse
yield. Although g changes markedly with nutrient concentra-
tion for substrates such as phosphate (5, 16, 17) and nitrogen
(11, 12, 16), it is much less variable when the limiting factor
is a carbon source (9). Therefore, as a working approxima-
tion, the practice of others (3, 18, 21, 22) who modeled
nutrient-limited growth will be followed, and g will be
treated as invariant with time and substrate concentration in
the theoretical development that follows.

When treated as a constant, g becomes impossible to
measure without measuring population density; g is only a
useful quantity when exact values of B are desired, and it is
not needed when only substrate disappearance is of interest.
To emphasize this proposition, gB will be replaced in all
equations hereafter with X, which corresponds to the
amount of substrate required to produce a population densi-
ty equal to B. By analogy, X, is by definition equal to gBy.
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TABLE 1. Six models for mineralization kinetics with only the variables of substrate concentration and cell density

Model and characteristics

Equation and inequalities

I.  Zero order
Differential form
Integral form
Derived parameter
Necessary conditions

II. Monod, no growth
Differential form
Integral form
Derived parameter
Necessary condition

III. First order
Differential form
Integral form
Derived parameter
Necessary conditions

IV. Logistic
Differential form

Integral form

Derived parameter
Necessary condition

V. Monod with growth
Differential form
Integral form
Derived parameter
Necessary condition

V1. Logarithmic
Differential form
Integral form
Derived parameter
Necessary condition

—ds/dt = k,
S =80 — kit
kl = p'muxX()

Xo >> Sy and §, >> K,

—dS/dt = k,SIK, + S)
Kn(S/Sy) + § — Sy = =kt
kl = p-maxX()

Xo >> 8

—dS/dt = kS
§ = §, exp(—kst)

k} = p'mzuxX()/K.\

Xo >> Spand S, << K|

—dS/dt = kS(So + Xo — S)

_ So + Xo
1 + (Xo/So)explha(So + Xolt]

k4 = “'mux/K.\
So << K,

—dS/dt = [LmaxS(So + Xo — HUK, + 5)

K,In(8/80) = (So + Xo + KIIN(X/Xy) = (So + Xo)bmaxt
None

None

—dS/dt = pmax(So + Xy — S)
S = S() + X()ll - exp(""muxt)]
None

So>> K,

With these substitutions, the Monod equation and the mass-
balance equation, respectively, can be rewritten as follows:

dX/dt - 1/X = pmax SAK; + S) 3)
So + X() =5S+X (4)

Equation 4 and its derivative can be solved for X and dX/dt,
respectively, and these terms can be substituted into equa-
tion 3 to give the following differential equation:

—dS/dt = pwmax S(So + Xo —SNK, + S) %)

The differential form in equation 5 is a general expression
of substrate disappearance in a system in which only popula-
tion densities and substrate concentrations determine the
kinetics of degradation. Equation 5 reflects both the linear
effect of changes in population density and the nonlinear
effect of changes in substrate concentration (in the vicinity of
K,) on the rate of substrate disappearance. Extreme ratios of
inoculum density to initial substrate concentration or of
substrate concentration to K, permit equation 5 to be ap-
proximated by the five simplified or special forms shown
together with the general expression in Table 1. For exam-
ple, when the initial cell density is much greater than the
number of new organisms which could be produced from the

substrate present at time zero, i.e., X, >> S, the growth of
the population during the course of an experiment becomes
insignificant on a proportional basis, and the term (Sy + X, —
S) can be approximated as simply X, as is done for the first
three of the special forms in Table 1. Similarly, when the
initial substrate concentration is much greater than the half-
saturation constant (So >> K), most of the substrate will
disappear while the uptake systems of the cells are saturat-
ed. Therefore, (K, + §) in equation S can be approximated as
S until the substrate is nearly exhausted. This simplification
is reflected in models I and VI in Table 1. Alternatively, the
substrate may initially be present at much less than saturat-
ing levels (Sy << K,), in which case the uptake rate per cell
becomes a linear function of substrate concentration, and
the denominator of equation 5 is approximately equal to K,
(Table 1, models III and IV). Models I, III, IV, and VI can
be derived from non-Monod models if such models saturate
at high values of S and are roughly linear when S is close to
zero.

Integration details for three of the models in Table 1 have
been previously reported (3, 4, 7, 14). All of the differential
equations in Table 1 are of the separable type (2). They are
solved by isolating all terms involving S (including dS) on
one side of the equality and convenient constants and dt on
the other side. Definite integration (from S, to .S on one side
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TABLE 2. Partial derivatives of the general and four nonlinear special forms of mineralization kinetics derived from the Monod equation
used for nonlinear regression analysis®

Model

Partial derivatives

Monod, no growth

dC/dk, = —(1 — DUKJ/S + 1)

dC/dK, = —(1 — )In(S/SHKJ/S + 1)
dC/dSy = ¢+ (1 — DA + KJSH(K,/S + 1)

dC/dL = S — S

First order

dC/dks = —So(1 — Dt exp(—kst)

dC/dSe = £ + (1 — {exp(—kst)
dC/dg = Sol1 — exp(—k;t)]

Logistic

dC/ldks = —(1 = DIXo(So + Xo)*tEV[So(1 + XoE/Sp)*]

dC/dXe = (1 — O[1 + XoElSo — E(So + Xo)(Xokat + 1)/Sol(1 + XoE/S,)?
dC/dSy = { + (1 — DI + XoE/So — XoE(So + Xo)kat — 1/S0)/Sol/(1 + XoE/S,)?

dC/dy = So — S

Monod with growth

dC/dpmax = —(1 — QUD

dC/dK, = (1 — DIIn(X/X,) — In(S/Se))/[D(So + Xo)]
dC/dX, = (1 = DIIn(X/Xo) — Rmaxt)/(So + Xo) + (So + Xo + KJUX — UX)(Sy + Xo))/D

dc [+d-p In(X/Xg) — Pmaxt . K/So So + Xo + K,
ds, So + Xo (So + Xo) X(So + Xo)
dC/idg = So — S

Logarithmic
dS/dS, =1

dS/dXo = 1 — exp(pmaxt)

dS/dpmax = —Xo t * €Xp(maxt)

“E, X, and D are defined in the text.

and from 0 to t on the other) is then performed on both sides
of the equality. Algebraic rearrangement of the resulting
equations yields explicit functions of t for S in models I, III,
IV, and VI (Table 1), whereas it is possible to obtain only
implicit relationships between S and t for models II and V.

The names given to the models in Table 1 in two cases,
zero order and first order, are derived from the chemical
kinetics they resemble. The names for models II and V refer
to the manner in which these expressions were obtained.
Model II could also be called Michaelis-Menten Kinetics.
Models IV and VI bear the names associated with the
kinetics of growth that occurs as the substrate disappears.
Although logistic growth kinetics are only occasionally en-
countered in microbiological literature (20), they are well-
known in ecology (13).

Medium. The inorganic salts solution contained 0.20 g of
MgSO, - 7H,0, 20 mg of CaCl, - 2H,0, 1.5 g of K,HPO,,
0.75 g of KH,PO,, 5.0 mmol of NH4Cl, and 1.0 ml of a 1.0%
(wt/vol) FeCl; - 6H,O solution per liter. Reagent grade ben-
zoic acid (obtained from Eastman Kodak Co., Rochester,
N.Y.) was neutralized with KOH before use. [U-ring-
14Clbenzoic acid (specific activity, 130 mCi/mmol) was ob-
tained from Amersham Corp. (Arlington Heights, Iil.).

Cultures. Sewage samples from the primary settling tank
of the sewage treatment plant of Ithaca, N.Y., were passed
through Whatman no. 41 filter paper and used immediately.
In some studies, a Pseudomonas strain was used. The
bacterium, which was similar to Pseudomonas maltophilia
but required no growth factors, was isolated from sewage.
Counts of this organism were made by the spread-plate
technique after samples were serially diluted in the salts
solution. The counting medium contained 0.02% benzoic
acid, 1.5% agar, and the salts solution.

For testing mineralizing activity of the Pseudomonas sp.,
500 ml of a culture containing 2 X 10 cells and 50 ug of

benzoate per ml was incubated for 3 hin 2.0-liter Erlenmeyer
flasks at 23°C without shaking. The cells were collected by
centrifugation and washed three times in sterile salts solu-
tion. The cell density was diluted to 3.3 x 10° cells per ml,
and 150-ml portions of this suspension were incubated at
23°C without shaking in 500-ml Erlenmeyer flasks. All flasks
received similar amounts of labeled benzoate (1,000 to 1,400
dpm/ml), but the total concentration was varied by changing
the amounts of unlabeled benzoate added.

Measurement of mineralization. At regular intervals, 2.5-
ml samples were removed from the cultures, and 3 drops of
concentrated H,SO4 were added. The liquid was vigorously
aerated for 5 min with compressed air. Subsamples (1.0 ml)
were added to scintillation cocktail contained in vials, and
the radioactivity was counted with a liquid scintillation
counter (model LS7500; Beckman Instruments, Inc., Irvine,
Calif.) for a period of time sufficient to observe at least 4,440
counts (1.5% standard deviation). The scintillation cocktails
were 8.0 ml of Liquiscint (National Diagnostics, Inc., Som-
erville, N.J.) and 7.0 ml of aqueous counting scintillant
(Amersham) for the pseudomonad and sewage, respectively.

Data analysis. Nonlinear regression analyses were con-
ducted with an author-written computer program, MARQ-
FIT, which performs fits minimizing least squares to data by
the method of Marquardt, as described by Bard (1). The
MARQFIT program requires the user to supply a model
equation and all of the first partial derivatives of the depen-
dent variable in the model equation with respect to the
parameters. The partial derivatives of the five nonlinear
model equations used in this study are given in Table 2. In
the expressions shown, the terms X, D, and FE are defined as
follows: X = X() + S() - S, D= (K:/S)/(So + Xo) + (SQ + Ko
+ K)/[X(Sy + Xp)], and E = explks(So + Xo)t]l. The model
equations used in MARQFIT are modified from the forms
developed in the theoretical section to account for the failure
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FIG. 1. Patterns of disappearance of radioactivity from solutions
containing [!“C]benzoate at concentrations of 10, 32, and 100 ng/ml
when incubated with the Pseudomonas sp. The insert shows the
logarithms of the percent benzoate remaining in the first hour. The
curves were fit by nonlinear regression.

of the experimental method used to discriminate between
counts from parent compound and counts from label incor-
porated into microbial cells. The modification performed
assumes that the ratio between *CO, and particulate '*C
produced during an experiment remains constant; i.e., a
constant fraction, {, of label taken up is incorporated into the
cells. The assumption is equivalent to the decision to treat ¢
as a constant. Given constant {, the following equations
apply: C = S + Pand P = (§¢ — S){ where C represents total
counts in the sample, S is counts from the parent compound,
So is the number of counts at time zero, and P is counts in the
particulate materials. Substituting the second expression
into the first results, after algebraic rearrangement, in the
following:

C={So+A-0S (6)

The general integrated Monod equation and its special forms
all can provide a value of S at any given time that can be

AprPL. ENVIRON. MICROBIOL.

introduced into equation 6 to give the model equations
associated with the partial derivates in Table 2. The partial
derivatives of S in the original model equations are modified
according to the following scheme to obtain the partial
derivatives of C: dC/d6 = (1 — {)d.S/de for all parameters 6 #
So; and dC/dSy = { — (1 — {)dS/dS,. In addition, a new
partial derivative is needed for all models employing {: dC/d{
= Sy — S. The logarithmic model lacks a horizontal asymp-
tote as t becomes large. Consequently, to compare the
values of X, generated by this model with those of the other
models, they must be corrected, as are values for § in
equation 6, with a value for { obtained independently.

It is impossible by ordinary means to solve for S in model
equations II or V (Table 1). Therefore, these equations were
rearranged to the general form f(S,t) = 0, and roots of these
equations were found numerically in MARQFIT by the
method of Newton (2) and substituted into equation 6.

RESULTS

The pseudomonad was incubated with one of each of nine
benzoate concentrations, the radioactivity being essentially
the same regardless of the total benzoate level in the culture.
Plots of the disappearance of radioactivity from solutions
containing benzoate at concentrations of 10, 32, and 100 ng/
ml are given in Fig. 1. The radioactivity in each instance
disappeared rapidly at first, and then the rates declined.
Whether the residual radioactivity resulted from the forma-
tion of cells or products was not determined. The curves of
disappearance of radioactivity from suspensions containing
the three lowest benzoate concentrations tested were con-
cave-up and nearly identical.

Benzoate mineralization at the six highest concentrations
(0.32, 1.0, 3.2, 10, 32, and 100 wg/ml) is shown in Fig. 2. The
disappearance patterns were different from those at the
lower substrate concentrations, and some differed among
those in the group shown in Fig. 2. The curve at 1.0 pg/ml
was concave-up, whereas those at 10, 32, and 100 pg/ml
were concave-down.

c A 1 il

o 4
HOURS

FIG. 2. Patterns of mineralization by the Pseudomonas sp. of
benzoate at initial concentrations of 0.32, 1.0, 3.2, 10, 32, and 100
wng/ml. The curves were fit by nonlinear regression.
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TABLE 3. Parameters and asymptotic standard deviations of four models of substrate disappearance kinetics fit to data on the
metabolism of nine concentrations of [U-ring-'*Clbenzoate by the Pseudomonas sp.

Actual

(ugs};n ) Model Rate constant K. (ug/ml) Xo (pg/ml) szt;:’rf]jzd”
0.010 First order k3 = 0.0290 = 0.0009¢ NA” NA 1.310 = 10 0.218 = 0.006
0.032 First order k3 = 0.0293 = 0.0015¢ NA NA 1,260 = 20 0.244 + 0.010
0.10 First order k3 = 0.0288 = 0.0016¢ NA NA 1.270 = 30 0.265 = 0.008
0.32 Monod, no growth ky; = 0.008 = 0.002¢ 0.13 = 0.07 NA 1.320 = 30 0.229 = 0.009
1.0 Monod, no growth k, = 0.017 = 0.005¢ 0.38 = 0.25 NA 1,320 = 30 0.255 = 0.013
3.2 Monod, growth Mmax = 7.2 * 0.6¢ 0.45 = 0.58 2.1x21 1,280 + 30 0.232 = 0.0001
10 Logarithmic Mmax = 5.6 £ 0.6¢ NA 3.0+ 0.3 1,270 = 40 NA

32 Logarithmic Pmax = 7.2 = 0.5¢ NA 1.8 +0.3 1,300 + 20 NA

100 Logarithmic Mmax = 7.3 = 2.3¢ NA 1.8 = 0.6 1,300 = 10 NA

“ First-order rate constant, k3, with units of minutes '
* Not applicable.

< The constant A; = pn..Xo, having units of micrograms per milliliter per minute.

4 Rate constant for these models is pm.y With units of 10~ min™'.

Because the curves at the four lowest concentrations were
essentially superimposable, substrate disappearance rates
were proportional to benzoate concentration. For this rea-
son and because little growth of the populations would have
occurred at the two lowest concentrations (10 and 32 ng/ml),
the data from these concentrations were fit to the first-order
model. The curves of chemical disappearance at the two
highest benzoate concentrations (32 and 100 pg/ml) were fit
to the logarithmic model because significant growth of the
inoculum was expected and because both concentrations
should be well above K,. The regression estimates for the
parameters of the first-order and logarithmic models for the
two lowest and two highest initial concentrations, respec-
tively, are given in Table 3. Because the first-order rate
constant, ks, is equal to pmax * Xo/K,, an estimate for K, can
be calculated as pmax - Xo/k3, by using the average of the rate
constants from the first-order treatments and averages for X,
and pm.x obtained from the logarithmic treatments. The
value of K thus calculated is 0.45 pg/ml. Given this estimate
for K, none of the treatments satisfies the condition (S, <
K,) for the logistic model to be applicable without also
satisfying the no-growth requirement of the first-order mod-
el. Accordingly, the logistic model was not used in the
analysis of any of the results obtained in studies of the
Pseudomonas sp.

For the five treatments having initial benzoate concentra-
tions of 0.1 to 10 pwg/ml, the most appropriate model of those
in Table 1 was chosen by a statistical procedure similar to
the analysis of variance used in stepwise multiple linear
regression to test for the significance of adding an additional
independent variable. For example, the first-order model fit
the disappearance of 100 ng of benzoate per ml with unex-
plained variance equal to 42,500 (dpm)>. Model II (Table 1)
(Monod kinetics without growth) also provides a good fit to
the disappearance of 100 ng of benzoate per ml, leaving an
unexplained variance of 37,100 (dpm)>. However, the reduc-
tion in unexplained variance [5,400 (dpm)?] obtained by
using model II, which has one more parameter than first-
order kinetics, is not statistically significant by F-test at the
P = 0.10 probability level. Therefore, the data from this
treatment were analyzed with the first-order model. Model I1
was used to fit the disappearance of 0.32 and 1.0 pg of
benzoate per ml because a statistically significant reduction
(P = 0.01) in unexplained variance was achieved as com-
pared with the first-order fit, but no further significant
decrease (at P = 0.10) was obtained with model V (Monod
kinetics with growth). Similarly, the disappearance of 10 pg

of benzoate per ml was not better fit by model V than by
model VI (the logarithmic model). For the disappearance of
3.2 pg of benzoate per ml, model V gave a statistically
significant decrease (P = 0.10) in unexplained variance as
compared with either model II or model VI.

By the criterion described above, estimates were made of
the parameters of the model selected as appropriate for
cultures incubated with each of the nine concentrations of
benzoate. The estimates of derived parameters (defined in
Table 1) wmax, Ky Xo, So, and { ({ is the fraction of '*C
incorporated into cells) are given in Table 3. Each parameter
estimated by nonlinear regression analysis of benzoate dis-
appearance at each concentration can be compared with an
estimate of the same parameter independently obtained from
at least one other treatment. All such independent estimates

1250

1000

DPM/ML

500

HOURS

FIG. 3. Mineralization of benzoate added at one of three concen-
trations to acclimated sewage or filtered, cycloheximide-amended
sewage. Curves shown were fit by nonlinear regression.
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TABLE 4. Parameters and standard deviations of three models for mineralization kinetics fit to data on the disappearance of benzoate
from acclimated sewage with and without protozoa

(p:;:nl) Protozoa Model Rate constant Xo (ng/ml) So (dpm) z
10 Absent Logarithmic 7.0 £0.7¢ 22+0.4 1,200 = 20 NA®
10 Present Logarithmic 7.4 = 0.4¢ 0.96 = 0.11 1,210 = 10 NA
1.0 Present Monod¢ 17 + 18¢ 0.27 £ 0.20 1,250 = 20 0.29 = 0.02
0.1 Present Logistic 0.13 = 0.03¢ 0.022 = 0.008 1,150 = 80 0.34 = 0.03

9 The rate constant is equal to wmax With units of 1073 min~'.

 Not applicable.

¢ The value for the half-saturation constant, K, for this model is 0.77 * 0.96 pg/ml.
4 The logistic rate constant, k,, with units of milliliters per minute per microgram.

of a single parameter from different treatments agreed to
within approximately half an order of magnitude. The worst
agreement between estimates in Table 3 was for K| values,
which differed by as much as a factor of 3.4. The best
agreement was for first-order rate constant values, which
differed between treatments by <2%. In addition, the rate
constants, k, and k3, used in models II and III are themselves
products or quotients of parameters such as pmax, Ky, and
Xo, which are independently estimated in other treatments.
As discussed previously, a value for K of 0.45 pg/ml can be
calculated from independent estimates of wmax, Xo, and the
first-order rate constant; this value is equal to the K, value
found by nonlinear regression analysis of the disappearance
of 3.2 ug of benzoate per ml. Because K; = pmax Xo and k3 =
Pmax Xo/Ks, another independent estimate of K, can be
obtained from averages of values from fits using these two
rate constants (as K; = k/k;); the value so obtained is 0.45
pg/ml, which is identical to the previous estimate made using
data obtained from tests of cultures some of which were
incubated with different benzoate concentrations.

The curves of best fit in Fig. 1 and 2 were drawn by using
the parameter estimates and models in Table 3.

Unlabeled benzoate added at 0.1, 1.0, and 10 pg/ml was
added to 150-ml portions of freshly collected, aerated pri-
mary sewage contained in 500-ml Erlenmeyer flasks. The
flasks were incubated for 48 h at 23°C with aeration provided
by bubbling air through the liquid, and a second equal
amount of benzoate containing a constant trace amount of
14C-labeled benzoate was then added. Mineralization was
then determined by measuring the disappearance of radioac-
tivity from the mixture.

Three different patterns of benzoate mineralization were
noted when 0.1, 1.0, and 10 pg of the compound per ml were
added to sewage (Fig. 3). The kinetics of mineralization of 10
pg/ml was completely concave-down. Consequently, a fit
was made to the logarithmic model. Because the pattern of
disappearance of 0.1 wg of benzoate per ml resembled an S-
shaped curve symmetric about its inflection point, the logis-
tic model was fit to these data. The curve for the mineraliza-
tion of 1.0 g of benzoate per ml had a more complicated
shape than that observed for the other two concentrations,
and accordingly, these results were analyzed with the inte-
grated form of the Monod equation with growth (model V).

A portion of sewage was treated as above for the 10-pg/ml
amendment, but it was also passed through a 3-pm Nucle-
pore membrane filter and amended with 25 pg of cyclohexi-
mide per ml about 1 h after collection. Microscopic examina-
tion showed that fewer than 100 protozoa per ml were
present 5 days after collection, whereas unfiltered sewage
amended with each of the three benzoate levels but no
cycloheximide contained more than 10° protozoa per ml.
The mineralization of 10 pg of ['*Clbenzoate per ml in both

the protozoa-free as well as the protozoa-containing suspen-
sions is shown in Fig. 3. The shapes of the curves reflecting
mineralization of 10 pg of benzoate per ml in protozoa-
containing suspensions appeared to be the same as in
protozoa-free sewage, and the data were, accordingly, ana-
lyzed with the same model (model VI).

The coefficients found by nonlinear regression for the
experiments with sewage are given in Table 4. Included also
are the standard deviations estimated by MARQFIT for each
parameter. The values for pmax in sewage receiving 10 ug of
benzoate per ml are nearly equal to those found for the
Pseudomonas sp. (Table 3). The K, value in sewage receiv-
ing 1.0 pg of benzoate per ml is only three times greater than
the values calculated for the Pseudomonas sp. The Kinetic
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FIG. 4. Applicability of six kinetic models as a function of initial
substrate concentration and cell density.
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parameters estimated for the protozoa-free and protozoa-
containing sewage amended with 10 pg of benzoate per ml
differed significantly only in the values for Xy; i.e., time-zero
population density divided by yield. Based on the estimated
values of X,, the flasks with protozoa had an estimated
population size at the time of ['*C]benzoate addition roughly
half that of flasks without protozoa.

DISCUSSION

Either the general or one of the special forms of Monod
kinetics always provided a close fit to the data obtained in
studies of the Pseudomonas sp. and sewage. The agreement
observed for independent estimates of the same parameter
among different treatments argues for the appropriateness of
the use of these six models, which incorporate only the
variables of substrate concentration and cell density, as a
family for describing mineralization in these experiments.
Moreover, a particular model from among the six was
chosen by an unambiguous statistical procedure for the
analysis of mineralization in different treatments according
to a logical pattern.

The conditions under which the six models apply can be
visualized in terms of a range of initial substrate concentra-
tions and cell densities (Fig. 4). For the purposes of the
figure, it is assumed that g (the amount of substrate needed
for the formation of one cell) equals 1 pg per cell and K, =
1.0 wg/ml, but the same trends would apply for other values
of g and K;. Points along the diagonal line correspond to
inoculum sizes permitting one division of the active cells at
various initial substrate concentrations. If the initial cell
density for a test substrate concentration is above this line,
population density can be treated as approximately constant.
The vertical line at a concentration of 1.0 pg/ml is at the K|
assumed for this visualization. The second vertical line
placed on the figure at a concentration approximately one
and a half orders of magnitude greater than K, separates
circumstances in which the uptake systems of the active
organisms are effectively saturated until the substrate is
nearly exhausted from situations in which the reaction rate
per cell varies appreciably with substrate concentration.
Based on the single diagonal and two vertical lines, the
approximate ranges of initial substrate concentrations and
cell densities that should show mineralization kinetics corre-
sponding to six models can be predicted. For other sub-
strates, populations, or communities, the figure and the
slope would be identical, but the concentrations at which the
vertical lines are placed and the vertical intercept of the
diagonal would need to be modified. The exact locations of
the boundaries between the regions are uncertain and may
vary with the precision of the methods used. In the present
study, the boundary between regions II and III was placed at
So = K, because the tests in which the benzoate level
provided to the Pseudomonas sp. was below K; fit the first-
order model; i.e., model III. The diagonal was located based
on the data obtained in studies of the mineralization of 1.0
and 3.2 pg of benzoate per ml. Given that plate counts at the
start showed the presence of 3 x 10 cells per ml and gB, =
Xo = 2 ng/ml from the regression estimates, it is possible to
calculate g = 0.67 pg per cell. Therefore, the cells initially
present should not have doubled in the presence of 1.0 pg of
benzoate per ml but should have slightly more than doubled
in the presence of 3.2 wg/ml. The division between regions V
and VI was drawn as shown because the disappearance of 10
wug of benzoate per ml, a concentration approximately one
and a half orders of magnitude greater than K, was not
significantly better described by the Monod model with
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growth (model V) than by the simpler logarithmic model
(model I).

That upper and lower boundaries for region V should exist
is a postulate consonant with the results of Robinson and
Tiedje (18) from inspection of the partial derivatives of the
integrated Monod equation. They observed highly correlated
estimates of some of the parameters of Monod Kinetics at
substrate concentrations 50 times smaller than or greater
than K, (conditions where models III or VI should apply),
whereas at S, = 4K, more independent estimates were
obtained. Moreover, the excellent fit they report of the
integrated Monod equation (model V) to the disappearance
of H, used by the Desulfovibrio sp. was obtained in tests in
which the initial substrate concentration was approximately
13 times greater than K.

Either the integrated Monod equation or one of the other
models gave good fits to the curves for benzoate mineraliza-
tion in sewage. In addition, the shapes of the curves for
mineralization in sewage having different initial benzoate
concentrations were in accord with expectations. The kinet-
ics of mineralization of 10 pg of benzoate per ml fit the
logarithmic model. If K; = 1 pg/ml, then the necessary
condition (S, >> K;) for the logarithmic model to apply is
approached in sewage receiving 10 pg of benzoate per ml,
and the observed Kkinetics are in general agreement with
theory. Expressing the patterns of mineralization of 1.0 pg of
benzoate per ml required the use of the integrated Monod
equation because the substrate concentration was of the
same order of magnitude as K,. At relatively low initial
population densities (i.e., Xo < Sp) and initial substrate
concentrations below K, as in the test with 0.1 pg of
benzoate per ml, the logistic pattern would be expected.

The six patterns of kinetics can be used in analyses of the
impact of different treatments on mineralization. An exam-
ple is the study of the effects of protozoa in sewage. When
the data for mineralization in the presence and absence of
protozoa were fit to the logarithmic model, the parameters
estimated by nonlinear regression indicated that nearly all
the differences observed between the two curves could be
explained as resulting from a twofold greater initial number
of active bacteria in the latter instance; i.e., X in the
presence of protozoa was estimated to be half of X in their
absence.

The models discussed here have several limitations. One
limitation of all six models is the assumption of constant cell
yield with time. Although this is often approximately true for
carbon sources (9), exceptions are known. Harrison and
Loveless (6) found that the yield, expressed on a dry-weight
basis, of Klebsiella aerogenes in glucose-limited chemostats
was maximal at a specific growth rate of 0.6 h™! and declined
by 30% at the lowest dilution rates and by 50% at the highest
dilution rates tested. Similarly, Stouthamer and Bettenhaus-
sen (23) found that the yield of another bacterium on glucose
varied by as much as a factor of 5 from the lowest to the
highest dilution rates. A second limitation of these models is
their inapplicability to activity of populations requiring sig-
nificant induction before the onset of rapid mineralization (7,
15, 18). However, if their limitations are taken into account,
these six types of Kinetics represent a related family of
curves, at least one of which should be capable of describing
mineralization in systems in which kinetics are determined
solely by population density and substrate concentration.
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